

X-ray Fluorescence Imaging Fixed energy above absorption edge(s) of elements of interest Micro-focused ("pencil") beam Spatially raster sample in beam Measure fluorescence emission spectrum at each pixel Produces elemental maps Can be combined with X-ray absorption spectroscopy to provide chemical information

6/10/2015

Case Study: An Arsenic-Loving Fern

Pickering, I. J.; Gumaelius, L.; Harris, H. H.; Prince, R. C.; Hirsch, G.; Banks, J. A.; Salt, D. E.; George, G. N. *Environmental Science & Technology* (2006) *40*, 5010-5014.

17th NX SCHOO

INGRID PICKERING

An Arsenic-Loving Fern

- Pteris vittata: a hyperaccumulator of arsenic
 - Takes up, stores and tolerates arsenic in tissues
- High tissue concentration compared with soil
- Can store up to 2% dry weight As
- Arsenic is a major environmental problem in many countries

- Pteris vittata shows potential in arsenic phytoremediation
- Use of plants to remove arsenic from contaminated areas
- (Either *Pteris vittata* itself or its pathways in engineered plants)

I. J. Pickering, L. Gumaelius, H. H. Harris, R. C. Prince, G. Hirsch, J. A. Banks, D. E. Salt and G. N. George *Environ. Sci. Technol.* (2006) **40**:5010-5014

17th NX SCHOOL

XAS Applications

Pteris vittata - Questions

- Unanswered Questions
 - What chemical forms of arsenic are present?
 - What biotransformations of arsenic are taking place?
 - Where does biotransformation occur?
 - How does the plant avoid poisoning itself?
- Need a direct probe of arsenic chemical form within living plant tissues
 - X-ray absorption spectroscopy to determine speciation
 - Chemically specific mapping to determine localization

17th NX SCHOOL

INGRID PICKERING

6/10/2015

Arsenic in Fern - Summary

- Sporophytes:
 - Arsenate is transported in the xylem to the leaves
 - In leaves, arsenite is stored at high levels
 - Thiolate-coordination may be implicated in reduction
- Reproductive tissues:
 - Arsenic is excluded

I. J. Pickering, L. Gumaelius, H. H. Harris, R. C. Prince, G. Hirsch, J. A. Banks, D. E. Salt and G. N. George *Environ. Sci. Technol.* (2006) **40**:5010-5014

17th NX SCHOO

INGRID PICKERING

Banning Fish will Impact World Health

The United Nations Food and Agriculture Organization estimates that over one billion people depend on marine fish as primary daily nutrition

If the West passes legislation declaring fish unsafe to eat then other countries may follow suit

This could significantly and negatively impact world health

17th NX SCHOOL

INGRID PICKERING

6/10/2015

Research Goals

- Despite mercury's importance, mechanisms by which it exerts its toxic effects remain unknown
- Understand effects of mercury at the molecular level
 - How is it transported?
 - Where is it localized and is it mobile?
 - How does molecular form affect these properties?
- •Use X-ray absorption spectroscopy and X-ray fluorescence imaging applied to:
 - Developing vertebrates (zebrafish)
 - Human tissues

17th NX SCHOOL June 17, 2015

XAS Application:

6/10/2015

Conclusions from Zebrafish

- Chemical form plays an important role in toxicity
- Preferential accumulation:
 - Organomercury in eye lens epithelium, skeletal muscle, gut tube
 - Inorganic mercury in brain ventricular region
 - Both accumulate in sensory organs and brain
- Organomercury mostly accumulates to higher levels
- Zebrafish: model system to study toxic metals

Korbas M et al (2008) PNAS 105:12108–12112 Korbas M, MacDonald TC et al (2012) ACS Chem Biol 7:410-419

17th NX SCHOOL June 17, 2015 INGRID PICKERING

			Obje	ctive	University of Saskatchewan		
To investigate the molecular nature of mercury and selenium in human brain samples							
Case		1	2	3	4	5	
Gend	der	F	F	M	F	F	
Age ((yrs)	29	48	60	76	67	
Corte	ex	frontal	occipital	occipital	occipital	occipital	
Merc Expo	•	acute poisoning at age 8 yrs	acute poisoning, 10 months to death	fish consumption	fish consumption	none known	
Toxic	cant	CH₃Hg-X	(CH ₃) ₂ Hg	CH ₃ HgS(thiol)	CH ₃ HgS(thiol)	n/a	
Hg(p	pb)	1179	2670	324	120	0.06	
Patho	ology	severe atrophy	severe atrophy	normal	normal	normal	
Korbas et al. ACS Chem. Neurosci. (2010) 1:810-818 Slide courtesy of Gosia Korbas 17th NX SCHOOL June 17, 2015 XAS Applications							

6/10/2015

6/10/2015

6/10/2015

