MAGNETISM AS SEEN WITH X-RAYS

ELKE ARENHOLZ

LAWRENCE BERKELEY NATIONAL LABORATORY

AND

DEPARTMENT OF MATERIAL SCIENCE AND ENGINEERING, UC BERKELEY

MAGNETIC MATERIALS TODAY

Magnetic materials for energy applications

Magnetic nanoparticles for biomedical applications

Magnetic thin films for information storage and processing

Advanced Light Source

An Office of Science User Facility

PERMANENT AND HARD MAGNETIC MATERIALS

(@) ENERGY

Office of Science

ALS

BERKELEY LAB

MAGNETIC NANOPARTICLES

Tailoring magnetic nanoparticles for environmental applications

Optimizing magnetic nanoparticles for biomedical applications

ENERGY

Office of Science

MAGNETIC THIN FILMS

GMR Read Head Sensor

MAGNETIC MATERIALS CHARACTERIZATION WISH LIST

- + Sensitivity to ferromagnetic and antiferromagnetic order
- + Element specificity = distinguishing Fe, Co, Ni, ...
- + Sensitivity to oxidation state = distinguishing Fe²⁺, Fe³⁺, ...
- + Sensitivity to site symmetry, e.g. tetrahedral, T_{d;} octahedral, O_h
- + Nanometer spatial resolution
- + Ultra-fast time resolution

SOFT X-RAY SPECTROSCOPY AND MICROSCOPY

Spectroscopy

ALS)

Soft X-Ray Spectroscopy ($h\nu\approx$ 500-1000eV, $\lambda\approx$ 1-2nm)

X-RAY ABSORPTION – DETECTION MODES

Electron yield:

- + Absorbed photons create core holes subsequently filled by Auger electron emission
- + Auger electrons create low-energy secondary electron cascade through inelastic scattering
- + Emitted electrons ∞ probability of Auger electron creation ∞ absorption probability

9

ALS

SOFT X-RAY ABSORPTION – PROBING DEPTH

~10-20 nm layer thick films supported by substrates transparent to soft x-rays

Advanced Light Source

An Office of Science User Facility

X-RAY ABSORPTION – DETECTION MODES AND PROBING DEPTH

+ Electron sample depth: 2-5 nm in Fe, Co, Ni

 \Rightarrow 60% of the electron yield originates form the topmost 2-5 nm

PROBING DEPTH OF ELECTRON YIELD

+ Electron sample depth: 2-5 nm in Fe, Co, Ni

⇒ 60% of the electron yield originates form the topmost 2-5 nm

X-RAY ABSORPTION – FUNDAMENTALS

Office of Science

X-RAY ABSORPTION – FUNDAMENTALS

Office of Science

RERKELEY I A

ALS)

ALS

ALS

18

X-RAY ABSORPTION – FUNDAMENTALS

Office of Science

X-RAY ABSORPTION – VALENCE STATE

J.-S. Kang et al., Phys. Rev. B 77, 035121 (2008)

Ni²⁺ in NiO: $2p^6$ $3d^8 \rightarrow 2p^5$ $3d^9$

<u>Configuration model</u>, e.g. *L* edge absorption :

- Excited from ground/initial state configuration, 2p⁶3d⁸ to exited/final state configuration, 2p⁵3d⁹
- + Omission of all full subshells (spherical symmetric)
- Takes into account correlation effects in the ground state as well as in the excited state
- + Leads to multiplet effects/structure

http://www.anorg.chem.uu.nl/CTM4XAS/

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

X-RAY ABSORPTION – FUNDAMENTALS

Office of Science

SENSITIVITY TO SITE SYMMETRY: $Ti^{4+} L_{3,2}$

+ Crystal field splitting 10Dq acting on 3d orbitals:

Octahedral symmetry:

- e orbitals towards ligands \rightarrow higher energy
- t_2 orbitals between ligands \rightarrow lower energy

Tetragonal symmetry: $e \text{ orbitals} \rightarrow b_2 = d_{xy}, e = d_{yz}, d_{yz}$ $t_2 \text{ orbitals} \rightarrow b_1 = d_{x^2-y^2}, a_1 = d_{3z^2-r^2}$

ENERGY

Office of Science

AĽS)

BERKELEY LA

X-RAY ABSORPTION – LATTICE SYMMETRY

X-RAY ABSORPTION – FUNDAMENTALS

Office of Science

X-RAY ABSORPTION – FUNDAMENTALS

Office of Science

STONER MODEL FOR FERROMAGNETIC METALS

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

3d shell

- + Magnetic moments in Fe, Co, Ni well described by Stoner model: *d*-bands containing up and down spins shifted relative to each other by "exchange splitting"
- + Spin- up and spin-down bands filled according to Fermi statistics
- Magnetic moment |m| determined by difference in number of electrons in majority and minority bands

$$|\mathbf{m}| \propto \mu_{B}(\mathbf{n}_{e}^{maj} - \mathbf{n}_{e}^{min})$$

X-RAY MAGNETIC CIRCULAR DICHROISM (XMCD)

Photoexcitation of electron from $2p_{3/2}$, $2p_{1/2}$ to 3d states by absorption of circularly polarized x rays:

- + Transfer of angular momentum of incident circular polarized x ray to excited electrons (angular momentum conservation)
- + Excitation from spin-orbit split $2p_{3/2}$, $2p_{1/2}$ level
- \Rightarrow Transfer of angular momentum (±ħ) from photon to electron spin through spin-orbit coupling
- ⇒ Spin polarization opposite for incident x rays with positive (+ħ) and negative (-ħ) photon spin
- + Unequal spin-up and spin-down populations in exchange split valence shell acts as detector for spin of excited electrons
- + $2p_{3/2}$ and $2p_{1/2}$ levels have opposite spin orbit coupling (*I*+*s*, *I*-*s*)
- \Rightarrow Spin polarization opposite for two levels

X-RAY MAGNETIC CIRCULAR DICHROISM (XMCD)

ALS

X-RAY MAGNETIC CIRCULAR DICHROISM (XMCD)

+ XMCD provides magnetic information resolving el

elements Fe, Co, ... valence states: Fe²⁺, Fe³⁺, ... lattice sites: octahedral, O_h, tetrahedral, T_d,

ENERGY

Office of Science

ALS)

BERKELEY LAP

...

MAGNETIC BIONANOSPINELS

ENERGY

Office of Science

BERKELEY LAB

MAGNETIC BIONANOSPINELS

+ Geobacter sulfurreducens bacteria form magnetite nanocrystals (15nm) via extracellular reduction of amorphous Fe(III)-bearing minerals

ENERGY

Office of Science

LS

BERKELEY LAB

CO-DOPED TiO₂

J.-Y. Kim *et al.,* Phys. Rev. Lett. <u>90</u>, 017401 (2003)

+ Comparing XMCD spectra with model compounds and/or calculations
 ⇒ Identifying magnetic phases

34

ALS)

INDUCED MOMENTS AT CO/CU INTERFACES

Co Cu Co Cu

:

+ The element-specificity makes XMCD measurements an ideal tool to determine induced moments at interfaces between magnetic and non-magnetic elements.

M. G. Samant *et al.,* Phys. Rev. Lett. 72, 1112 (1994)

MAGNETIC INTERFACES

- + Weak Mn XMCD signal
- ⇒ Uncompensated Mn at Co/IrMn interface
- + Same sign of XMCD signal for Co and Mn
- \Rightarrow Parallel coupling of Co and Mn moments
- Nominal thickness of uncompensated interface moments: (0.5±0.1)ML

ĹS

BAND FILLING IN Ga_xFe_{1-x}

ENERGY

Office of Science

ALS)

BERKELEY LAB

SUM RULES

+ Theoretically derived sum rules correlate XMCD spectra with spin and orbital moment providing unique tool for studying magnetic materials.

> J. Stöhr, H.C. Siegmann, Magnetism (Springer)

ORBITAL MOMENT OF CO NANOPARTICLES

- Strong variation of orbital and spin magnetic moment observable as change in relative L₃ and L₂ intensity in XMCD spectrum.
- + Co atoms and nanoparticles on Pt have enhanced orbital moments up to 1.1 μ_{B}

ENERGY

Office of Science

LS

BERKELEY LAB

P. Gambardella *et al.,* Science <u>300</u>, 1130 (2003)

ELEMENT-SPECIFIC MAGNETIZATION REVERSAL

- + Monitoring field dependence of XMCD
- ⇒ Element-specific information on magnetization reversal in complex magnetic nanostructures.

ELEMENT-SPECIFIC MAGNETIZATION REVERSAL

ENERGY

Office of Science

mm

BERKELEY LAB

X-RAY LINEAR DICHROISM

X-Ray Linear Dichroism:

- + Difference in x-ray absorption for different linear polarization direction relative to crystalline and/or spin axis.
- + Due to the anisotropic charge distribution about the absorbing atom caused by bonding and/or magnetic order.
- + "Search Light Effect": X-ray absorption of linear polarized x rays proportional to density of empty valence states in direction of electric field vector E.

2p_{3/2} 2p_{1/2}

STRUCTURAL CHANGES IN PbZr_{0.2}Ti_{0.8}O₃

Phys. Rev. B 82, 140103 (2010)

BERKELEY LAB

ALS)

ENERGY

Office of Science

+ Reversing ferroelectric polarization changes XA \Leftrightarrow Change in tetragonal distortion

X-RAY MAGNETIC LINEAR DICHROISM

Isotropic *d* electron charge density \Rightarrow No polarization dependence

Magnetically aligned system

- ⇒ Spin-orbit coupling distorts charge density
- \Rightarrow Polarization dependence

1.0 CoFe₂O₄ XA (arb. units) Fe Со 0.5 Lz L_3 [001] 0.0 0.02 XMLD (arb. units) $\theta = 0^{\circ}$ 0.00 -0.02 $\theta = 45^{\circ}$ 720 730 780 700 710 790 800 photon energy (eV)

ENERG

Office of Science

RERKELEY I A

+ $I_{XMLD} = I_{||} - I_{\perp} \propto \langle m^2 \rangle$, $\langle m^2 \rangle =$ expectation value of square of atomic magnetic moment + XMLD allows investigating ferri- and ferromagnets as well as antiferromagnets

+ XMLD spectral shape and angular dependence are determined by magnetic order <u>and</u> lattice symmetry

44

X-RAY MAGNETIC LINEAR DICHROISM

Isotropic *d* electron charge density \Rightarrow No polarization dependence

Magnetically aligned system

- ⇒ Spin-orbit coupling distorts charge density
- \Rightarrow Polarization dependence

CoNIO_4.0.2_NI_XMLD.op 1.0 antiferromagnetic NiO XA (arb. units) L_3 0.5 0.0 0.05 XMLD (arb. units) $\theta = 0^{\circ}$ 0.00 [001] -0.05 $\theta = 45^{\circ}$ 850 855 860 865 870 875 [001] photon energy (eV)

ENEKE

Office of Science

+ $I_{XMLD} = I_{||} - I_{\perp} \propto \langle m^2 \rangle$, $\langle m^2 \rangle =$ expectation value of square of atomic magnetic moment + XMLD allows investigating ferri- and ferromagnets as well as antiferromagnets

+ XMLD spectral shape and angular dependence are determined by magnetic order <u>and</u> lattice symmetry

MAGNETIC COUPLING AT INTERFACES

ENERGY

Office of Science

ALS)

BERKELEY LAE

PLANAR DOMAIN WALL

A. Scholl *et al.*, Phys. Rev. Lett. <u>92</u>, 247201 (2004)

MAGNETIC MICROSCOPY

.....

Office of Science

BERKELEY LAB

AĽS)

MAGNETIC MICROSCOPY

10-50 nm spatial resolution

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

ENERGY

Office of Science

IMAGING MAGNETIC DOMAINS USING X-RAYS

E. Arenholz *et al.*, Appl. Phys. Lett. <u>93</u>, 162506 (2008)

+ Images taken with left and right circularly polarized x-rays at photon energies with XMCD, i.e. Co L_3 edge, provide magnetic contrast and domain images.

MAGNETIC COUPLING AT CO/NIO INTERFACE

+ Taking into account the geometry dependence of the Ni XMLD signal

⇒ Perpendicular coupling of Co and NiO moments at the interface.

E. Arenholz *et al.*, Appl. Phys. Lett. <u>93</u>, 162506 (2008)

probing in-plane

MAGNETIC VORTICES

- First direct observation of vortex state in antiferromagnetic CoO and NiO disks in Fe/CoO and Fe/NiO bilayers using XMCD and XMLD.
- + Two types of AFM vortices:
 - conventional curling vortex as in ferromagnets
 - divergent vortex, forbidden in ferromagnets
 - thickness dependence of magnetic interface coupling

NANOSCALE MAGNETIC PHASES

x (nm)

- + BiFeO₃ multiferroic = ferroelectric + antiferromagnetic
- + Compressive strain on rhombohedral phase (R-phase) induced by substrate
- ⇒ tetragonal-like phase (T-phase)
- + Partial relaxation of epitaxial strain
- ⇒ Formation of a nanoscale mixture of T- and R-phases

ENERG

Office of Science

Q. He et al., Nature Comm. 2, 225 (2011)

NANOSCALE MAGNETIC PHASES

Advanced Light Source An Office of Science User Facility

ALS)

ULTRAFAST MAGNETISM

Advanced Light Source

An Office of Science User Facility

- + Energy reservoirs in a ferromagnetic metal
- + Deposition of energy in one reservoir
- ⇒ Non-equilibrium distribution and subsequent relation through energy and angular momentum exchange

BERKELEY LAB

Office of Science

ALS TIME STRUCTURE

An Office of Science User Facility

ENERGY

Office of Science

BERKELEY LAB

ULTRAFAST DYNAMICS OF SPIN AND ORBITAL MOMENTS

C. Boeglin, *et al.,* Nature <u>465</u>, 458 (2010)

- + Orbital (L) and spin (S) magnetic moments can change with total angular momentum is conserved.
- + Efficient transfer between *L* and S through spin–orbit interaction in solids
- + Transfer between *L* and *S* occurs on fs timescales.
- + Co_{0.5}Pt_{0.5} with perpendic magnetic anisotropy
- + 60 fs optical laser pulses change magnetization
- + Dynamics probed with XMCD using 120fs x-ray pulses
- Linear relation connects
 Co L₃ and L₂ XMCD
 with L_z and S_z using
 sum rules

B ENERGY

Office of Science

RERKELEY I A

ULTRAFAST DYNAMICS OF SPIN AND ORBITAL MOMENTS

C. Boeglin, *et al.,* Nature <u>465</u>, 458 (2010)

Advanced Light Source

An Office of Science User Facility

- + Thermalization: Faster decrease of orbital moment
- + Theory: Orbital magnetic moment strongly correlated with magnetocrystalline anisotropy
- + Reduction in orbital moment
 ⇔ Reduction in magnetocrystalline anisotropy
- + Typically observed at elevated temperatures in static measurements as well

REFERENCES AND FURTHER READING

J. Stöhr, H.C. Siegmann Magnetism– From Fundamentals to Nanoscale Dynamics Springer

ALS