Neutron Vibrational
Spectroscopy

“Through the Looking
Glass: Watching atomic
dynamics with neutrons
and numbers

AJ (Timmy) Ramirez-Cuesta

Chemical and Engineering Materials Division
Chemical Spectroscopy Group
Oak Ridge National Laboratory

ORNL is managed by UT-Battelle %OAK RIDGE

for the US Department of Energy National Laboratory



%OAK RIDGE

National Laboratory




The S(Q,»n) Map

g-alumina 14.3g 1.81A T=4.2K

g-alumina 14.3g 1.81A T=4.2 K

20

!2.5x10“ '

= —{20x10* 1.5x10°

F 2.5%10°

- 2.0x10*

= = 15x10° \
. B 1.5%x10

S 1.0x10°
I50><1o3
0

E (meV)

1.0x10*

5.0%10°

2 4 6
1l A"

®=0 Elastic Scattering Diffraction

Structural Information
June 24, 2015 %OAK RIDGE

National Laboratory



The S(Q,n) Map

ZnX 8.022g 1.81A 152cc nH2 T=1 K

B —{ 300

= — 250

— =1 200

= i 150

100

50

2 4 6

. . lQl (A7
June 24, 2015 UAK KIDGE

National Laboratory



Inelastic Neutron Scattering

 Transitions are proportional to the amplitude of motion and
the cross section of the nuclei.

Interaction between probe and nucleus

Simultaneous transfer of energy and momentum.

No selection rules.

In this presentation | will be talking about incoherent INS.

st -0l 0 ol 1oy ual]

Mitchell, P. C. H.; Parker, S. F.; Ramirez-Cuesta, A. J.; Tomkinson, J. Vibrational Spectroscopy with
Neutrons: with applications in Chemistry, Materials Science and Catalysis; World Scientific: London,
2005



The S(Q,n) Map
Fundamental
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Overtones & combinations
are very much apparent.
Particularly if there is
hydrogen in the system.
This is a kinematic effect.
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parabola with a curvature
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the scatterer atom.
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How to measure INS (1)

Direct Geometry Instrumentation ..

3500

Direct geometry instruments 3000-

Incident neutron beam is
monochromatic
determining the incident
energy E,.

That determines T,. We
measure the ToF and we
can work out T,.
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How to measure INS (2)
Indirect Geometry Instrumentation
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Incident neutron beam is white. We
fix the energy of the scattered
neutrons using a analyzer and filter
device.

That determines T,. We measure
the ToF and we can work out T,.
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The S(Q,») Map

Direct geometry advantages etc.
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Playing the game

Experiment

Theory Modelling
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Powder Average
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Calculation of INS spectra

a-CLIMAX

* [t uses the isolated molecule approximation for
the study of molecular solids.

 For extended solid calculations, with a fine
sampling of the Brillouin zone, it is rigorous; i.e.
the isolated molecule approximation is not longer
necessary since there is no distinction between
external and internal modes. The only
assumption is the harmonic approximation.

Computer Physics Communications 2004, 157, 226-238
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DFT calculations

1. For the calculations shown in this talk | have used
CASTEP from Accelrys

2. The convergence criteria used is “Fine”

3. Interpolation algorithms of the dynamical matrix
allow the sampling of the Brillouin zone with

different grid sizes

Vibrational Spectroscopy with Neutrons, World Scientific: London, 2005
Chemical Physics 2005, 317, 119-129.
Macromolecules 2006, 2683—-2690. %O AK RIDGE
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INS and other vibrational tools

AA

v
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Zeise's salt. The anion features a platinum atom with a square planar

geometry. The salt is of historical importance in the area of
organometallic chemistry as one of the first examples of an transition

metal alkene complex.
INS gives quantitative information, IR and Raman, not necessarily so
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Examples from VISION
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Icm) fundamental (the C-O
symmetric stretching): the Fermi
resonance
First observation of CO, Fermi
resonance using INS
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Vibrational Density of States of Strongly H-Bonded
Interfacial Water: Insights from Inelastic Neutron
Scattering and Theory

H.-W. Wang', M.J. DelloStritto?, N. Kumar?, A.l. Kolesnikov?,
P.R.C. Kent!, J.D. Kubicki2, D.J. Wesolowski', and J.O. Sofo?
TORNL, 2The Pennsylvania State University

In this study we show that the vibrational dynamics of H,O and OH
sorbed on SnO, nanoparticles, probed with inelastic neutron
scattering and analyzed with ab-initio molecular dynamics, reveals
very strong surface H-bonds, with a formation enthalpy twice that of
liquid water. This unusually strong interaction results in (i)
decoupling of the hydrated surface from additional water layers due
to an epitaxial screening layer of H,O and OH species, (ii) high
energy of OH wagging modes that provides an experimental
indicator of surface H-bond strengths, and (iii) high proton exchange
rates at the interface.
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INS spectra measured at SEQUOIA of water on nano-SnO2 compared with aiMD simulations.

Measured INS (circles) and calculated aiMD-VDOS (lines) spectra for the dry (A-C) and the fully hydrated
nanoparticles (D-F). The data were collected at three different neutron incident energies, Ei, indicated in the figure.
The labels indicate the energy transfers of the most relevant features in meV. In panels (A)-(C), the three
decomposed spectra (green, orange and blue lines) show distinct contributions from each subset of hydroxyl (TH and
BH) and water (TW) configurations. In panels (D)-(F), contributions from only interlayer H-bonding interactions are

marked by blue and brown lines.



' " | aiMD H VDOS
—— Total H VDOS (L, only)
@ TH/TW str, wag and riding
= Trap-H str; BH y-wagging ‘
@ BH x-wagging; parallel to (110) |
3 BH z-wagging; normal to (110) |

SnO, (110) hydroxylated conf. (side
view)

reg. O-H str.

G(E) [arb. units]

soft O-H str.

Energy Transfer [meV]

During entire timesteps (40ps):
» free-H’s spent 90% of time as a part of TH,
and 30% of time H-bond to nearby TO .

« trap-H’s spent 90% of time as a part of BH
and spent equal amounts of time H-
bonded to TO.

« TW forms only 10% of time.

%OAK RIDGE
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Studying H, adsorption
in Porous Materials &
Surfaces with INS

Probing the interactions of molecules
with the host material

Characterization of the interaction
strength

June 24, 2015 %QAK RIDGE
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The Theory

o

e first rotational state, ohydrogen (0-H,) symmetric nuclear
spin wavefunction (1 1) and antisymmetric rotational wavefunction.

* Transitions p-H, <= 0-H, are detected with neutrons because neutrons
exchange spin states with the H, molecule.

and have the rotational constant B with the same value that in gas phase
(B=59.6 cm™). Its energy levels are:

The minimum separation between energy levels 1s

June 24, 2015 %OAK RIDGE

National Laboratory




The Interactions

would do the trick, D, also works.
*A hindered H, rotor constrained to move in two dimensions.

molecule on a surface may be expressed as

case)
® The splitting between levels 1s 1B if a 1s large
and negative, because the energy levels are:

June 24, 2015 2D %OAK RIDGE

National Laboratory




The Energy Levels
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What are we expecting?
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Interaction of graphite with Hydrogen

Neutron Energy Loss/cm’
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Interaction of graphite with Hydrogen

Neutron Energy Loss/cm”
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Interaction of SWNT with Hydrogen
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Interaction of SWNT with Hydrogen

Neutron Energy Loss/cm’”
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Interaction of SWNT with Hydrogen
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Interaction of SWNT with Hydrogen

Neutron Energy Loss/cm™
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Example #1 H, in Cu-MOF

Franck Millange, Sam Callear, Richard Walton, Timmy Ramirez-Cuesta
Chemical Physics 427 (2013) 9

doi:http://dx.doi.org/10.1016/j.chemphys.2013.07.020.
June 24, 2015 %OAK RIDGE

National Laboratory



H, in Cu-MOF #1

S(Q,m)
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H, in Cu-MOF #1
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Molecular hydrogen solid
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Molecular hydrogen in porous carbon
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Molecular hydrogen in porous carbon

. The total integral of the spectral intensity is proportional to the amount of hydrogen in the system (left plot)

2. The integrated area under the elastic peak is proportional to the amount of hydrogen that is in a liquid like and solid like
phase (right panel)

3. The integrated area under the rotor line is proportional to the amount of hydrogen in solid like phase (right panel)
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Normalized intensity

The ultra-high sensitivity of VISION:
INS measured on milligrams of samples

0 1.25 mg of sucrose (table sugar)

= Sugar grains on Al foil
B (magnified, the total
volume of the grains is
about 0.8 mm3)

O 3 mg of polybenzene nanothreads
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Normalized intensity (a

VISION Sample changer and 3D printed
collimator
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3D printed collimators have
been tested for VISION to be
used in the backscattering
diffraction bank.

The reduction of the spurious
peaks from the sample is very
much noticeable.

— With collimator
— Without collimator
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The high throughput rate of VISION
requires very rapid sample changes
to make the best use of neutron
beamtime and run mail-in program.
A sample changer design is being
finalized and will be tested
December 2015
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Questions?
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