
Phonons by Inelastic X-Ray Scattering

Esen Ercan Alp 
Advanced Photon Source, Argonne National Laboratory 

alp@anl.gov

NX School 2015 
June 13-26, 2015, Argonne & Oak Ridge Nat. Lab.

Thanks : T. S. Toellner, J. Zhao, M. Y. Hu, A. Alatas, W. Bi, B. Leu, A. Said
R. Scheidt, T. Sage, S. Cramer, J. F. Lin, W. Sturhahn, B. Fultz, J. Bass



Lattice dynamics for beginners



Lattice dynamics for beginners

Lattice dynamics describes vibrations of atoms in condensed matter:
  

• crystalline solids 
• glasses, and liquids 

However, some of the convenience gained by symmetry or periodic lattice is lost for glasses and 
liquids. Also, effect of surfaces and defects are glowing short-comings of the classical model. 

Lattice dynamics is a reflection of forces acting upon atoms and leads to

• sound velocity 
• vibrational entropy 
• specific heat 
• force constant 
• compression tensor 
• Young’s modulus 
• stiffness and resilience 
• Gruneisen constant 
• viscosity 

Many experimental techniques exist to study lattice dynamics

• sound velocity, deformation, thermal expansion,heat capacity…. 
• spectroscopic methods using light, x-rays and neutrons, and electrons 
• point contact spectroscopy

Imagine that you can measure 
all that for a micron sized sample,  
at 3 Mbar at 4000 K, in a way that  
is element selective, or even better 
isotope selective.



Two main approximations should be noticed: 

• Born-Oppenheimer (adiabiatic) approximation
  
 - Motion of atoms are independent and decoupled from the electrons.    
 - All electrons follow the nuclei. This can be justified by considering the 
time scales involved:10-15 s (femto) for electrons, 10-12 s (pico) for nuclei 

• Harmonic approximation 

 -  At equilibrium, attractive and repulsive forces are balanced.  
 -  When atoms move away from the equilibrium positions, they are 
forced to come back by restoring forces.  
 -  Magnitude of atomic displacements are small compared to 
interatomic distance. 
 -  All atoms in equivalent positions in every unit cell move together.

Atomic motions are described as harmonic traveling waves, characterized by

• wavelength, λ 
• angular frequency, ω 
• momentum vector along the direction of propagation, 

r
k = λ

2π
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Figure 1. Traditional potential energy curve for two atoms, showing a minimum at a separation of r0 that might
correspond to the bond length, the steep rise for shorter distances that reflects the repulsion due to overlap of
electron density of the two atoms, and the more gentle rise towards zero for larger separations reflecting the
attractive interaction. This plot is however somewhat of a simplification of the situation within a crystal, because
typically the atoms within a crystal are held in place by a large number of interactions, including the long-range
Coulomb interaction, and the position of the minimum of any pair of atoms may not reflect actual equilibrium
contact distances.

More recently we have seen a number of key developments in the study of lattice dynamics.
In terms of experiments, we are seeing a new generation of instruments at neutron scattering
facilities, particularly with the ability to collect data over wide ranges of scattering vector and
energy simultaneously. The new instrumentation is matched by software for simulating the outputs of
experiments, coupled with new capabilities to calculate !(k) from quantum mechanical simulations.
These capabilities coincide with the emergence of investigations concerned with new phenomena such
as negative thermal expansion, which directly need calculations and measurements of lattice dynamics
for a clear understanding (see Section 6.5 for example). All these developments have led to renewed
interest in lattice dynamics.

1.3 The harmonic approximation

The key approximation in the theory of lattice dynamics is the harmonic approximation. This is
illustrated by considering the potential energy between two atoms, as shown in Figure 1. We can write
the energy as a Taylor expansion around the minimum point r0:

E(r) = E0 + 1
2

!2E

!r2

∣∣∣∣
r0

(r − r0)2 + 1
3!

!3E

!r3
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r0

(r − r0)3 + 1
4!

!4E

!r4

∣∣∣∣
r0

(r − r0)4 + · · · (1.1)

where the derivatives are performed at r = r0.5 The harmonic approximation consists of neglecting all
terms of power higher than 2.

One might think that the harmonic approximation is both trivial and drastic, but it is actually very
powerful. On one hand, it is effectively the only model for lattice dynamics that has an exact solution.
On the other hand, it gives us many features that survive addition of higher-order terms. These include
the link between vibrational frequencies, wave vector and interatomic forces, and applications in areas

5 In this example the linear term is zero because the definition of equilibrium is that !E/!r = at the equilibrium distance r0.

ignoring these terms is the harmonic approximation
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There should be no thermal expansion 
in the harmonic model. 

The fact that there is thermal expansion 
is an indication that the potential under 
which the atoms move is not harmonic.  

However, harmonic model has so many 
convenient features that we adopt it to 
explain many features of atomic 
vibrations. 
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Figure 2. Simple diatomic chain model, with atoms of different mass connected by harmonic forces that are of
equal strength between all nearest-neighbour atom pairs. The unit cell length is denoted by a, atom a vector of the
form ui,n denote the displacement of atom of label i in unit cell of label n [2].

such as the thermodynamic properties of materials. Moreover, the harmonic model is easily adapted to
incorporate quantum mechanics.

Thus there is considerable merit in starting with the harmonic approximation, and then attempting
to modify the picture to account for higher-order anharmonic terms as appropriate. Applications that
are not explained by the harmonic model include properties such as thermal expansion and thermal
conductivity, and behaviour such as phase transitions. Experience has shown that for many of these
applications this approach works well. For example, in the study of thermal expansion it is possible to
retain the harmonic approximation but allow force constants to change with an expansion of the lattice.

2. THEORY OF HARMONIC LATTICE DYNAMICS

2.1 Starting model: The diatomic chain

Most textbooks begin with a model that consists of one atom in the unit cell, which is typically then
explored in a single dimension and subsequently generalised to three dimensions visually. Here we
will skip past this approach and introduce instead a one-dimensional model of a crystal containing two
atoms in the unit cell, Figure 2. By starting with this model we quickly position ourselves to generalise
the formalism to more complex three-dimensional materials.

The total energy of this model is written in terms of the displacements of atoms 1 and 2, u1,n and
u2,n respectively, as defined in Figure 2:

E = 1
2

J
∑

n

(u1,n − u2,n)2 + 1
2

J
∑

n

(u2,n − u1,n+1)2

= J
∑

n

(u2
1,n + u2

2,n) − J
∑

n

(u1,nu2,n + u2,nu1,n+1) (2.1)

The first representation reflects the image of the model in terms of bonds as simple springs, with each
term corresponding to the energy associate with stretching or compressing one of the springs. The
second representation is a Taylor expansion of the total energy, which in general terms can be written as

E = 1
2

∑

i,j

ui

!E

!ui!uj

uj (2.2)

By comparing the two preceding equations, it can be seen that the parameter J is equal to the derivative
of the total energy:

J = !2E

!u1,n!u2,n
. (2.3)
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2.2 Travelling waves

We next consider the equations of the waves travelling through crystals. In the general case, a wave of
wave vector k and angular frequency ! travelling through a crystal will displace an atom labelled j at
nominal position rj by

uj (rj , t) = ũj exp(i(k · rj − !t)) (2.4)

where ũj represents both the amplitude of the wave and its specific effect on atom j , and may be
a complex number (this is discussed in more detail in following sections). We remark here that the
definition of the position rj is treated in two ways in the scientific literature. It can be taken to represent
the actual position of the atom, or else it can be taken as the origin of the unit cell containing the atom. It
actually doesn’t matter, because the difference is merely a phase factor, which can be incorporated into
the complex amplitude ũj .

If we consider a single wave travelling through our one-dimensional mode with a particular value of
k and !, it will displace the two atoms by

u1,n(t) = ũ1 exp (i(kna − !t)) (2.5)

u2,n(t) = ũ2 exp (i(kna − !t)) (2.6)

where ũ1 and ũ2 are the relative amplitudes of motion of the two atoms. In this case we have treated the
vector rj for both atoms as the origin of the unit cell, r1 = r2 = na, rather than as the actual positions
of the atoms, na and (n + 1/2)a respectively. Thus the amplitude ũ2 will contain the phase factor
exp(ika/2). At this point we do not know the relationship between ũ1 and ũ2, nor will be able to think
about their absolute values until we introduce thermodynamics into the picture.

2.3 Equations of motion

Our starting point is to consider the energy of the two atoms in the unit cell labelled n through its
interaction with their two nearest neighbours:

E1,n = 1
2

J (u1,n − u2,n)2 + 1
2

J (u1,n − u2,n−1)2 (2.7)

E2,n = 1
2

J (u2,n − u1,n)2 + 1
2

J (u2,n − u1,n+1)2 (2.8)

The key equation we will be dealing with is simply Newton’s equation, force = mass × acceleration.
Thus we start by computing the force acting on each atom, as given by the derivative of the energy with
respect to displacement:

f1,n = −!E1,n

!u1,n
= −J (u1,n − u2,n) − J (u1,n − u2,n−1)

= −J (2u1,n − u2,n − u2,n−1) (2.9)

f2,n = −!E2,n

!u2,n
= −J (u2,n − u1,n) − J (u2,n − u1,n+1)

= −J (2u2,n − u1,n − u1,n+1) (2.10)

We next need to consider the acceleration of each atom, which is given as the second time derivative of
the atomic displacement:

ü1,n(t) = −!2ũ1 exp i (kna − !t) = −!2u1,n(t) (2.11)

ü2,n(t) = −!2ũ2 exp i (kna − !t) = −!2u2,n(t) (2.12)

Diatomic infinite 1-D chain

Time dependent displacement of two atoms  
in terms of relative displacement of each atom
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Energy

Force as derivative of energy
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exp(ika/2). At this point we do not know the relationship between ũ1 and ũ2, nor will be able to think
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exp(ika/2). At this point we do not know the relationship between ũ1 and ũ2, nor will be able to think
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Newton’s equation now links equations (2.9) and (2.10) to equations (2.11) and (2.12) respectively to
give:

m1ü1,n(t) = −m1!2u1,n(t) = −J (2u1,n(t) − u2,n(t) − u2,n−1(t)) (2.13)

m2ü2,n(t) = −m2!2u2,n(t) = −J (2u2,n(t) − u1,n(t) − u1,n+1(t)) (2.14)

Before we proceed, we note that we can write

uj ,n±1(t) = uj ,n exp (±ikna) (2.15)

Thus we can rewrite equations (2.13) and (2.14), removing the minus signs from both sides, as

m1!2u1,n(t) = J (2u1,n(t) − u2,n(t) − u2,n(t) exp(−ika)) (2.16)

m2!2u2,n(t) = J (2u2,n(t) − u1,n(t) − u1,n(t) exp(+ika)) (2.17)

Since both u1,n(t) and u2,n(t) have the same complex exponential function, we can divide this out from
both sides of equations (2.16) and (2.17) to yield

m1!2ũ1 = J (2ũ1 − ũ2 − ũ2 exp(−ika)) (2.18)

m2!2ũ2 = J (2ũ2 − ũ1 − ũ1 exp(+ika)) (2.19)

It will prove useful going forward to normalise by the atomic masses. We write

e1 = m
1/2
1 ũ1; e2 = m

1/2
2 ũ2 (2.20)

Equations (2.18) and (2.19) are thus re-written as

!2e1 = J
(
2e1/m1 − e2 (1 + exp(−ika)) /

√
m1m2

)
(2.21)

!2e2 = J
(
2e2/m2 − e1 (1 + exp(+ika)) /

√
m1m2

)
(2.22)

By inspection, it can be seen that equations (2.21) and (2.22) can be combined into a matrix equation:

!2
(

e1

e2

)
= D(k) ·

(
e1

e2

)
(2.23)

where

D(k) =
(

2J/m1 −J (1 + exp(−ika)) /
√

m1m2

−J (1 + exp(+ika)) /
√

m1m2 2J/m2

)
. (2.24)

2.4 Solutions

Before we rush ahead to discuss the solutions to these equations in detail, there are several points to
make here. First, this is a simple eigenvalue/eigenvector equation, with the !2 values being obtained
as the eigenvalues of the matrix D(k). This will yield two solutions for !2, which means that our
dynamical equations have given two normal modes. Second, the matrix D(k) has the property that it
is equal to the transpose of its complex conjugate. Matrices with this property are called Hermitian, and
an important property of Hermitian matrices is that their eigenvalues are real. This means that the values
of !2 obtained as the solutions of the model are real quantities, although they can be negative as well as
positive.6

6 A negative value of !2 means that the value of ! will be imaginary; the physical interpretation is that the potential energy
surface is curved downwards with respect to the displacements of atoms in the normal mode rather than the expected upwards
curvature, which means that that the crystal is actually unstable with respect to the set of displacements. This interpretation forms
the basis of the soft-mode model for displacive phase transitions.

Newton’s eqn of motion
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Acoustic mode

Optic mode

Figure 3. Representation of the difference between acoustic and optic modes in the limit of wave vector k → 0 for
the model diatomic chain. The atomic motions of the two types of atoms are in-phase for the acoustic mode, and
out-of-phase for the optic mode [2].
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Figure 4. Dispersion curve of the diatomic chain model shown in Figure 2 [2].

These solutions both correspond to one atom remaining at rest in each unit cell, and with k = !/a

the other atom will move in opposite directions in neighbouring unit cells. Note that in this case, the
differentiation between acoustic and optic modes has now vanished. The distinction between in-phase
and out-of-phase motions only arises in the limit k → 0.

The complete set of solutions for "(k) for all values of k is shown in Figure 4. These are displayed
as two continuous curves, one for the acoustic mode (which becomes the sound wave with " ∝ k as
k → 0) and the other for the optic mode.

We complete this description by noting three features of the dispersion curves shown in figure 4.
First, both solutions at k = !/a have zero group velocity, that is !"/!k = 0. At this wave vector, both
waves are standing waves, they correspond to the motions of atoms in neighbouring unit cells being
exactly opposite to each other. The second point is that the solutions for any k are invariant with respect
to changing the sign of k. The third point is that the solutions are also invariant when adding any
reciprocal lattice vector, which in our simple model would be given by ±2!n/a, where n is any integer.
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Newton’s equation now links equations (2.9) and (2.10) to equations (2.11) and (2.12) respectively to
give:

m1ü1,n(t) = −m1!2u1,n(t) = −J (2u1,n(t) − u2,n(t) − u2,n−1(t)) (2.13)

m2ü2,n(t) = −m2!2u2,n(t) = −J (2u2,n(t) − u1,n(t) − u1,n+1(t)) (2.14)

Before we proceed, we note that we can write

uj ,n±1(t) = uj ,n exp (±ikna) (2.15)

Thus we can rewrite equations (2.13) and (2.14), removing the minus signs from both sides, as

m1!2u1,n(t) = J (2u1,n(t) − u2,n(t) − u2,n(t) exp(−ika)) (2.16)

m2!2u2,n(t) = J (2u2,n(t) − u1,n(t) − u1,n(t) exp(+ika)) (2.17)

Since both u1,n(t) and u2,n(t) have the same complex exponential function, we can divide this out from
both sides of equations (2.16) and (2.17) to yield

m1!2ũ1 = J (2ũ1 − ũ2 − ũ2 exp(−ika)) (2.18)

m2!2ũ2 = J (2ũ2 − ũ1 − ũ1 exp(+ika)) (2.19)

It will prove useful going forward to normalise by the atomic masses. We write

e1 = m
1/2
1 ũ1; e2 = m

1/2
2 ũ2 (2.20)

Equations (2.18) and (2.19) are thus re-written as

!2e1 = J
(
2e1/m1 − e2 (1 + exp(−ika)) /

√
m1m2

)
(2.21)

!2e2 = J
(
2e2/m2 − e1 (1 + exp(+ika)) /

√
m1m2

)
(2.22)

By inspection, it can be seen that equations (2.21) and (2.22) can be combined into a matrix equation:

!2
(

e1

e2

)
= D(k) ·

(
e1

e2

)
(2.23)

where

D(k) =
(

2J/m1 −J (1 + exp(−ika)) /
√

m1m2

−J (1 + exp(+ika)) /
√

m1m2 2J/m2

)
. (2.24)

2.4 Solutions

Before we rush ahead to discuss the solutions to these equations in detail, there are several points to
make here. First, this is a simple eigenvalue/eigenvector equation, with the !2 values being obtained
as the eigenvalues of the matrix D(k). This will yield two solutions for !2, which means that our
dynamical equations have given two normal modes. Second, the matrix D(k) has the property that it
is equal to the transpose of its complex conjugate. Matrices with this property are called Hermitian, and
an important property of Hermitian matrices is that their eigenvalues are real. This means that the values
of !2 obtained as the solutions of the model are real quantities, although they can be negative as well as
positive.6

6 A negative value of !2 means that the value of ! will be imaginary; the physical interpretation is that the potential energy
surface is curved downwards with respect to the displacements of atoms in the normal mode rather than the expected upwards
curvature, which means that that the crystal is actually unstable with respect to the set of displacements. This interpretation forms
the basis of the soft-mode model for displacive phase transitions.

Mass normalized displacements (real)
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Newton’s equation now links equations (2.9) and (2.10) to equations (2.11) and (2.12) respectively to
give:

m1ü1,n(t) = −m1!2u1,n(t) = −J (2u1,n(t) − u2,n(t) − u2,n−1(t)) (2.13)

m2ü2,n(t) = −m2!2u2,n(t) = −J (2u2,n(t) − u1,n(t) − u1,n+1(t)) (2.14)

Before we proceed, we note that we can write

uj ,n±1(t) = uj ,n exp (±ikna) (2.15)

Thus we can rewrite equations (2.13) and (2.14), removing the minus signs from both sides, as

m1!2u1,n(t) = J (2u1,n(t) − u2,n(t) − u2,n(t) exp(−ika)) (2.16)

m2!2u2,n(t) = J (2u2,n(t) − u1,n(t) − u1,n(t) exp(+ika)) (2.17)

Since both u1,n(t) and u2,n(t) have the same complex exponential function, we can divide this out from
both sides of equations (2.16) and (2.17) to yield

m1!2ũ1 = J (2ũ1 − ũ2 − ũ2 exp(−ika)) (2.18)

m2!2ũ2 = J (2ũ2 − ũ1 − ũ1 exp(+ika)) (2.19)

It will prove useful going forward to normalise by the atomic masses. We write

e1 = m
1/2
1 ũ1; e2 = m

1/2
2 ũ2 (2.20)

Equations (2.18) and (2.19) are thus re-written as

!2e1 = J
(
2e1/m1 − e2 (1 + exp(−ika)) /

√
m1m2

)
(2.21)

!2e2 = J
(
2e2/m2 − e1 (1 + exp(+ika)) /

√
m1m2

)
(2.22)

By inspection, it can be seen that equations (2.21) and (2.22) can be combined into a matrix equation:

!2
(

e1

e2

)
= D(k) ·

(
e1

e2

)
(2.23)

where

D(k) =
(

2J/m1 −J (1 + exp(−ika)) /
√

m1m2

−J (1 + exp(+ika)) /
√

m1m2 2J/m2

)
. (2.24)

2.4 Solutions

Before we rush ahead to discuss the solutions to these equations in detail, there are several points to
make here. First, this is a simple eigenvalue/eigenvector equation, with the !2 values being obtained
as the eigenvalues of the matrix D(k). This will yield two solutions for !2, which means that our
dynamical equations have given two normal modes. Second, the matrix D(k) has the property that it
is equal to the transpose of its complex conjugate. Matrices with this property are called Hermitian, and
an important property of Hermitian matrices is that their eigenvalues are real. This means that the values
of !2 obtained as the solutions of the model are real quantities, although they can be negative as well as
positive.6

6 A negative value of !2 means that the value of ! will be imaginary; the physical interpretation is that the potential energy
surface is curved downwards with respect to the displacements of atoms in the normal mode rather than the expected upwards
curvature, which means that that the crystal is actually unstable with respect to the set of displacements. This interpretation forms
the basis of the soft-mode model for displacive phase transitions.

Matrix form of Newton’s eqn of motion 
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Newton’s equation now links equations (2.9) and (2.10) to equations (2.11) and (2.12) respectively to
give:

m1ü1,n(t) = −m1!2u1,n(t) = −J (2u1,n(t) − u2,n(t) − u2,n−1(t)) (2.13)

m2ü2,n(t) = −m2!2u2,n(t) = −J (2u2,n(t) − u1,n(t) − u1,n+1(t)) (2.14)

Before we proceed, we note that we can write

uj ,n±1(t) = uj ,n exp (±ikna) (2.15)

Thus we can rewrite equations (2.13) and (2.14), removing the minus signs from both sides, as

m1!2u1,n(t) = J (2u1,n(t) − u2,n(t) − u2,n(t) exp(−ika)) (2.16)

m2!2u2,n(t) = J (2u2,n(t) − u1,n(t) − u1,n(t) exp(+ika)) (2.17)

Since both u1,n(t) and u2,n(t) have the same complex exponential function, we can divide this out from
both sides of equations (2.16) and (2.17) to yield

m1!2ũ1 = J (2ũ1 − ũ2 − ũ2 exp(−ika)) (2.18)

m2!2ũ2 = J (2ũ2 − ũ1 − ũ1 exp(+ika)) (2.19)

It will prove useful going forward to normalise by the atomic masses. We write

e1 = m
1/2
1 ũ1; e2 = m

1/2
2 ũ2 (2.20)

Equations (2.18) and (2.19) are thus re-written as

!2e1 = J
(
2e1/m1 − e2 (1 + exp(−ika)) /

√
m1m2

)
(2.21)

!2e2 = J
(
2e2/m2 − e1 (1 + exp(+ika)) /

√
m1m2

)
(2.22)

By inspection, it can be seen that equations (2.21) and (2.22) can be combined into a matrix equation:

!2
(

e1

e2

)
= D(k) ·

(
e1

e2

)
(2.23)

where

D(k) =
(

2J/m1 −J (1 + exp(−ika)) /
√

m1m2

−J (1 + exp(+ika)) /
√

m1m2 2J/m2

)
. (2.24)

2.4 Solutions

Before we rush ahead to discuss the solutions to these equations in detail, there are several points to
make here. First, this is a simple eigenvalue/eigenvector equation, with the !2 values being obtained
as the eigenvalues of the matrix D(k). This will yield two solutions for !2, which means that our
dynamical equations have given two normal modes. Second, the matrix D(k) has the property that it
is equal to the transpose of its complex conjugate. Matrices with this property are called Hermitian, and
an important property of Hermitian matrices is that their eigenvalues are real. This means that the values
of !2 obtained as the solutions of the model are real quantities, although they can be negative as well as
positive.6

6 A negative value of !2 means that the value of ! will be imaginary; the physical interpretation is that the potential energy
surface is curved downwards with respect to the displacements of atoms in the normal mode rather than the expected upwards
curvature, which means that that the crystal is actually unstable with respect to the set of displacements. This interpretation forms
the basis of the soft-mode model for displacive phase transitions.

Eigen solutions 

JDN 18 129

Before we plot !2(k) as solutions of D(k) for all values of k, let us consider the case of very small
values of k. We write D(k → 0) as

D(k → 0) =
(

2J/m1 −J (2 − ika) /
√

m1m2

−J (2 + ika) /
√

m1m2 2J/m2

)
(2.25)

It’s eigenvalues are obtained as the solution of the equation
∣∣∣∣D(k) −

(
!2

1(k) 0
0 !2

2(k)

)∣∣∣∣ = 0 (2.26)

This procedure is frequently called the diagonalisation of the matrix D(k), because it results in the
diagonal matrix whose elements are !2

1 and !2
2. The solutions are obtained as the roots of the equation

!4 − 2J (m1 + m2)
m1m2

!2 − J 2k2a2

m1m2
= 0 (2.27)

yielding

!2
1(k) = J 2a2

2(m1 + m2)
k2; !2

2(k) = 2J

(
1

m1
+ 1

m2

)
− O(k2) (2.28)

The solution !2
1(k) has the form !1 ∝ k, which corresponds to a sound wave with velocity v =

!/k = Ja/
√

2(m1 + m2). The second solution has a non-zero value at k ∼ 0, and also has zero
gradient, (!!2/!k)k=0 = 0. This gradient corresponds to the group velocity – the velocity of energy
propagation – and its zero value is characteristic of a standing wave. Given that at k = 0 every unit cell
behaves the same, we expect all solution for k = 0 other than the sound waves to be standing waves.

We now consider the eigenvectors corresponding to these two solutions. The results are

Solution 1: m
−1/2
1 e1 = m

−1/2
2 e2 (2.29)

Solution 2: m
1/2
1 e1 = −m

1/2
2 e2 (2.30)

The eigenvectors of the first solution are consistent with the suggestion above that this wave is a sound
wave, namely where neighbouring atoms move in phase with each other with the same amplitude. The
eigenvectors of the second solution correspond to neighbouring atoms of different types moving out of
phase, with the mass normalisations implying that the centre of mass of the unit cell is not displaced
in the wave. These two waves are illustrated in Figure 3. Conventionally the sound wave is called an
acoustic mode – for obvious reasons – and the second solution is called an optic mode. The origin of this
name comes from the fact that if the two atoms are of opposite charge, the atomic motions represent the
displacements that would be caused by a sinusoidally-varying electric field, namely an electromagnetic
wave. For many crystals, the frequency of this wave is just short of the frequencies of visible light
(typically in the infrared region).

Now we consider a second special case, namely k = "/a, corresponding to the wavelength of the
wave equal to twice the unit cell repeat distance. We can now write

D(k = "/a) =
(

2J/m1 0
0 2J/m2

)
(2.31)

The two eigenvalues obtained from diagonalisation of D(k = "/a) are

!2
1 = 2J/m1; !2

2 = 2J/m2 (2.32)

with eigenvectors for the two solutions

Solution 1 : e1 = 1; e2 = 0 (2.33)

Solution 2 : e1 = 0; e2 = 1 (2.34)
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Acoustic mode

Optic mode

Figure 3. Representation of the difference between acoustic and optic modes in the limit of wave vector k → 0 for
the model diatomic chain. The atomic motions of the two types of atoms are in-phase for the acoustic mode, and
out-of-phase for the optic mode [2].
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Figure 4. Dispersion curve of the diatomic chain model shown in Figure 2 [2].

These solutions both correspond to one atom remaining at rest in each unit cell, and with k = !/a

the other atom will move in opposite directions in neighbouring unit cells. Note that in this case, the
differentiation between acoustic and optic modes has now vanished. The distinction between in-phase
and out-of-phase motions only arises in the limit k → 0.

The complete set of solutions for "(k) for all values of k is shown in Figure 4. These are displayed
as two continuous curves, one for the acoustic mode (which becomes the sound wave with " ∝ k as
k → 0) and the other for the optic mode.

We complete this description by noting three features of the dispersion curves shown in figure 4.
First, both solutions at k = !/a have zero group velocity, that is !"/!k = 0. At this wave vector, both
waves are standing waves, they correspond to the motions of atoms in neighbouring unit cells being
exactly opposite to each other. The second point is that the solutions for any k are invariant with respect
to changing the sign of k. The third point is that the solutions are also invariant when adding any
reciprocal lattice vector, which in our simple model would be given by ±2!n/a, where n is any integer.
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Figure 4. Dispersion curve of the diatomic chain model shown in Figure 2 [2].

These solutions both correspond to one atom remaining at rest in each unit cell, and with k = !/a

the other atom will move in opposite directions in neighbouring unit cells. Note that in this case, the
differentiation between acoustic and optic modes has now vanished. The distinction between in-phase
and out-of-phase motions only arises in the limit k → 0.

The complete set of solutions for "(k) for all values of k is shown in Figure 4. These are displayed
as two continuous curves, one for the acoustic mode (which becomes the sound wave with " ∝ k as
k → 0) and the other for the optic mode.

We complete this description by noting three features of the dispersion curves shown in figure 4.
First, both solutions at k = !/a have zero group velocity, that is !"/!k = 0. At this wave vector, both
waves are standing waves, they correspond to the motions of atoms in neighbouring unit cells being
exactly opposite to each other. The second point is that the solutions for any k are invariant with respect
to changing the sign of k. The third point is that the solutions are also invariant when adding any
reciprocal lattice vector, which in our simple model would be given by ±2!n/a, where n is any integer.
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gradient, (!!2/!k)k=0 = 0. This gradient corresponds to the group velocity – the velocity of energy
propagation – and its zero value is characteristic of a standing wave. Given that at k = 0 every unit cell
behaves the same, we expect all solution for k = 0 other than the sound waves to be standing waves.
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1 e1 = m
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2 e2 (2.29)
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1 e1 = −m
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The eigenvectors of the first solution are consistent with the suggestion above that this wave is a sound
wave, namely where neighbouring atoms move in phase with each other with the same amplitude. The
eigenvectors of the second solution correspond to neighbouring atoms of different types moving out of
phase, with the mass normalisations implying that the centre of mass of the unit cell is not displaced
in the wave. These two waves are illustrated in Figure 3. Conventionally the sound wave is called an
acoustic mode – for obvious reasons – and the second solution is called an optic mode. The origin of this
name comes from the fact that if the two atoms are of opposite charge, the atomic motions represent the
displacements that would be caused by a sinusoidally-varying electric field, namely an electromagnetic
wave. For many crystals, the frequency of this wave is just short of the frequencies of visible light
(typically in the infrared region).

Now we consider a second special case, namely k = "/a, corresponding to the wavelength of the
wave equal to twice the unit cell repeat distance. We can now write

D(k = "/a) =
(

2J/m1 0
0 2J/m2

)
(2.31)

The two eigenvalues obtained from diagonalisation of D(k = "/a) are

!2
1 = 2J/m1; !2

2 = 2J/m2 (2.32)

with eigenvectors for the two solutions

Solution 1 : e1 = 1; e2 = 0 (2.33)

Solution 2 : e1 = 0; e2 = 1 (2.34)
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Before we plot !2(k) as solutions of D(k) for all values of k, let us consider the case of very small
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D(k → 0) =
(

2J/m1 −J (2 − ika) /
√

m1m2

−J (2 + ika) /
√

m1m2 2J/m2

)
(2.25)

It’s eigenvalues are obtained as the solution of the equation
∣∣∣∣D(k) −

(
!2

1(k) 0
0 !2

2(k)

)∣∣∣∣ = 0 (2.26)

This procedure is frequently called the diagonalisation of the matrix D(k), because it results in the
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1 and !2
2. The solutions are obtained as the roots of the equation

!4 − 2J (m1 + m2)
m1m2

!2 − J 2k2a2

m1m2
= 0 (2.27)

yielding

!2
1(k) = J 2a2

2(m1 + m2)
k2; !2

2(k) = 2J

(
1

m1
+ 1

m2

)
− O(k2) (2.28)

The solution !2
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!/k = Ja/
√
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What is being measured ?
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Where is quantum mechanics in all of this?

JDN 18 127

2.2 Travelling waves

We next consider the equations of the waves travelling through crystals. In the general case, a wave of
wave vector k and angular frequency ! travelling through a crystal will displace an atom labelled j at
nominal position rj by

uj (rj , t) = ũj exp(i(k · rj − !t)) (2.4)

where ũj represents both the amplitude of the wave and its specific effect on atom j , and may be
a complex number (this is discussed in more detail in following sections). We remark here that the
definition of the position rj is treated in two ways in the scientific literature. It can be taken to represent
the actual position of the atom, or else it can be taken as the origin of the unit cell containing the atom. It
actually doesn’t matter, because the difference is merely a phase factor, which can be incorporated into
the complex amplitude ũj .

If we consider a single wave travelling through our one-dimensional mode with a particular value of
k and !, it will displace the two atoms by

u1,n(t) = ũ1 exp (i(kna − !t)) (2.5)

u2,n(t) = ũ2 exp (i(kna − !t)) (2.6)

where ũ1 and ũ2 are the relative amplitudes of motion of the two atoms. In this case we have treated the
vector rj for both atoms as the origin of the unit cell, r1 = r2 = na, rather than as the actual positions
of the atoms, na and (n + 1/2)a respectively. Thus the amplitude ũ2 will contain the phase factor
exp(ika/2). At this point we do not know the relationship between ũ1 and ũ2, nor will be able to think
about their absolute values until we introduce thermodynamics into the picture.

2.3 Equations of motion

Our starting point is to consider the energy of the two atoms in the unit cell labelled n through its
interaction with their two nearest neighbours:

E1,n = 1
2

J (u1,n − u2,n)2 + 1
2

J (u1,n − u2,n−1)2 (2.7)

E2,n = 1
2

J (u2,n − u1,n)2 + 1
2

J (u2,n − u1,n+1)2 (2.8)

The key equation we will be dealing with is simply Newton’s equation, force = mass × acceleration.
Thus we start by computing the force acting on each atom, as given by the derivative of the energy with
respect to displacement:

f1,n = −!E1,n

!u1,n
= −J (u1,n − u2,n) − J (u1,n − u2,n−1)

= −J (2u1,n − u2,n − u2,n−1) (2.9)

f2,n = −!E2,n

!u2,n
= −J (u2,n − u1,n) − J (u2,n − u1,n+1)

= −J (2u2,n − u1,n − u1,n+1) (2.10)

We next need to consider the acceleration of each atom, which is given as the second time derivative of
the atomic displacement:

ü1,n(t) = −!2ũ1 exp i (kna − !t) = −!2u1,n(t) (2.11)

ü2,n(t) = −!2ũ2 exp i (kna − !t) = −!2u2,n(t) (2.12)

Diatomic model
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2.5 Generalisation of the model

The simple model is easily generalised. First we consider more distant neighbours. To make this easier,
we combine and rewrite equations (2.7) and (2.8) as

E = 1
4

∑

n,n′

∑

j ,j ′

!j ,j ′

n,n′

(
uj ,n − uj ′,n′

)2 = 1
2

∑

n,n′

∑

j ,j ′

uj ,n!
j ,j ′

n,n′uj ′,n′ (2.35)

where !n,n′

j ,j ′ is the differential of an individual bond energy with respect to the displacements of the atoms

within the bond, !n,n′

j ,j ′ is the differential of the overall energy with respect to the atomic displacements,
and the factors of 1/4 instead of 1/2 arise because we need to account for the fact that the equation as
written involves counting every interatomic distance twice. The labels n and n′ denote unit cells, and
the labels j and j ′ denote atoms in the unit cell. In our initial model, j and j ′ had values 1 or 2, and we
restricted the set of n and n′ to same and nearest-neighbour unit cells. This generalisation now allows
more than two atoms in the unit cell, and allows interactions between atoms to span distances larger
than nearest neighbours. Close inspection of equation 2.35 shows that

"j ,j ′

n,n′ = −!j ,j ′

n,n′ +
∑

j ′,n′

#j ,j ′#n,n′!j ,j ′

n,n′ (2.36)

We proceed by writing the equation of motion for any atom in the unit cell as

uj ,n(t) = ũj exp (i (kna − $t)) (2.37)

Newton’s equations for this generalised model for the atoms in unit cell labelled n are now given as

$2ej =
∑

j ′,n′

1
√

mj mj ′
"j ,j ′

n,n′ exp(ik(n′ − n)a)ej ′ (2.38)

We can expand this in the form7

! $2e = D(k) · e ⇒ $2 = eT · D(k) · e (2.39)

where

e =

⎛

⎜⎜⎝

...
ej

...

⎞

⎟⎟⎠ (2.40)

and

! Dj ,j ′ (k) = 1
√

mj mj ′

∑

n′

"j ,j ′

0,n′ exp
(
ik · (rj ,0 − rj ′,n′)

)
(2.41)

and where we have generalised to three dimensions in our description of the wave vector and atomic
positions. Clearly in making the generalisation to three dimensions the matrix " also needs to be
expanded to include derivatives of the energy by the vector components of the displacements, but
the book-keeping becomes sufficiently complex (we need another pair of subscripts denoting x, y and
z vector components for the elements of matrix ") that for the purposes here it is best left to your
imagination.

Equations (2.39)–(2.41) represent diagonalisation of the dynamical matrix D(k), with the matrix of
solutions $2 representing the eigenvalues of D(k) and the matrix of e representing the eigenvectors.

7 Here we use the symbol ! to denote a key equation here and onwards in this article.

Generalized model

j, j’ :    atoms in the unit cell 
n, n’ :  unit cells in the crystal 

 : differential of individual bond energy with respect to displacement 
    
 : differential of overall bond energy of all lattice 
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We can now write the displacement of a single atom, labelled j in the unit cell of label ℓ in terms of
the mode eigenvector:

! ujℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q(k, !, t) (3.2)

where we have now associated each mode eigenvector with a wave vector k, and introduced a new
complex quantity Q(k, !, t) that absorbs the time dependence and the actual amplitude. This new
quantity is called the normal mode coordinate. Equation (3.2) expresses the Fourier relationship between
atomic displacements in real space and the normal mode coordinates in reciprocal space. The factor of
1/

√
mj reflects the fact that the mode eigenvector contains a factor of √

mj , and the factor of 1/
√

N

will be seen to be convenient when we sum over all atoms.
Equation (3.2) can be adapted for the atomic velocity:

u̇jℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q̇(k, !, t) (3.3)

We note that since Q(k, !, t) absorbs the time dependence, it will follow that

Q̇(k, !, t) = −i"k,!Q(k, !, t) (3.4)

and thus we can rewrite equation (3.3) as

u̇jℓ(t) = −i
√

Nmj

∑

k,!

"k,!ek,! exp(ik · rjℓ) Q(k, !, t). (3.5)

3.2 Energy of the crystal in terms of the normal mode coordinates

The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is

1
2

∑

j ,ℓ

mj

∣∣u̇jℓ

∣∣2 = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.6)

Similarly, the harmonic potential energy of the crystal can be written as

1
2

∑

j ,j ′

ℓ,ℓ′

uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.7)

which is derived in Appendix A. Thus the total vibrational energy – kinetic energy plus potential
energy – is written as

! 1
2

∑

j ,ℓ

mj

∣∣u̇jℓ

∣∣2 + 1
2

∑

j ,j ′

ℓ,ℓ′

uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ =
∑

k,!

"2
k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.
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in terms of its atomic vibrations. The final result, derived in Appendix A, is
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j ,ℓ

mj

∣∣u̇jℓ

∣∣2 = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.6)

Similarly, the harmonic potential energy of the crystal can be written as
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∑

j ,j ′

ℓ,ℓ′

uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.7)

which is derived in Appendix A. Thus the total vibrational energy – kinetic energy plus potential
energy – is written as
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mj

∣∣u̇jℓ

∣∣2 + 1
2

∑

j ,j ′

ℓ,ℓ′

uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ =
∑

k,!

"2
k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Fourier relationship between real space  
and time and reciprocal space and time
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We can now write the displacement of a single atom, labelled j in the unit cell of label ℓ in terms of
the mode eigenvector:

! ujℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q(k, !, t) (3.2)

where we have now associated each mode eigenvector with a wave vector k, and introduced a new
complex quantity Q(k, !, t) that absorbs the time dependence and the actual amplitude. This new
quantity is called the normal mode coordinate. Equation (3.2) expresses the Fourier relationship between
atomic displacements in real space and the normal mode coordinates in reciprocal space. The factor of
1/

√
mj reflects the fact that the mode eigenvector contains a factor of √

mj , and the factor of 1/
√

N

will be seen to be convenient when we sum over all atoms.
Equation (3.2) can be adapted for the atomic velocity:
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We note that since Q(k, !, t) absorbs the time dependence, it will follow that

Q̇(k, !, t) = −i"k,!Q(k, !, t) (3.4)

and thus we can rewrite equation (3.3) as

u̇jℓ(t) = −i
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The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is
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Similarly, the harmonic potential energy of the crystal can be written as
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which is derived in Appendix A. Thus the total vibrational energy – kinetic energy plus potential
energy – is written as
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ℓ,ℓ′ · uj ′ℓ′ =
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k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Velocity
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We can now write the displacement of a single atom, labelled j in the unit cell of label ℓ in terms of
the mode eigenvector:

! ujℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q(k, !, t) (3.2)

where we have now associated each mode eigenvector with a wave vector k, and introduced a new
complex quantity Q(k, !, t) that absorbs the time dependence and the actual amplitude. This new
quantity is called the normal mode coordinate. Equation (3.2) expresses the Fourier relationship between
atomic displacements in real space and the normal mode coordinates in reciprocal space. The factor of
1/

√
mj reflects the fact that the mode eigenvector contains a factor of √

mj , and the factor of 1/
√

N

will be seen to be convenient when we sum over all atoms.
Equation (3.2) can be adapted for the atomic velocity:

u̇jℓ(t) = 1
√

Nmj

∑
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ek,! exp(ik · rjℓ) Q̇(k, !, t) (3.3)

We note that since Q(k, !, t) absorbs the time dependence, it will follow that

Q̇(k, !, t) = −i"k,!Q(k, !, t) (3.4)

and thus we can rewrite equation (3.3) as

u̇jℓ(t) = −i
√

Nmj

∑

k,!

"k,!ek,! exp(ik · rjℓ) Q(k, !, t). (3.5)

3.2 Energy of the crystal in terms of the normal mode coordinates

The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is
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∑
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"2
k,! |Q (k, !)|2 (3.6)

Similarly, the harmonic potential energy of the crystal can be written as
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jℓ · !j ,j ′
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"2
k,! |Q (k, !)|2 (3.7)

which is derived in Appendix A. Thus the total vibrational energy – kinetic energy plus potential
energy – is written as
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"2
k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Kinetic energy
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We can now write the displacement of a single atom, labelled j in the unit cell of label ℓ in terms of
the mode eigenvector:

! ujℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q(k, !, t) (3.2)

where we have now associated each mode eigenvector with a wave vector k, and introduced a new
complex quantity Q(k, !, t) that absorbs the time dependence and the actual amplitude. This new
quantity is called the normal mode coordinate. Equation (3.2) expresses the Fourier relationship between
atomic displacements in real space and the normal mode coordinates in reciprocal space. The factor of
1/

√
mj reflects the fact that the mode eigenvector contains a factor of √

mj , and the factor of 1/
√

N

will be seen to be convenient when we sum over all atoms.
Equation (3.2) can be adapted for the atomic velocity:

u̇jℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q̇(k, !, t) (3.3)

We note that since Q(k, !, t) absorbs the time dependence, it will follow that

Q̇(k, !, t) = −i"k,!Q(k, !, t) (3.4)

and thus we can rewrite equation (3.3) as

u̇jℓ(t) = −i
√

Nmj

∑

k,!

"k,!ek,! exp(ik · rjℓ) Q(k, !, t). (3.5)

3.2 Energy of the crystal in terms of the normal mode coordinates

The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is
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mj

∣∣u̇jℓ

∣∣2 = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.6)

Similarly, the harmonic potential energy of the crystal can be written as
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jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.7)

which is derived in Appendix A. Thus the total vibrational energy – kinetic energy plus potential
energy – is written as
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uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ =
∑

k,!

"2
k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Potential energy (via Virial theorem)
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We can now write the displacement of a single atom, labelled j in the unit cell of label ℓ in terms of
the mode eigenvector:

! ujℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q(k, !, t) (3.2)

where we have now associated each mode eigenvector with a wave vector k, and introduced a new
complex quantity Q(k, !, t) that absorbs the time dependence and the actual amplitude. This new
quantity is called the normal mode coordinate. Equation (3.2) expresses the Fourier relationship between
atomic displacements in real space and the normal mode coordinates in reciprocal space. The factor of
1/

√
mj reflects the fact that the mode eigenvector contains a factor of √

mj , and the factor of 1/
√

N

will be seen to be convenient when we sum over all atoms.
Equation (3.2) can be adapted for the atomic velocity:

u̇jℓ(t) = 1
√

Nmj

∑

k,!

ek,! exp(ik · rjℓ) Q̇(k, !, t) (3.3)

We note that since Q(k, !, t) absorbs the time dependence, it will follow that

Q̇(k, !, t) = −i"k,!Q(k, !, t) (3.4)

and thus we can rewrite equation (3.3) as

u̇jℓ(t) = −i
√

Nmj

∑

k,!

"k,!ek,! exp(ik · rjℓ) Q(k, !, t). (3.5)

3.2 Energy of the crystal in terms of the normal mode coordinates

The prior definitions are convenient in going forward to compute the total kinetic energy of the crystal
in terms of its atomic vibrations. The final result, derived in Appendix A, is
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mj

∣∣u̇jℓ

∣∣2 = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.6)

Similarly, the harmonic potential energy of the crystal can be written as
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∑

j ,j ′

ℓ,ℓ′

uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ = 1
2

∑

k,!

"2
k,! |Q (k, !)|2 (3.7)

which is derived in Appendix A. Thus the total vibrational energy – kinetic energy plus potential
energy – is written as
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ℓ,ℓ′

uT
jℓ · !j ,j ′

ℓ,ℓ′ · uj ′ℓ′ =
∑

k,!
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k,! |Q (k, !)|2. (3.8)

3.3 Quantisation of the vibrational energy: Phonons

To make further progress we need to understand that the energy of a harmonic oscillation is quantised in
units of !". We are most familiar with these quanta being applied to light, where they are called photons.
However, this quantisation applies to all harmonic vibrations, and a single wave of atomic oscillations
is similarly quantised; the quantum in this case is called a phonon.

Total energy, in terms of normal 
mode coordinates
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2.5 Generalisation of the model

The simple model is easily generalised. First we consider more distant neighbours. To make this easier,
we combine and rewrite equations (2.7) and (2.8) as

E = 1
4

∑

n,n′

∑

j ,j ′

!j ,j ′

n,n′

(
uj ,n − uj ′,n′

)2 = 1
2

∑

n,n′

∑

j ,j ′

uj ,n!
j ,j ′

n,n′uj ′,n′ (2.35)

where !n,n′

j ,j ′ is the differential of an individual bond energy with respect to the displacements of the atoms

within the bond, !n,n′

j ,j ′ is the differential of the overall energy with respect to the atomic displacements,
and the factors of 1/4 instead of 1/2 arise because we need to account for the fact that the equation as
written involves counting every interatomic distance twice. The labels n and n′ denote unit cells, and
the labels j and j ′ denote atoms in the unit cell. In our initial model, j and j ′ had values 1 or 2, and we
restricted the set of n and n′ to same and nearest-neighbour unit cells. This generalisation now allows
more than two atoms in the unit cell, and allows interactions between atoms to span distances larger
than nearest neighbours. Close inspection of equation 2.35 shows that

"j ,j ′

n,n′ = −!j ,j ′

n,n′ +
∑

j ′,n′

#j ,j ′#n,n′!j ,j ′

n,n′ (2.36)

We proceed by writing the equation of motion for any atom in the unit cell as

uj ,n(t) = ũj exp (i (kna − $t)) (2.37)

Newton’s equations for this generalised model for the atoms in unit cell labelled n are now given as

$2ej =
∑

j ′,n′

1
√

mj mj ′
"j ,j ′

n,n′ exp(ik(n′ − n)a)ej ′ (2.38)

We can expand this in the form7

! $2e = D(k) · e ⇒ $2 = eT · D(k) · e (2.39)

where

e =

⎛

⎜⎜⎝

...
ej

...

⎞

⎟⎟⎠ (2.40)

and

! Dj ,j ′ (k) = 1
√

mj mj ′

∑

n′

"j ,j ′

0,n′ exp
(
ik · (rj ,0 − rj ′,n′)

)
(2.41)

and where we have generalised to three dimensions in our description of the wave vector and atomic
positions. Clearly in making the generalisation to three dimensions the matrix " also needs to be
expanded to include derivatives of the energy by the vector components of the displacements, but
the book-keeping becomes sufficiently complex (we need another pair of subscripts denoting x, y and
z vector components for the elements of matrix ") that for the purposes here it is best left to your
imagination.

Equations (2.39)–(2.41) represent diagonalisation of the dynamical matrix D(k), with the matrix of
solutions $2 representing the eigenvalues of D(k) and the matrix of e representing the eigenvectors.

7 Here we use the symbol ! to denote a key equation here and onwards in this article.
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Eigenvalue eqn.

Eigenvalues are orthonormal..

directions. Thus the orientation of the axial Fe−N−O group is
most important for the in-plane vibrational directions. This is
similar to what has been concluded for the [Fe(OEP)(NO)]
case. This can be seen in the predicted character of the six most
intense in-plane vibrations for [Fe(DPIX)(NO)] shown in the
MOLEKEL61 depictions of Figure 7. The Fe−N−O orientation

effects may be slightly modified by the asymmetric effects of
peripheral substituents. Previous powder measurements on
Fe(Porph)(NO)], where derivatives included DPIX, PPIX, and
the dianion of mesoporphyrin IX dimethyl ester (MPIX),
showed that small changes in the peripheral porphyrin
substituents had real effects on the iron in-plane vibrational
envelope.62

Although the differences in the structures between [Fe-
(OEP)(NO)]53 and [Fe(DPIX)(NO)]45 are marginally sig-
nificant, at best, the differences are consistent with the observed
differences in the vibrational data. The length of the Fe−
N(NO) bond is 1.7307(7) Å in the OEP derivative and
1.723(3) Å in the DPIX derivative, consistent with the lower-
frequency value of 517 cm−1 in OEP and the 528 cm−1 value in
DPIX. The doming mode differences (158 cm−1 in OEP and
183 cm−1 in DPIX) might correlate with the small differences in
displacement from the four nitrogen-atom plane (0.28 Å in
OEP and 0.26 Å in DPIX), although vibrational mixing with
out-of-plane substituent displacement may also contribute.
Predicting the structural effects on the FeNO bend appears to
be more difficult, and in any case, there is not a meaningful
difference in the two Fe−N−O angles (142.7(1)° in OEP and
143.1(3)° in DPIX).
The current studies continue to demonstrate the unusual

properties of NO as a ligand in iron porphyrinate systems,
especially those of {FeNO}7 systems. These include a strong
trans-directing influence in six-coordinate {FeNO}7 spe-
cies,32−36,63,64 the off-axis tilting of the Fe−NO bond in both
five- and six-coordinate {FeNO}7 complexes,52,53,65 along with

the induced asymmetry of the equatorial Fe−Np bonds, and the
importance of the FeNO orientation on the direction of in-
plane iron motion.37,42 The present Investigation extends these
conclusions to a β-substituted porphyrin system more closely
resembling biologically occurring hemes. Although the bio-
logical significance of the structural deviations from axial
symmetry remain to be explored, the observation of five-
coordinate nitrosyl hemes in NO-signaling proteins66,67

continues to fuel discussion of the contribution of the trans-
directing influence of NO to activation of these proteins.
The important effects of the NO orientation on the iron

vibrational spectrum appears to continue to be significant in
related six-coordinate species. SIP NRVS data collection and
analysis on a crystallographically appropriate six-coordinate NO
derivative are in progress.

Summary. Detailed experimental and theoretical analyses of
oriented single-crystal NRVS of two five-coordinate NO
derivatives, [Fe(OEP)(NO)] and [Fe(DPIX)(NO)], show
that the strongly bonded axial NO ligand markedly affects the
direction of the in-plane iron motion. The major directions of
the in-plane motion are parallel and perpendicular to the
projection of the FeNO plane onto the porphyrin plane. These
directions are oblique to the direction of the in-plane Fe−NP
bonds. The effects of the axial ligand on the in-plane iron
motion appears to be related to the strength of the axial
bonding.
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Figure 7. MOLEKEL depictions of the six most intense (eFe
2 > 0.096)

in-plane vibrations based on the M06-L predictions.
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Figure 5. Schematic representation of the Brillouin zone in two dimensional reciprocal space. The boundaries
bisect and are normal to the vectors from the origin to the neighbouring reciprocal lattice points [2].

The task that we now move on to discuss is how to calculate the components of D(k) from models of
the interatomic potentials.

2.6 Brillouin zone

The wave equations introduced in equations (2.5) and (2.6) have one important property. If we add a
reciprocal lattice vector, G = 2!h/a (where h is an integer) to a value of k we find that

exp (i(G + k)na) = exp(iGna) × exp(ikna) = exp(inh2!) × exp(ikna) = exp(ikna) (2.42)

Thus we find that waves of wave vector k and k + G are identical in terms of their impact on the atoms.8

This result is easily generalise to three dimensions.
This being the case, we only need to consider the set of wave vectors that are not related to each

other by addition of a reciprocal lattice vector G. This set will be contained within the space around the
origin of reciprocal space of volume equal to the reciprocal unit cell. It is convenient to work with a
space-filling volume that is equivalent in size to the reciprocal unit cell but with boundaries that bisect
the vectors between the origin and neighbouring reciprocal lattice points rather than linking reciprocal
lattice points. This is illustrated in two dimensions in Figure 5. The boundaries of the Brillouin zone
have a particular significance in the nature of the dispersion curves, in that the zone boundaries usually
have !"/!k = 0.9

3. NORMAL MODE COORDINATES AND VIBRATIONAL AMPLITUDES

3.1 Definition of the normal mode coordinates

Up to this point we have said nothing about the amplitudes of vibrations save for noting that the e
eigenvector matrix contains information about relative atomic displacements. We denote a particular
eigenvector as e#, where # labels the eigenvector (or branch in the dispersion curve diagram), with
corresponding eigenvalue "2

#. We will also take it to be the case that eigenvectors are normalised and
orthogonal (the latter condition is determined by the mathematics of eigenvectors; the normalisation
condition is arbitrary but reasonable):

eT
# · e# = 1; eT

#′ · e# = $#′,# (3.1)

8 The two waves are not the same in the space between the atoms, but that is only empty space and the difference has no meaning.
9 The exception is when two modes are degenerate at the zone boundary but of different frequencies away from the zone boundary,
in which case the values of !"/!k for the two modes sum to zero.

Dynamical matrix



symmetrical 
stretching

asymmetrical 
stretching scissoring 

rocking wagging twisting 
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 PHONONS (cont’d)
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The energy of a single oscillation that is quantised can be written as the number of phonons excited,
n, plus a constant value:

! En =
(

n + 1
2

)
!! (3.9)

the additional constant value of !!/2 is called the zero point energy, and reflects the fact that in quantum
mechanics a harmonic oscillator can never be at rest. Thus we can write equation (3.8) as

E =
∑

k,"

!2
k," |Q (k, ")|2 =

∑

k,"

(
nk," + 1

2

)
!!k,". (3.10)

We have effectively switched the question from the wanting to know about the amplitude of the normal
mode to one of knowing the value of nk,". In practice it is not the instantaneous value of nk," that we
need, but its average value at a particular temperature. It turns out that the average value of nk," only
depends on k and " through the dependence on !k,":

!
〈
n(!k,")

〉
= 1

exp(!!k,"/kBT ) − 1
(3.11)

This is known as the Bose–Einstein equation. Given that the average number of excited phonons depends
only on the frequency, and that in a harmonic system its excited waves are independent of each other,
we can extract a single normal mode and write

!2
k,"

〈
|Q(k, ")|2

〉
=

(〈
n(!k,")

〉
+ 1

2

)
!!k," (3.12)

It is useful at this point to note that in the limit kBT > !!k,", the Bose–Einstein relation tends – actually
remarkably quickly – towards the approximate form

〈
n(!k,")

〉
+ 1

2
→ kBT /!!k," (3.13)

In this case, the total energy of a single wave tends towards the well-known classical value kBT .

3.4 Crystal Hamiltonian in terms of the normal mode coordinates

Using the previous analysis, the Hamiltonian of the harmonic crystal, namely the sum of the kinetic and
potential energies, is written in the form of

! H = 1
2

∑

j ,ℓ

mj

∣∣u̇jℓ

∣∣2 + 1
2

∑

j ,j ′

ℓ,ℓ′

uT
jℓ · #j ,j ′

ℓ,ℓ′ · uj ′ℓ′ =
∑

k,"

∣∣Q̇ (k, ")
∣∣2 +

∑

k,"

!2
k," |Q (k, ")|2

(3.14)

This is an extremely powerful equation, in part because it is very simple, and in part also because one
can imagine extending this for the effects of higher-order anharmonic interactions:

H = 1
2

∑

k,"

∣∣Q̇k,"
∣∣2 + 1

2

∑

k,"

!2
k,"

∣∣Qk,"
∣∣2 +

∑

n

1
n!

∑

k1···kn
"1···"n

$k1···kn

"1···"n
Qk1,"1 . . . Qkn,"n

(3.15)

It is outside the scope of this paper to explore this further, but for weakly anharmonic crystals it is
possible to treat the anharmonic terms as small perturbations of the harmonic Hamiltonian, and to
use various approximation schemes to incorporate them into the harmonic terms with renormalised
parameters.

Energy of a single oscillation as a function of number of phonons. 
The second term +1/2 is the “zero-point” energy. 
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Total energy, in terms of normal 
mode coordinates
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It is outside the scope of this paper to explore this further, but for weakly anharmonic crystals it is
possible to treat the anharmonic terms as small perturbations of the harmonic Hamiltonian, and to
use various approximation schemes to incorporate them into the harmonic terms with renormalised
parameters.

Bose-Einstein statistics for average number  
of modes at a given temperature
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This is an extremely powerful equation, in part because it is very simple, and in part also because one
can imagine extending this for the effects of higher-order anharmonic interactions:
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It is outside the scope of this paper to explore this further, but for weakly anharmonic crystals it is
possible to treat the anharmonic terms as small perturbations of the harmonic Hamiltonian, and to
use various approximation schemes to incorporate them into the harmonic terms with renormalised
parameters.

Hamiltonian of the system: 

H=Kin. En. + Pot. En 



Phonon density of states

Many thermodynamic functions like free energy, specific heat, and entropy are 
additive functions of phonon density of states.  

This stems from the notion that the normal modes do not interact in the harmonic 
approximation.  

Phonon density of states is the number of modes in a unit energy interval. 

cv (T ) = 3Nk
h2ω 2ehω kT

(kT )2 (1− ehω kT )2∫ ⋅ g(ω) ⋅dω Vibrational specific heat



cv (T ) = 3kB (βE / 2)2 csch(βE)∫ ⋅ g(E) ⋅dE

If we choose to write in terms of energy, 

Sv (T ) = 3kB βE 2•coth(βE){ − ln 2sinh(βE)[ ]}⋅ g(E) ⋅dE
0

∞

∫

E = hω,    β =1 kBT

Vibrational specific heat

Vibrational entropy

fLM = e
−ER {g(E )/2}.coth(βE 2)∫ dE Lamb-Mössbauer factor

Debye Sound velocity

Phonon density of states is a key ingredient for many thermodynamic properties

g(E) = 3m
2π 2h3ρvD

3 E
2

F =
M
h2

E 2g(E)dE
0

∞

∫ Average restoring force constant



φωνή (phonē), sound

•  Phonons are periodic oscillations in condensed systems.

•  They are inherently involved in thermal and electrical conductivity.

•  They can show anomalous (non-linear) behavior near a phase transition.

•  They can carry sound (acoustic modes) or couple to electromagnetic radiation or neutrons 
(acoustical and optical).

•  Have energy of ћω as quanta of excitation of the lattice vibration mode of angular   frequency ω. 
Since momentum, ћk, is exact, they are delocalized, collective excitations.

•  Phonons are bosons, and they are not conserved. They can be created or annihilated    during 
interactions with neutrons or photons.

•  They can be detected by Brillouin scattering (acoustic), Raman scattering, FTIR (optical).

• Their dispersion throughout the BZ can ONLY be monitored with x-rays (IXS), or neutrons (INS).

• Accurate prediction of phonon dispersion require correct knowledge about the force constants: 
COMPUTATIONAL TECHNIQUES ARE ESSENTIAL.

 PHONON’s: 



Inelastic X-Ray Scattering: two approaches

APD

Sample

IXS: Momentum resolved

NRIXS: Momentum integrated

High resolution
monochromator

High resolution
monochromator

mirror



UndulatorWhite beam 
slits

High Heat Load 
Monochromator

High resolution 
Monochromator

ΔE~500 keVΔE~150 eVΔE~1 eV

ΔE~1 meV

Sample

ΔE~10 neV

APD 
detector

1013 Hz5x109 Hz1Hz -105 Hz
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4. THERMODYNAMICS AND DENSITY OF STATES

4.1 Thermodynamic functions

In the derivation of the Bose–Einstein distribution given in Appendix B, we derive the equation for the
partition function of a harmonic oscillator of angular frequency !, Z:

Z = 1
1 − exp(−"!!)

(4.1)

The free energy is related to Z via

F = −kBT lnZ (4.2)

and thus we obtain

! F = kBT
∑

k,#

ln[2 sinh(!!k,#/2kBT )] (4.3)

Other thermodynamic quantities, such as the heat capacity, can be obtained by appropriate
differentiation of F (e.g. the heat capacity is equal to −T !2F/!T 2).

4.2 Density of states

Given that the thermodynamic functions only depend on the frequency of the normal mode and not
directly on its wave vector or mode eigenvector, one way to perform the summations over all modes
and wave vectors is to simply generate a list of frequency values for a grid of wave vectors from one’s
favourite lattice dynamics program.10 If the grid is sufficiently fine, it is possible to then generate a
histogram of frequency values, and such a histogram is called the density of states, g(!). Formally we
note that the density of states is defined such that the number of modes with angular frequency in the
range ! → ! + d! is equal to g(!)d!. Then the summations in the thermodynamic functions can be
replaced by appropriate integrals. For example, the energy can be written as

E =
∑

k,#

(〈
n(!k,#)

〉
+ 1

2

)
!!k,# ≡

∫ (
⟨n(!)⟩ + 1

2

)
!! g(!) d!. (4.4)

From a computational perspective, this is not particularly interesting. However, in the limit of
low-frequency, the density of states only contains contributions from the acoustic modes, and in
this case it is possible to obtain a mathematical equation for g(!). Moreover, for thermodynamic
applications, the only modes that will be excited at low temperatures according to the Bose–Einstein
equation are the lower-frequency acoustic modes, and an exact expression for g(!) for these modes will
enable thermodynamic properties to be calculated exactly. We make the (unnecessary but pedagogical)
approximation that the frequencies of the acoustic modes follow a simple linear dependence on wave
vector, ! = ck, where c is an average sound velocity. Because this is a linear problem, we can compute
g(!) from the distribution of wave vector values, g(k). Writing the volume of the crystal as V , and
defined with N unit cells and hence N wave vectors, the number of wave vectors per unit volume of
reciprocal space is equal to V/(2$)3. Thus in a spherical shell of radius k and thickness dk, the number
of wave vectors will be equal to

g(k) dk = V

(2$)3
4$k2 dk. (4.5)

10 Some care is needed in setting up this grid. For example, if it includes special points in reciprocal space, these may need to
be weighted slightly differently than general points if the griding is performed over the a symmetrically-unique segment of the
Brillouin zone. It may sometimes be useful to use a random set of wave vectors rather than wave vectors across a uniform grid.

And, some thermodynamics

Partition function (Zustandsumme)
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Free energy
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Energy in terms of  
phonon density of states
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KS : adiabatic bulk modulus
G :  shear modulus
VP : compression wave velocity
VS : shear wave velocity
VD : Debye sound velocity
Ρ   : density

Measurement of vD, Debye sound velocity allows to 
resolve longitudinal and shear sound velocity, 
provided that bulk modulus and density, is 
independently and simultaneously measured by x-
ray diffraction.  
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favourite lattice dynamics program.10 If the grid is sufficiently fine, it is possible to then generate a
histogram of frequency values, and such a histogram is called the density of states, g(!). Formally we
note that the density of states is defined such that the number of modes with angular frequency in the
range ! → ! + d! is equal to g(!)d!. Then the summations in the thermodynamic functions can be
replaced by appropriate integrals. For example, the energy can be written as

E =
∑

k,#

(〈
n(!k,#)

〉
+ 1

2

)
!!k,# ≡

∫ (
⟨n(!)⟩ + 1

2

)
!! g(!) d!. (4.4)

From a computational perspective, this is not particularly interesting. However, in the limit of
low-frequency, the density of states only contains contributions from the acoustic modes, and in
this case it is possible to obtain a mathematical equation for g(!). Moreover, for thermodynamic
applications, the only modes that will be excited at low temperatures according to the Bose–Einstein
equation are the lower-frequency acoustic modes, and an exact expression for g(!) for these modes will
enable thermodynamic properties to be calculated exactly. We make the (unnecessary but pedagogical)
approximation that the frequencies of the acoustic modes follow a simple linear dependence on wave
vector, ! = ck, where c is an average sound velocity. Because this is a linear problem, we can compute
g(!) from the distribution of wave vector values, g(k). Writing the volume of the crystal as V , and
defined with N unit cells and hence N wave vectors, the number of wave vectors per unit volume of
reciprocal space is equal to V/(2$)3. Thus in a spherical shell of radius k and thickness dk, the number
of wave vectors will be equal to

g(k) dk = V

(2$)3
4$k2 dk. (4.5)

10 Some care is needed in setting up this grid. For example, if it includes special points in reciprocal space, these may need to
be weighted slightly differently than general points if the griding is performed over the a symmetrically-unique segment of the
Brillouin zone. It may sometimes be useful to use a random set of wave vectors rather than wave vectors across a uniform grid.

Number of wave vectors in a spherical shell 
of radius k per unit volume of reciprocal space.  

136 Collection SFN

Substituting for k = !/c and dk = d!/c, we obtain

g(!) = 3V

2"2c3
!2 (4.6)

where the factor of 3 accounts for the number of acoustic modes for each wave vector. The relationship
g(!) ∝ !2 is a general result that is seen in calculations or measurements on any ordered crystalline
materials. If one sees departures from this relationship, the system will contain excitations that are not
described by simple harmonic travelling waves. Typically this might be found in disordered materials.11

Increasingly we are seeing measurements of the density of states using neutron or x-ray scattering12

being used as a probe of variations of phonon frequencies with parameters such as temperature,
particularly when single crystals for full measurements of dispersion curves are not available.

4.3 Heat capacity at low temperatures

With some manipulation, it can be shown that equation 4.4 for the energy in the limit of low temperature
for the form of g(!) given by equation 4.6 can be solved to give

E = V "2(kBT )4

10(c!)3
(4.7)

(See, for example, Chapter 9 of reference 2.) It thus follows that the heat capacity has the form

cV = 2V "2kB

5(c!/kB)3
T 3 = N

12"4kB

5

(
T

#D

)3

; #D = c!
kB

(
6"2N

V

)1/3

(4.8)

We see that the heat capacity at low temperature will vary as T 3, a result that has been confirmed for
many crystalline materials. We have written the heat capacity in terms of the material constant #D, which
is known as the Debye temperature.

This result is important in three regards. First, as noted above, it is seen to be obeyed by a large
number of crystalline materials, and this analysis enables to understand why. Second, in metals there is
an important contribution to the heat capacity from the electrons that varies linearly with temperature at
low temperature, and having an expression for the phonon contribution to the heat capacity enables the
electronic component to be extracted. Third, some disordered materials – particularly many amorphous
materials – are found to have a heat capacity that varies more closely to linearly with temperature than
the T 3 law; with the theoretical support for the T 3 law we immediately understand that the departure
from this law implies the need for a deeper understanding of the thermodynamics of amorphous
materials.

5. EXPERIMENTAL STUDIES

5.1 Classical theory of inelastic neutron and x-ray scattering

In this section we discuss the results from experimental studies of lattice dynamics of a number of
different systems. Traditionally the key technique has been inelastic neutron scattering. Before we
present representative results, we will sketch a classical theory of inelastic scattering, a theory that
will apply also to inelastic scattering of x-rays.

We start by considering the process of elastic scattering radiation from an assembly of atoms, where
the scattered beam has the same wavelength/energy as the incident beam.13 Figure 6 shows the path of

11 It is a simple generalisation of this formalism to show that for d-dimensional systems g(!) ∝ !d−1.
12 Technically the experimental measurements will be weighted by the scattering power of each atoms.
13 Actually we do not need to assume that the wavelength doesn’t change through the scattering process, and the following
equations can easily be rewritten allowing for a change of wavelength.
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Sample

NRIXS: Nuclear Resonant Inelastic X-ray Scattering
NRVS: Nuclear Resonant Vibrational Spectroscopy

SMS: Synchrotron Mössbauer Spectroscopy
NFS : Nuclear Forward Scattering
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Phonon excitation probability
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Multi-phonon decomposition
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Lipkin’s sum rules related to phonon excitation probability

H. Lipkin, Phys. Rev. B, 52 (1995) 10073
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Detailed Balance

I(!E) = I(E)e!E /kT

T = E(eV )
kB ln I(E) I(!E)[ ]

(22.6 meV, 2762)

(-22.6 meV, 1158)



40

Detailed Balance

I(!E) = I(E)e!E /kT

kB = 8.6173"10!2meV /K
E = 22.6 meV
I(!E) =1158,   I(E) = 2762

T = E(eV )
kB ln I(E) I(!E)[ ]

= 297.03K



Let’s assume that the acoustic modes have a 
linear relationship between frequency and 
wave vector: 

, where C is average sound velocity ω = ck

Maximum frequency cut off is at Debye energy:
e.g. for Cu, this frequency is 240 cm-1 (~ 30 meV). 
Considering 1 meV = 11.605 K=8.065 cm-1, this 
corresponds to 348 K, which is close to 344 K. 
For Fe, the measured cut-off value is ~ 39.5 meV,
which corresponds to 458 K, very close to reported 
460 K. 

T=1630 T=1630 

bcc-Fe
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Two examples why we need to know about phonons in new materials

1) Thermoelectrics : clathrates and skutterudites 

2) Superconductors: iron pnictides



Carrier Concentration
Desire High zT Figure of Merit

Conflicting Materials Requirements
α  Seebeck Coefficient

Need small n, large m*
• Semiconductor (Valence compound)

σ  Electrical Conductivity
Need large n, high µ, low m*

• Metal

κ Thermal Conductivity
Desire  small κl, small n

Carrier Concentration Tuning
using

Zintl Chemistry! 

" = neµ

! 

zT =
" 2#T
$

! 

" =
8# 2kB

2

3eh2
m*T #

3n
$ 

% 
& 

' 

( 
) 
2 3

! 

" #" l + LTneµ

Large Seebeck coeff.       requires small carrier concentration and large effective e-mass 
Large Electrical conductivity         requires the opposite
Small Thermal conductivity       requires phonon glass or rattling atoms as in skutterudites or 
clathrates 

α
σ
κ
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The water molecule H2O forms a variety of cages different
in size and in geometrical structure. Typical examples of
hydrate-forming substances include CH, CO, and HS mole-
cules. The terms “gas hydrate” and “clathrate hydrates” have
been used for these solids (Davidson, 1973). Oxygen atoms
forming a cage are tetrahedrally connected by hydrogen bonds,
which make cages with open space for guest atoms and
molecules. In the early stages of this research, the vast majority
of clathrate hydrates were classified into two types, type I and
type II, belonging to the cubic space groups Pm3̄n and Fd3̄m,
respectively (Claussen, 1951a, 1951b, 1951c; von Stackelberg
and Müller, 1951a, 1951b; Müller and von Stackelberg, 1952;
Pauling and Marsh, 1952). Jeffrey (1984) classified clathrate
hydrates into seven types by introducing five further types in
addition to type-I and type-II structures. Crystal structures of
type III, type VIII, and type IX in addition to type I and type II
are shown in Fig. 2.
The unit cell of the type-I structure consists of 46 water

molecules which form two types of cages, small and large.
There are two small cages in the unit cell and six large ones.
The small cage has the shape of a pentagonal dodecahedron
(512), and the large one that of a tetrakaidecahedron (51262), as
given in Fig. 2. Typical guests in type-I clathrate hydrates are
CO2 in carbon dioxide hydrate and CH4 in methane hydrate.
Methane hydrates attracted much interest as a possible new
energy source, in which large amounts of methane gas are
contained both in permafrost formations and under the ocean
seabed (Englezos, 1993; Hester and Brewer, 2009). Hydrogen
storage in clathrates is also expected to have potentially
important energy applications (Struzhkin et al., 2007).
The unit cell of type-II clathrate hydrates consists of

136 water molecules, forming also small and large cages.
There are 16 small cages in the unit cell and 8 large ones. The
small cage is again a pentagonal dodecahedron (512), but the
large one is a hexakaidecahedron (51264). Type-II hydrates
contain larger molecules like CCl4 and SF6 than type-I
hydrates.

The compositions of the type-I and type-II hydrates are
expressed as 2D · 6T · 46H2O and 16D · 8H · 136H2O,
respectively, where D, T, and H represent, respectively,
the guest atoms or molecules in a cage of a pentagonal
dodecahedron, tetrakaidecahedron, and hexakaidecahedron
composed of water molecules.

2. Intermetallic clathrate compounds

Intermetallic clathrates are inorganic inclusion compounds
structurally related to the hydrates (Rogl, 2006). The clath-
rates composed of the group-14 elements were discovered as
prospective thermoelectric materials that realize the phonon-
glass electron-crystal concept (Slack, 1995; Nolas, Cohn et al.,
1998; Blake et al., 1999; Iversen et al., 2000). The group-14
clathrates have been intensively investigated because of their
great potential for converting temperature differences to electric
energy (Kuznetsov et al., 2000; Christensen, Snyder, and
Iversen, 2006; Saramat et al., 2006; Sootsman, Chung, and
Kanatzidis, 2009; Kleinke, 2010).
The frameworks of the group-14 clathrate compounds are

constructed from face-sharing polyhedron. The five structures
given in Fig. 2 are known as type-I ð2D · 6T · 46FÞ, type-II
ð16D · 8H · 136FÞ, type-III ð10D · 16T · 4P · 172FÞ, type-
VIII ð8D0 · 46FÞ, and type-IX ð8D · 12O · 4C · 100FÞ clath-
rates (Mudryk et al., 2002; Rogl, 2006; Karttunen and Fässler,
2011). Here P, D0, O, and C express guests in the pentakai-
decahedron, distorted dodecahedron, open cage, and distorted
cube, respectively, and F means a framework (cage) atom. D,
T, and H are defined previously. Type VIII and type IX have
no representatives among hydrate structures.
A silicon clathrate, for example, is formed by covalently

bonded Si atoms. Thereby, Si atoms and sp3 hybridized
orbital electrons play the roles of O atoms and H atoms in
clathrate hydrates due to their tetrahedral coordination and
hydrogen bonding by “ice rules” (Bernal and Fowler, 1933;
Pauling, 1948). Kasper et al. (1965) discovered the first
silicon clathrates, type-I Na8Si46 and type-II NaxSi136, where

FIG. 2 (color online). Crystal structures of type-I, type-II, type-III, type-VIII, and type-IX intermetallic clathrates.
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1. Thermoelectric materials: always something new !..
Clathrates
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Figure 2 Experimental NRIXS spectra and the derived ‘phonon density of states’ (see text) for Kr clathrate hydrate. a, NRIXS measured at 25, 63 and 158 K and b, the
corresponding phonon density of states derived from the data analysis assuming the harmonic model errors in the measurements are shown as error bars.

The energy-loss IINS data for structure-II Kr clathrate hydrate
at temperatures in the range 35–100 K are shown in Fig. 1. Three
low-energy peaks can be clearly identified at approximately 1 (8),
3.1 (23) and 4.4 (34) meV (cm�1). Furthermore, a shoulder at
3.6 meV (29 cm�1) becomes apparent at temperature higher than
50 K. These peaks are not observed in the spectra of pure ice and
therefore are attributed to the coupling between the ice lattice and
the Kr guest atoms. The extra features in the IINS spectrum at
about 6.9 meV (56 cm�1) and 11.0 meV (89 cm�1) are assigned
to the maximum in the transverse acoustic branch of the water
lattice and to the ‘folding back’ of transverse acoustic modes from
the branch outside the first Brillouin zone. As the incoherent
scattering length for Kr is negligible in comparison with those
of hydrogen and oxygen, these low-energy peaks only indirectly
reflect the coupling of the translational vibrations of Kr in the
cages with framework water acoustic phonon branches by ‘avoided-
crossings’, with their intensities derived from the mixing with the
vibration modes of the host water lattice17,28. Except for the peak
at 23 cm�1, the other observed frequencies apparently correlate
reasonably well with earlier calculated28 translational ‘localized’
vibrations of Kr in the large cages at 9 cm�1 and in the small cages
at 26 and 34 cm�1. The energies/frequencies of these peaks are
found to increase slightly with temperature. This may be taken as
an indication of anharmonic eVects. From the IINS result alone, it
is not possible to distinguish whether the energy shifts are related to
the Kr or to the host lattice or to both. The isolated-guest-molecule
VDOS cannot be directly measured with this technique.

The experimental NRIXS spectra of the Kr clathrate hydrate at
25, 63 and 158 K are shown in Fig. 2a. The vibrational densities of
states for these spectra as calculated using the PHOENIX software
are shown in Fig. 2b. This analysis is based on the assumption of
purely harmonic contributions to the vibrational densities of states.
This procedure has been used successfully for the determination
of the VDOS for a variety of materials under ambient and
extreme conditions. Whenever comparisons are available, the Kr
VDOS obtained from NRIXS experiments are often in excellent
agreement with IINS results. In the present case, following the
same procedure, the extracted Kr VDOS yields an unphysical
negative density of states (Fig. 2b) at 6–8 meV at the two lowest
temperatures of 25 and 63 K. The failure of the harmonic model
indicates a complete breakdown of the harmonic approximation.

Therefore, the vibrations of Kr are clearly intrinsically anharmonic
and cannot be described by a harmonic model, even within a
first approximation.

As the NRIXS data provide direct access to the self-intermediate
scattering function29, to investigate the dynamics spectra S(!),
the Fourier transform self-intermediate scattering functions at
several temperatures in the same range of the experimental
measures were compared. The calculated S(!) are convolved with
the experimental resolution and compared with the background-
subtracted NRIXS spectra in Fig. 3a and b. The low-energy feature
(⇠1�1.5 meV) in the calculated S(!) is associated with the
vibrations of Kr in the large cages. Owing to limited instrumental
resolution, this peak is overwhelmed by the very strong elastic
(zero-energy) peak and cannot be accurately extracted from the
experimental data. Apart from this shortcoming, the higher-energy
peak predicted at ⇠4.2 meV is clearly observed in the experiment.
This peak is mainly attributed to the localized vibrations of Kr
in the small cages. Molecular-dynamics calculations predict that
the peaks in S(!) will shift to higher frequency at increasing
temperature. For example, the low-energy peak at ⇠1 meV is
predicted to shift from 0.9 meV at 30 K to 1.3 meV at 120 K. The
prediction is in very good agreement with the IINS results. At 38 K,
the lowest temperature of the neutron scattering measurements,
this ‘localized’ vibration is hidden under the tail of the elastic line.
At high temperatures, this vibrational feature first appears as a weak
shoulder at ⇠70 K and becomes a well-defined feature at ⇠1 meV at
105 K. The 4-meV peak in S(!) probably corresponds to the peak
at 4.3 meV in the IINS spectra. Molecular-dynamics calculations
predict a frequency shift of ⇠0.7 meV from 30 to 120 K. This
value is consistent with the shift observed in both the IINS and
NRIXS spectra. Molecular-dynamics calculations also reveal several
weaker features at ⇠2 meV and at ⇠2.8 meV. These features are
discernible from the NRIXS spectra. Owing to the mixing with
the lattice acoustic phonons, these features are strongly enhanced
and clearly visible in the IINS spectra. It is worth noting that
the corresponding peak positions in the NRIXS and IINS spectra
are not identical as the mechanisms leading to these features are
completely diVerent.

The vibrations of Kr atoms in the clathrate hydrate cages
were investigated further and characterized through molecular-
dynamics simulations. It is well known that the vibrational
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The anomalous glass-like thermal conductivity of crystalline

clathrates has been suggested to be the result of the

scattering of thermal phonons of the framework by ‘rattling’

motions of the guests in the clathrate cages. Using

the site-specific

83Kr nuclear resonant inelastic scattering

spectroscopy in combination with conventional incoherent

inelastic neutron scattering and molecular-dynamics

simulations, we provide unambiguous evidence and

characterization of the effects on these guest–host

interactions in a structure-II Kr clathrate hydrate. The

resonant scattering of phonons led to unprecedented large

anharmonic motions of the guest atoms. The anharmonic

interaction underlies the anomalous thermal transport in

this system. Clathrates are prototypical models for a class

of crystalline framework materials with glass-like thermal

conductivity. The explanation of the unusual molecular

dynamics has a wide implication for the understanding

of the thermal properties of disordered solids and

structural glasses.

The understanding of the origin of the glass-like thermal
conductivity in crystalline materials is of fundamental and
practical importance1–6. This unusual behaviour has been

observed in open framework structures, such as the clathrates,
zeolites7,8, skutterudites9 and supramolecular compounds10, where
‘guest’ atoms can be incorporated in interstitial sites. The
anomalous thermal conductivity has been attributed to the
interactions (owing to anticrossing) of the rattling motions of
guest molecules or atoms with the framework vibrations, leading
to the exchange of energy (phonon scattering) and an anharmonic
potential that eYciently scatters the phonons and shortens the
phonon mean free path, thus reducing the thermal conductivity.
The rattling motions are quasilocalized translational/librational
vibrations of the guest molecule in the confines of the elliptical or
nearly spherical cages formed of water molecules. A comparative
study of the low-frequency vibrations of several numbers of
gas hydrates from neutron inelastic scattering experiments and
molecular-dynamics simulations7 has suggested that the vibrations
of Ar and Xe in the clathrate are close to harmonic and may
not be directly responsible for phonon scattering. Thus the
‘resonant scattering’ assumption is still highly debated and has
not been proven unequivocally. Moreover, an explanation based
on the theory of boson peaks has been advocated11. The basic
assumption of both models relied on the existence and the
behaviour of low-frequency localized vibrations owing to the guest
(rattling) motions. Although low-energy vibrational modes have
been observed, the nature of these vibrations and, in particular, the
consequence of the coupling by anticrossing on the guest motions
and the implication for thermal conduction remain unclear. All
studies so far have used techniques such as infrared or inelastic
neutron scattering methods, which are probes for the zone-
centre or zone-boundary phonons and do not provide explicit
information on the postulated ‘anticrossing’ of phonon branches
that occurs inside the Brillouin zone. Therefore, the eVect of
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The anomalous glass-like thermal conductivity of crystalline clathrates is perhaps due to scattering of 
thermal phonons of the framework by ‘rattling’ motions of the guests in the clathrate cages. 

Using the site-specific 83Kr nuclear resonant inelastic scattering spectroscopy characterization of the 
effects on these guest–host interactions in a structure-II Kr clathrate hydrate are possible. 

The resonant scattering of phonons leads to large anharmonic motions of the guest atoms. The anharmonic 
interaction underlies the anomalous thermal transport in this system. 

Clathrates are prototypical models for a class of crystalline framework materials with glass-like thermal 
conductivity. The explanation of the unusual dynamics has a wide implication for the understanding of the 
thermal properties of disordered solids and structural glasses.
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Figure 1 IINS spectra of Kr clathrate hydrate. The inset shows the low-frequency
‘rattling’ vibrations due to the guests’ motions. The lines are guides to the eye
showing the change of the vibrational energies with temperature.

resonant scattering on the guest motion remains uncharacterized.
To resolve this problem a site-specific method sensitive only to the
guest motions is required in order to provide an unambiguous
characterization of the consequence of the guest–host interactions.
In this study, the unique site-specific nuclear resonant inelastic
X-ray scattering spectroscopy (NRIXS) is used in combination with
conventional incoherent inelastic neutron scattering (IINS) and
molecular-dynamics simulations to investigate the dynamics of the
guest in a clathrate hydrate. The understanding of the nature of
the thermal conductivity where localized oscillators are present
is important in a wide range of materials. For example, eYcient
thermoelectric materials will require low thermal conductivities as
one of their essential properties and this will often be determined
by their ‘rattling’ components2,12,13. Clathrate hydrates are inclusion
compounds14–16 with enormous practical importance as sources
of energy, as hydrogen storage media and as components of
astrophysical bodies when methane is the guest material in their
ice-like cages that also have low thermal conductivities. The
precise nature and role of the guest motion remains unknown.
This has only been partially addressed by theoretical17,18 and
experimental studies19,20, but the important question of why the
thermal conductivity in the clathrate hydrates is low and glass-like
remains to be solved. Clathrate hydrates are prototypical examples
of this unusual phenomenon. Unlike other systems (for example,
zeolites and semiconductor analogues8,21, Dianin’s compounds10

and so on) no exception in the glass-like thermal conductivity
has been found. For some semiconductor clathrates the electronic
and vibrational structure of the ‘guests’ are very diVerent from the
water clathrates and the resonant scattering mechanism may not
apply. Therefore, to thoroughly understand the heat conduction
mechanism, the clathrate hydrate is the ideal system.

Two experimental techniques have emerged for the study of
localized modes. These are IINS and NRIXS. Neutron scattering
has been applied to the study of water and Si clathrates for the
measurement of vibrational densities of states. A major diYculty
is apparent. In an IINS experiment, the density of states, which
is dominated by phonons near the zone boundary, is not a
direct measurement of the localized modes. It is diYcult to
precisely identify the contributions from the localized modes
and those of other contributions from the framework. In water
clathrates, the observation of localized excitations is the result of

‘intensity borrowing’ resulting from the coupling with the lattice
vibrations. It has been argued that the observation of such localized
modes does not necessarily indicate strong host–guest vibrational
coupling7. Very often, the neutron inelastic scattering cross-sections
of the framework atoms are much larger than the guests so the IINS
technique eVectively cannot directly measure contributions to the
vibrational density of states (VDOS) from the guest alone.

The NRIXS technique can be used to characterize the dynamics
of the guest atoms if it has low-lying nuclear levels that can be
excited by synchrotron radiation (that is, a Mössbauer nucleus)22,23.
This is the case for 83Kr, which has a nuclear level of 9.4 keV so
that nuclear resonance can be excited using synchrotron radiation
sources. Therefore, for the Kr clathrate hydrate, nuclear resonant
inelastic scattering is sensitive only to the 83Kr guest atoms in the
clathrate cages and the ice lattice forming the cages is eVectively
invisible. Because of this unique property, a clathrate hydrate of Kr
is studied. It is possible to give a detailed characterization of the
localized vibrations of Kr atoms. In this study, we take advantage
of these properties and apply the two techniques to separate clearly
the contributions from the guest atoms and the host lattice.

Clathrate samples of the type-II clathrate were prepared with
Kr with natural abundance of isotope composition by continuously
exposing a finely ground powder of H2O ice in a reaction vessel
to Kr gas at a pressure of 30 bar for 7 days and temperatures in
the range �10 to 0 �C (ref. 24). Samples were recovered at 77 K,
stored and then shipped in liquid nitrogen to the Advanced Photon
Source at the Argonne National Laboratory and the Institute Laue-
Langevin in Grenoble. Neutron scattering measurements were
performed on the IN6 instrument at the neutron reactor source
of the Institute Laue-Langevin. For this experiment, the sample
was transferred cold to an Al sample cell of 1 mm thickness25.
Measurements were performed using a wavelength of 5.1 Å at
an instrumental energy resolution of 70 µeV. Data were obtained
at 35, 50, 70, 85 and 100 K. The NRIXS measurements were
performed at sector 3-ID at the Advanced Photon Source. A
four-silicon-crystal high-resolution monochromator based on a
weak-link structure18 with 1-meV energy bandwidth was used
in the experiment. The high resolution and high throughput of
this high-resolution monochromator make it possible to measure
the low-energy phonon modes of 83Kr in the clathrate at its
natural abundance (11.5%) of Kr. Samples were installed on a
specially designed beryllium-windowed low-temperature sample
holder that allowed maximum viewing of the samples by the
avalanche photodiode time-resolved detector. Experiments were
performed in the temperature range 25–160 K. The temperatures
were measured by a thermocouple on the sample holder and
are in very good agreement with those determined from the
detailed balance conditions for the energy-gain (phonon creation)
and energy-loss (phonon annihilation) spectra. The PHOENIX
software26 was used for analysis of the phonon spectra obtained
by NRIXS.

The observable in a NRIXS experiment is S(!), the dynamic
structure factor, which is related to the Fourier transform of
the self-intermediate scattering function, L(k0,t), where k0 is the
incident radiation wavevector and t is time27. For systems with large
anharmonicity, the harmonic assumption is no longer valid and
the calculation of L(k0,t) from molecular-dynamics simulations is
necessary for a direct comparison with experiment

L(k0,t) = 1

N

*
X

i

eik·(ri(t)�ri(0)

+

= heik0 ·ri(t)e�ik0 ·ri(0)i.

The sum is taken over the N particles in the simulation box and
ri(t) is the position of the ith atom at time t and is obtained from
the trajectory of a molecular-dynamics simulation.
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The observable in a NRIXS experiment is S(ω), the dynamic structure factor, which is 
related to the Fourier transform of the self-intermediate scattering function, L(ko,t). 
For systems with large anharmonicity, calculation of L(k0,t) from molecular-dynamics 
simulations is necessary. 
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Figure 1 IINS spectra of Kr clathrate hydrate. The inset shows the low-frequency
‘rattling’ vibrations due to the guests’ motions. The lines are guides to the eye
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resonant scattering on the guest motion remains uncharacterized.
To resolve this problem a site-specific method sensitive only to the
guest motions is required in order to provide an unambiguous
characterization of the consequence of the guest–host interactions.
In this study, the unique site-specific nuclear resonant inelastic
X-ray scattering spectroscopy (NRIXS) is used in combination with
conventional incoherent inelastic neutron scattering (IINS) and
molecular-dynamics simulations to investigate the dynamics of the
guest in a clathrate hydrate. The understanding of the nature of
the thermal conductivity where localized oscillators are present
is important in a wide range of materials. For example, eYcient
thermoelectric materials will require low thermal conductivities as
one of their essential properties and this will often be determined
by their ‘rattling’ components2,12,13. Clathrate hydrates are inclusion
compounds14–16 with enormous practical importance as sources
of energy, as hydrogen storage media and as components of
astrophysical bodies when methane is the guest material in their
ice-like cages that also have low thermal conductivities. The
precise nature and role of the guest motion remains unknown.
This has only been partially addressed by theoretical17,18 and
experimental studies19,20, but the important question of why the
thermal conductivity in the clathrate hydrates is low and glass-like
remains to be solved. Clathrate hydrates are prototypical examples
of this unusual phenomenon. Unlike other systems (for example,
zeolites and semiconductor analogues8,21, Dianin’s compounds10

and so on) no exception in the glass-like thermal conductivity
has been found. For some semiconductor clathrates the electronic
and vibrational structure of the ‘guests’ are very diVerent from the
water clathrates and the resonant scattering mechanism may not
apply. Therefore, to thoroughly understand the heat conduction
mechanism, the clathrate hydrate is the ideal system.

Two experimental techniques have emerged for the study of
localized modes. These are IINS and NRIXS. Neutron scattering
has been applied to the study of water and Si clathrates for the
measurement of vibrational densities of states. A major diYculty
is apparent. In an IINS experiment, the density of states, which
is dominated by phonons near the zone boundary, is not a
direct measurement of the localized modes. It is diYcult to
precisely identify the contributions from the localized modes
and those of other contributions from the framework. In water
clathrates, the observation of localized excitations is the result of

‘intensity borrowing’ resulting from the coupling with the lattice
vibrations. It has been argued that the observation of such localized
modes does not necessarily indicate strong host–guest vibrational
coupling7. Very often, the neutron inelastic scattering cross-sections
of the framework atoms are much larger than the guests so the IINS
technique eVectively cannot directly measure contributions to the
vibrational density of states (VDOS) from the guest alone.

The NRIXS technique can be used to characterize the dynamics
of the guest atoms if it has low-lying nuclear levels that can be
excited by synchrotron radiation (that is, a Mössbauer nucleus)22,23.
This is the case for 83Kr, which has a nuclear level of 9.4 keV so
that nuclear resonance can be excited using synchrotron radiation
sources. Therefore, for the Kr clathrate hydrate, nuclear resonant
inelastic scattering is sensitive only to the 83Kr guest atoms in the
clathrate cages and the ice lattice forming the cages is eVectively
invisible. Because of this unique property, a clathrate hydrate of Kr
is studied. It is possible to give a detailed characterization of the
localized vibrations of Kr atoms. In this study, we take advantage
of these properties and apply the two techniques to separate clearly
the contributions from the guest atoms and the host lattice.

Clathrate samples of the type-II clathrate were prepared with
Kr with natural abundance of isotope composition by continuously
exposing a finely ground powder of H2O ice in a reaction vessel
to Kr gas at a pressure of 30 bar for 7 days and temperatures in
the range �10 to 0 �C (ref. 24). Samples were recovered at 77 K,
stored and then shipped in liquid nitrogen to the Advanced Photon
Source at the Argonne National Laboratory and the Institute Laue-
Langevin in Grenoble. Neutron scattering measurements were
performed on the IN6 instrument at the neutron reactor source
of the Institute Laue-Langevin. For this experiment, the sample
was transferred cold to an Al sample cell of 1 mm thickness25.
Measurements were performed using a wavelength of 5.1 Å at
an instrumental energy resolution of 70 µeV. Data were obtained
at 35, 50, 70, 85 and 100 K. The NRIXS measurements were
performed at sector 3-ID at the Advanced Photon Source. A
four-silicon-crystal high-resolution monochromator based on a
weak-link structure18 with 1-meV energy bandwidth was used
in the experiment. The high resolution and high throughput of
this high-resolution monochromator make it possible to measure
the low-energy phonon modes of 83Kr in the clathrate at its
natural abundance (11.5%) of Kr. Samples were installed on a
specially designed beryllium-windowed low-temperature sample
holder that allowed maximum viewing of the samples by the
avalanche photodiode time-resolved detector. Experiments were
performed in the temperature range 25–160 K. The temperatures
were measured by a thermocouple on the sample holder and
are in very good agreement with those determined from the
detailed balance conditions for the energy-gain (phonon creation)
and energy-loss (phonon annihilation) spectra. The PHOENIX
software26 was used for analysis of the phonon spectra obtained
by NRIXS.

The observable in a NRIXS experiment is S(!), the dynamic
structure factor, which is related to the Fourier transform of
the self-intermediate scattering function, L(k0,t), where k0 is the
incident radiation wavevector and t is time27. For systems with large
anharmonicity, the harmonic assumption is no longer valid and
the calculation of L(k0,t) from molecular-dynamics simulations is
necessary for a direct comparison with experiment
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The energy-loss IINS data for structure-II Kr clathrate hydrate
at temperatures in the range 35–100 K are shown in Fig. 1. Three
low-energy peaks can be clearly identified at approximately 1 (8),
3.1 (23) and 4.4 (34) meV (cm�1). Furthermore, a shoulder at
3.6 meV (29 cm�1) becomes apparent at temperature higher than
50 K. These peaks are not observed in the spectra of pure ice and
therefore are attributed to the coupling between the ice lattice and
the Kr guest atoms. The extra features in the IINS spectrum at
about 6.9 meV (56 cm�1) and 11.0 meV (89 cm�1) are assigned
to the maximum in the transverse acoustic branch of the water
lattice and to the ‘folding back’ of transverse acoustic modes from
the branch outside the first Brillouin zone. As the incoherent
scattering length for Kr is negligible in comparison with those
of hydrogen and oxygen, these low-energy peaks only indirectly
reflect the coupling of the translational vibrations of Kr in the
cages with framework water acoustic phonon branches by ‘avoided-
crossings’, with their intensities derived from the mixing with the
vibration modes of the host water lattice17,28. Except for the peak
at 23 cm�1, the other observed frequencies apparently correlate
reasonably well with earlier calculated28 translational ‘localized’
vibrations of Kr in the large cages at 9 cm�1 and in the small cages
at 26 and 34 cm�1. The energies/frequencies of these peaks are
found to increase slightly with temperature. This may be taken as
an indication of anharmonic eVects. From the IINS result alone, it
is not possible to distinguish whether the energy shifts are related to
the Kr or to the host lattice or to both. The isolated-guest-molecule
VDOS cannot be directly measured with this technique.

The experimental NRIXS spectra of the Kr clathrate hydrate at
25, 63 and 158 K are shown in Fig. 2a. The vibrational densities of
states for these spectra as calculated using the PHOENIX software
are shown in Fig. 2b. This analysis is based on the assumption of
purely harmonic contributions to the vibrational densities of states.
This procedure has been used successfully for the determination
of the VDOS for a variety of materials under ambient and
extreme conditions. Whenever comparisons are available, the Kr
VDOS obtained from NRIXS experiments are often in excellent
agreement with IINS results. In the present case, following the
same procedure, the extracted Kr VDOS yields an unphysical
negative density of states (Fig. 2b) at 6–8 meV at the two lowest
temperatures of 25 and 63 K. The failure of the harmonic model
indicates a complete breakdown of the harmonic approximation.

Therefore, the vibrations of Kr are clearly intrinsically anharmonic
and cannot be described by a harmonic model, even within a
first approximation.

As the NRIXS data provide direct access to the self-intermediate
scattering function29, to investigate the dynamics spectra S(!),
the Fourier transform self-intermediate scattering functions at
several temperatures in the same range of the experimental
measures were compared. The calculated S(!) are convolved with
the experimental resolution and compared with the background-
subtracted NRIXS spectra in Fig. 3a and b. The low-energy feature
(⇠1�1.5 meV) in the calculated S(!) is associated with the
vibrations of Kr in the large cages. Owing to limited instrumental
resolution, this peak is overwhelmed by the very strong elastic
(zero-energy) peak and cannot be accurately extracted from the
experimental data. Apart from this shortcoming, the higher-energy
peak predicted at ⇠4.2 meV is clearly observed in the experiment.
This peak is mainly attributed to the localized vibrations of Kr
in the small cages. Molecular-dynamics calculations predict that
the peaks in S(!) will shift to higher frequency at increasing
temperature. For example, the low-energy peak at ⇠1 meV is
predicted to shift from 0.9 meV at 30 K to 1.3 meV at 120 K. The
prediction is in very good agreement with the IINS results. At 38 K,
the lowest temperature of the neutron scattering measurements,
this ‘localized’ vibration is hidden under the tail of the elastic line.
At high temperatures, this vibrational feature first appears as a weak
shoulder at ⇠70 K and becomes a well-defined feature at ⇠1 meV at
105 K. The 4-meV peak in S(!) probably corresponds to the peak
at 4.3 meV in the IINS spectra. Molecular-dynamics calculations
predict a frequency shift of ⇠0.7 meV from 30 to 120 K. This
value is consistent with the shift observed in both the IINS and
NRIXS spectra. Molecular-dynamics calculations also reveal several
weaker features at ⇠2 meV and at ⇠2.8 meV. These features are
discernible from the NRIXS spectra. Owing to the mixing with
the lattice acoustic phonons, these features are strongly enhanced
and clearly visible in the IINS spectra. It is worth noting that
the corresponding peak positions in the NRIXS and IINS spectra
are not identical as the mechanisms leading to these features are
completely diVerent.

The vibrations of Kr atoms in the clathrate hydrate cages
were investigated further and characterized through molecular-
dynamics simulations. It is well known that the vibrational
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We use nuclear resonance inelastic x-ray scattering (NRIXS), a relatively new, synchrotron-based, isotope-
specific technique in combination with a more traditional one, Raman spectroscopy, to probe the vibrational
dynamics of the host frameworks in two Zintl clathrates: K8Zn4Sn42 (KZS) and Ba8Ga16Sn30 (BGS). From the
normalized Sn vibrational density of states obtained from NRIXS, we calculate the stiffness, a mean force constant
of the Sn environment, the resilience, a compact way of expressing the temperature dependence of the Sn mean
square displacement, and several thermodynamic properties. The stiffness and the resilience are approximately
7% lower in KZS, reflecting its larger unit cell compared to BGS. We emphasize the complementariness between
NRIXS and Raman spectroscopy and establish a series of benchmarks for a more quantitative evaluation of the
Raman spectra for the numerous clathrates that are still not suitable for NRIXS studies.

DOI: 10.1103/PhysRevB.90.104304 PACS number(s): 63.20.Pw

I. INTRODUCTION

Clathrates are compounds with beautiful structures consist-
ing of (guest) atoms trapped inside (host) polyhedral cages [1]
known for their thermoelectric [2], mechanical [3], magnetic
[4], superconducting [5], and photovoltaic [6] properties.
The close relationship between structure and properties is of
scientific and technological importance [7,8]. Among other
applications, clathrates are promising candidates in the search
for new materials fitting the “phonon glass, electron crystal”
concept, in which the phonon free paths are as short as possible
while electron mean free paths are as long as possible [9]. Early
studies associated the low thermal conductivities in a number
of materials with the presence of loose, “rattling” atoms
[10,11], hence the initial interest in probing the dynamics of
the guest atoms in clathrates with a variety of techniques such
as diffraction [12], nuclear resonant inelastic x-ray scattering
[13], and inelastic neutron scattering [14]. On the other hand,
the role played by the host framework occupancy and dynamics
on the behavior of the guest atoms and, ultimately, on the
thermal conductivity has been demonstrated both theoretically
[15,16] and experimentally [17,18].

Improvement of thermoelectric materials in general re-
quires a detailed knowledge of all the factors influencing
their properties [19]. Hence, for clathrates it is of interest to
probe the atomic dynamics of the host framework separately
from that of the guest atoms and to extract mechanical and
thermodynamic properties associated with it. Phonons, which
are also important in understanding the superconducting mech-
anism [8,20], are usually studied with Raman spectroscopy
[8,21,22] and inelastic neutron scattering (INS) [17,18,23].
With these techniques, however, is sometimes difficult to
separate the contributions from the guest and the host atoms
to the measured signal. (This separation can be accomplished,
for example, by using isotope labeling in Raman [8] or the
complementary techniques INS and inelastic x-ray scattering

*leu@aps.anl.gov

[23].) Nuclear resonance inelastic x-ray scattering [24,25]
(NRIXS; other names used for this technique include nuclear
inelastic scattering [13], nuclear resonance vibrational spec-
troscopy [26], and others) circumvents this difficulty due to its
ultimate site selectiveness: it is an isotope-specific technique,
with only the targeted atom(s) contributing to the measured
spectrum. While 57Fe is by far the most studied isotope,
due to the importance of iron in biology, geophysics, and
condensed matter physics, several other isotopes are suitable
for NRIXS, such as 119Sn, 151Eu, 81Kr, 149Sm, 161Dy, and
121Sb. NRIXS has been used previously in investigations on
Zintl and hydrate clathrates, in which the guest atoms—Eu
[13] and Kr [27,28], respectively—were targeted. On the other
hand, NRIXS studies on filled skutterudites (a related class of
thermoelectric materials) helped elucidate the contribution of
the host framework, in addition to that of the filler, to the
lattice thermal conductivity in a series of experiments probing
different (Fe, Sb) sites [29,30]. To the best of our knowledge,
so far NRIXS has not been applied to probe the dynamics of
the host framework in clathrates.

Here, we use Sn-based NRIXS to investigate the host frame-
work dynamics in two promising thermoelectric materials:
K8Zn4Sn42 (KZS) and Ba8Ga16Sn30 (BGS). KZS [31] (Fig. 1)
is a type-I clathrate [2,32] (i.e., it consists of pentagonal
dodecahedra and tetrakaidecahedra alternating in a 1:3 ratio)
while BGS [18,33] (Fig. 2) is of type VIII (i.e., it contains
only pentagonal dodecahedra; however, BGS adopts the type-I
clathrate structure in the high-temperature modification [35]).
Both have cubic unit cells, with a = 12.071 Å and space group
Pm-3n for KZS [31], and a = 11.572 Å and space group
I -43m for BGS [33,34].

We carried out parallel Raman measurements that revealed
a remarkable complementariness between the two techniques.
Differently from Raman spectroscopy however, NRIXS is an
outstandingly quantitative technique, allowing us to extract the
overall stiffness of the host framework and other parameters,
and to establish a series of benchmarks in a Raman spectrum
that may be useful for those compounds that are not suitable
for NRIXS measurements.
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FIG. 1. (Color online) Structure of type-I clathrate K8Zn4Sn42.
Color scheme: gray = K, yellow = Zn/Sn, red = Sn. One
small (pentagonal dodecahedron) and large (tetrakaidecahedron) host
framework cage are highlighted in green and blue, respectively.

II. MATERIALS AND METHODS

A. Sample preparation

Single crystals of KZS and BGS were grown by a self-flux
method using tin metal [33]. High-purity K, Zn powder, and
Sn in the ratio of 4:2:63 were placed in a tantalum ampoule,
which was sealed and heated with a rate of 1 K/min to 650 ◦C.
The ampoule was held at this temperature for 1 h, followed
by cooling to 200 ◦C with a rate of 0.1 K/min and to room
temperature with a rate of 1 K/min. A carbon coated quartz
tube containing high-purity Ba, Ga, and Sn mixed in an atomic
ratio of 8:16:80 was evacuated and sealed under vacuum.
The tube was placed in a computer-controlled furnace and
was heated to 1100 ◦C over 12 h. The tube was kept at this
temperature for 5 h and was subsequently cooled to room

FIG. 2. (Color online) Structure of type-VIII clathrate
Ba8Ga16Sn30. Color scheme: gray = Ba, red = Sn/Ga. One
host framework cage (pentagonal dodecahedron) is highlighted in
blue.

temperature in two steps: fast cooled to 500 ◦C and kept at
this temperature for 18 h, then slowly cooled down to room
temperature at a rate of 5 ◦C/h. Further details about sample
preparation and characterization can be found in Refs. [31,34].

B. Raman experiment

The measurements were performed at the Center for
Nanoscale Materials, Argonne National Laboratory. Spectra
were recorded at room temperature using 633-nm excitation
from a helium-neon laser with 0.5-mW incident power and a
Raman microscope (inVia Reflex, Renishaw, Inc.). Scattered
light was collected through a 50X objective (Leica, NA =
0.75). The spectra are the result of averaging thirty 15-second
integrations for KZS and ten 30-second integrations for BGS.

C. NRIXS experiment

NRIXS measurements were carried out at beamline 30-ID
of the Advanced Photon Source (APS), Argonne National
Laboratory. The incident monochromatic 23.88-keV x rays
impinging on the sample had a flux of ∼1.7 × 109 Hz.
The experimental resolution, obtained from a cryogenically-
cooled, six-bounce high-resolution monochromator [36] was
1.3 meV (10.4 cm−1). Energy scans, done at room temperature,
covered the range from −40 to 70 meV with a 0.25 meV step.
Multiple scans were added to obtain the data shown in Figs. S2
and S3 (panel A), Ref. [34], for a total collection time of ∼1.5 h
for KZS and ∼4.5 h for BGS. Both samples contained naturally
abundant Sn.

This work represents the first NRIXS project conducted
at the 30-ID beamline, otherwise hosting the HERIX instru-
ment, dedicated to the high-energy resolution inelastic x-ray
scattering technique. The closeness between the operating
energy for HERIX (23.724 keV) and for Sn-based NRIXS
(23.88 keV) allows for the use of the same high-resolution
monochromator for the two techniques. At the APS, 119Sn
NRIXS can be performed at beamline 3-ID as well [37,38]
using a four-bounce, “nested” high-resolution monochromator
[39].

The measured NRIXS signal (Figs. S2 and S3, panel A,
Ref. [34]) consists of a central peak due to the recoilless
excitation of the 119Sn nucleus at E0 = 23.88 keV and a series
of sidebands of frequency ν̄ shifted with respect to E0 by hcν̄.
The raw data was processed using Lipkin’s first momentum
sum rule [40] to produce a normalized excitation probability
(Figs. S2 and S3, panel B, Ref. [34]). Program PHOENIX [41]
was used to find the partial density of states D(E) (Figs. S2 and
S3, panel C, Ref. [34]) from the one-phonon contribution to
the excitation probability (Figs. S2 and S3, panel B, Ref. [34]).
Further details about NRIXS experiments in general and data
analysis can be found elsewhere [24–26].

III. RESULTS AND DISCUSSION

The Raman spectra of KZS and BGS are shown in Fig. 3.
The main bands are listed in Table I. Similar to previous
experimental [16,21,22,42–44] and theoretical [16] Raman
studies on Sn-containing clathrates, two main regions can be
distinguished in the KZS and BGS spectra: around 60–80 cm−1

and above 150 cm−1. Traditionally, the modes below 40 cm−1
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method using tin metal [33]. High-purity K, Zn powder, and
Sn in the ratio of 4:2:63 were placed in a tantalum ampoule,
which was sealed and heated with a rate of 1 K/min to 650 ◦C.
The ampoule was held at this temperature for 1 h, followed
by cooling to 200 ◦C with a rate of 0.1 K/min and to room
temperature with a rate of 1 K/min. A carbon coated quartz
tube containing high-purity Ba, Ga, and Sn mixed in an atomic
ratio of 8:16:80 was evacuated and sealed under vacuum.
The tube was placed in a computer-controlled furnace and
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temperature in two steps: fast cooled to 500 ◦C and kept at
this temperature for 18 h, then slowly cooled down to room
temperature at a rate of 5 ◦C/h. Further details about sample
preparation and characterization can be found in Refs. [31,34].

B. Raman experiment

The measurements were performed at the Center for
Nanoscale Materials, Argonne National Laboratory. Spectra
were recorded at room temperature using 633-nm excitation
from a helium-neon laser with 0.5-mW incident power and a
Raman microscope (inVia Reflex, Renishaw, Inc.). Scattered
light was collected through a 50X objective (Leica, NA =
0.75). The spectra are the result of averaging thirty 15-second
integrations for KZS and ten 30-second integrations for BGS.

C. NRIXS experiment

NRIXS measurements were carried out at beamline 30-ID
of the Advanced Photon Source (APS), Argonne National
Laboratory. The incident monochromatic 23.88-keV x rays
impinging on the sample had a flux of ∼1.7 × 109 Hz.
The experimental resolution, obtained from a cryogenically-
cooled, six-bounce high-resolution monochromator [36] was
1.3 meV (10.4 cm−1). Energy scans, done at room temperature,
covered the range from −40 to 70 meV with a 0.25 meV step.
Multiple scans were added to obtain the data shown in Figs. S2
and S3 (panel A), Ref. [34], for a total collection time of ∼1.5 h
for KZS and ∼4.5 h for BGS. Both samples contained naturally
abundant Sn.

This work represents the first NRIXS project conducted
at the 30-ID beamline, otherwise hosting the HERIX instru-
ment, dedicated to the high-energy resolution inelastic x-ray
scattering technique. The closeness between the operating
energy for HERIX (23.724 keV) and for Sn-based NRIXS
(23.88 keV) allows for the use of the same high-resolution
monochromator for the two techniques. At the APS, 119Sn
NRIXS can be performed at beamline 3-ID as well [37,38]
using a four-bounce, “nested” high-resolution monochromator
[39].

The measured NRIXS signal (Figs. S2 and S3, panel A,
Ref. [34]) consists of a central peak due to the recoilless
excitation of the 119Sn nucleus at E0 = 23.88 keV and a series
of sidebands of frequency ν̄ shifted with respect to E0 by hcν̄.
The raw data was processed using Lipkin’s first momentum
sum rule [40] to produce a normalized excitation probability
(Figs. S2 and S3, panel B, Ref. [34]). Program PHOENIX [41]
was used to find the partial density of states D(E) (Figs. S2 and
S3, panel C, Ref. [34]) from the one-phonon contribution to
the excitation probability (Figs. S2 and S3, panel B, Ref. [34]).
Further details about NRIXS experiments in general and data
analysis can be found elsewhere [24–26].

III. RESULTS AND DISCUSSION

The Raman spectra of KZS and BGS are shown in Fig. 3.
The main bands are listed in Table I. Similar to previous
experimental [16,21,22,42–44] and theoretical [16] Raman
studies on Sn-containing clathrates, two main regions can be
distinguished in the KZS and BGS spectra: around 60–80 cm−1

and above 150 cm−1. Traditionally, the modes below 40 cm−1
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FIG. 5. Raman (top) and NRIXS (Sn VDOS, bottom) spectra for
KZS. NRIXS data points are shown as markers with error bars, while
the solid curve represents three-point running average. The individual
peaks are shown as gray dashed lines. Their frequencies are listed in
Table I.

band in KZS is shifting to higher frequencies in BGS (Fig. 3),
consistent with the lighter Ga16Sn30 framework compared to
the Zn4Sn42 one. Such a dependence on the framework mass
can be noticed in previous studies as well (e.g., Ga16Ge30
versus Ga8Sn38) [42]. To summarize the Raman discussion,
the two regions with prominent features are sensitive to the
number of Sn atoms in the unit cell and to the nature of the
substituted atoms in the framework (high-frequency region,
180–230 cm−1), and to the overall mass of the framework
(low-frequency region, around 60 cm−1).

Among the clathrate forming elements in the periodic
table [1], three isotopes are suitable for routine NRIXS
measurements: 151Eu [29], 119Sn [38], and 121Sb [46]. Due to
its isotope-selectiveness, NRIXS is an ideal tool for separating
the guest and host framework contributions to the density of
states that can be obtained from inelastic neutron scattering
measurements [18]. Indeed, NRIXS has been used previously
to probe the vibrational dynamics of the “rattling” Eu guest
atoms in Eu8Ga16Ge30 [13], but, to the best of our knowledge,
has never been applied to target the host framework in
clathrates.

To facilitate the following discussion, we plot together the
Raman and NRIXS (Sn VDOS) spectra for KZS and BGS
in Figs. 5 and 6, respectively. The lower panels also include
the individual peaks (Gaussians, with the exception of the
lowest-frequency one, which is log-normal; their frequencies
are listed in Table I). For the sake of clarity, the fitting
results, which match almost perfectly the averaged curves in
Figs. 5 and 6, are not shown. The raw NRIXS spectra, the
resolution function, the normalized spectra, and the one- and
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FIG. 6. Raman (top) and NRIXS (Sn VDOS, bottom) spectra for
BGS. NRIXS data points are shown as markers with error bars, while
the solid curve represents five-point running average. The individual
peaks are shown as gray dashed lines. Their frequencies are listed in
Table I.

multi-phonon contributions are shown in Figs. S2 and S3 of
Ref. [34].

Common Raman and NRIXS bands have been observed
before [47–49]. In the present study however, the predom-
inance of Sn atoms in the compounds investigated leads
to remarkable, uncommon similarities between the Raman
and NRIXS spectra, both for KZS and BGS. Like in the
theoretical results for guest-free Sn46 [16], two regions with
a higher concentration of density of states are noticeable:
between 30 and 80 cm−1 (≈3.7–10 meV) and between 160
and 200 cm−1 (≈20–25 meV). No signal, other than due to
statistical fluctuations, is present above 240 cm−1, consistent
with the Raman spectra and with previous Raman studies on
Sn-containing clathrates. For KZS, an almost perfect one-to-
one correspondence can be achieved between the Raman and
NRIXS bands (Fig. 5, Table I). Two possible exceptions are
the weak 68 cm−1 Raman band, which may be hidden by the
neighboring strong 55-cm−1 NRIXS peak and the 134-cm−1

NRIXS band, which may be Raman inactive.
Good agreement between the results produced by the two

experiments exists for BGS as well (Fig. 6), although the
weak, featureless 80–140 cm−1 region and the broader bands
above 140 cm−1 make a one-to-one connection between the
two spectra somewhat harder to obtain, compared to KZS.
Nevertheless, both the dominant 60–80 cm−1 peaks and the
140–230 cm−1 feature in the Raman spectrum are clearly
reproduced in the Sn VDOS obtained from NRIXS. The
slight shift of the strong 55-cm−1 Raman band in KZS to
59 cm−1 in BGS is also reproduced by NRIXS (Figs. 5 and 6).
Evidently, NRIXS does not directly probe the dynamics of the
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substituted atoms in the two compounds. However, vibrations
of the neighboring Sn atoms accompany those of the Zn and
Ga atoms, thus leaving a footprint in the Sn VDOS (∼211
cm−1 in KZS, ∼182 cm−1 in BGS).

Since NRIXS targets only the Sn atoms, the almost identical
spectra obtained from the two experiments for both compounds
suggest that the frameworks (Sn atoms in particular) dominate
the Raman spectra in the region investigated. Contributions
from the K and Ba atoms are nevertheless expected, similar to
the mixture between guest atom and framework vibrations pre-
viously reported for a related compound [16]. This expectation
is confirmed by the Eu-based NRIXS study on Eu8Ga16Ge30
by Hermann and coworkers, in which the partial VDOS
of the guest atoms extends up to approximately 70 cm−1.
The significant overlap between the Eu VDOS [13] and Sn
VDOS (this work) in the 40–70 cm−1 region unambiguously
demonstrates that the low-frequency vibrations cannot be
rigidly assigned to either guest or host vibrations, but rather
to a combination of the two. This comparison underscores
the complementariness between the two NRIXS studies on
Zintl clathrates to date, in spite of the differences between the
structures of the three materials: (Ga,Ge) versus (Zn/Ga, Sn)
frameworks; Eu versus K/Ba guest atoms.

Compared to Raman spectroscopy, NRIXS is a highly
quantitative technique. From the partial (Sn in this study)
VDOS numerous thermodynamic and elastic parameters can
be calculated [24,25,50,51]. We begin by considering the
vibrational component of the mean square displacement (msd)
along the incident photon direction ⟨z2⟩v , given by

⟨z2⟩v = 1
3k2

∫
[2n̄(ν̄) + 1]

ν̄R

ν̄
D(ν̄)d ν̄, (2)

in which D(ν̄) is the Sn VDOS, hcν̄R = !2k2/2mj is the recoil
energy of a free nucleus of mass mj absorbing a photon of
energy E = !ck, and n̄ = [exp(hcν̄/kBT ) − 1]−1 represents
the mean occupation number of mode ν̄ at temperature T
(kB is the Boltzmann constant). In this study, ν̄R = 20.76 cm−1

(the photon energy changes only ±70 meV with respect to the
nuclear excitation energy E0 = 23.88 keV), k = 12.1 Å−1 is
the magnitude of the wave vector of the absorbed photon, and∫

D(ν̄)d ν̄ = 3. The ⟨z2⟩v values at 298 K for KZS and BGS
(0.0115 and 0.0106 Å2, respectively) are much smaller than
those obtained from diffraction [31,33], as previously reported
for skutterudites as well [30].

It should be noted here that, like in other Sn-based NRIXS
measurements at room temperature [37,38], multiphonon
contributions are quite significant in both KZS and BGS
(Fig. S2 and S3, panel B, Ref. [34]), leading to somewhat low
values (0.19 for KZS, 0.21 for BGS) for the Lamb-Mössbauer
factor (or recoilless fraction)fLM = exp(−k2 < z2 >v). If fLM
becomes too low, the VDOS cannot be extracted [52].

At sufficiently high temperatures, kBT ≫ hcν̄, the msd
depend linearly on temperature [53]:

⟨z2⟩HT = T
2ν̄RkB

3hck2

∫
D(ν̄)
ν̄2

d ν̄. (3)
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FIG. 7. Temperature dependence of the vibrational contribution
to the Sn msd extrapolated from the Sn VDOS measured at a
single temperature from Eq. (2). Dashed lines represent the high-
temperature slopes determined from Eq. (3).

On the other hand, ⟨z2⟩v does not vanish as T → 0, but
approaches a finite value given by [53]

⟨z2⟩0 = ν̄R

3k2

∫
D(ν̄)

ν̄
d ν̄. (4)

A comparison between these extreme cases yields a temper-
ature T ∗ at which the high-temperature msd [Eq. (3)] first
exceeds the zero-point motion [Eq. (4)]. The T ∗ values for the
two compounds are 42 K for KZS and 44 K for BGS.

Using Eq. (2), we extrapolated the temperature dependence
of the vibrational contribution to the msd for KZS and
BGS from the Sn VDOS measured at a single temperature
(continuous lines in Fig. 7). The limiting high-temperature
slopes Eq. (3) are indicated as dashed lines. Their values are
3.8 × 10−5 Å2/K for KZS and 3.5 × 10−5 Å2/K for BGS.

As seen above, the msd depend strongly on temperature.
The concept of resilience [54],

kr = kB

d < z2 > /dT
, (5)

was introduced to describe in a compact way the temperature
dependence of the atomic fluctuations in proteins when this
dependence is approximately linear. Therefore the VDOS
obtained from NRIXS measurements at a single temperature
yields the resilience of the Sn framework [Eqs. (3) and (5)].
The kr values for KZS and BGS are 36.4 and 39.5 N/m,
respectively. The slightly stronger temperature dependence
for KZS with respect to BGS (Fig. 7) can be explained by
an increased Sn VDOS integrated area for the former below
approximately 65 cm−1 [Fig. 8(a)].

In Fig. 8, we plot the quantities D(ν̄)/ν̄ [panel (b)] and
D(ν̄)/ν̄2 [panel (c)] as a function of frequency. The modes
below 90 cm−1 represent 85% of the integrated area of D(ν̄)/ν̄2

for KZS and 84% for BGS, while they contribute only 63%
and 62%, respectively, to the integrated area of D(ν̄)/ν̄ in
the same range. These results indicate that low-frequency
vibrations dominate the high-temperature behavior of the Sn
msd [Eq. (3)], while the full spectrum contributes to the
zero-point motion [Eq. (4)]. Not surprisingly, the shift of the
55 cm−1 Raman band in KZS (Fig. 3, Table I) by ∼4 cm−1 in
BGS not only that is reflected in the Sn VDOS of the respective
compounds [Fig. 8(a)], but it leads to a noticeable difference
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substituted atoms in the two compounds. However, vibrations
of the neighboring Sn atoms accompany those of the Zn and
Ga atoms, thus leaving a footprint in the Sn VDOS (∼211
cm−1 in KZS, ∼182 cm−1 in BGS).

Since NRIXS targets only the Sn atoms, the almost identical
spectra obtained from the two experiments for both compounds
suggest that the frameworks (Sn atoms in particular) dominate
the Raman spectra in the region investigated. Contributions
from the K and Ba atoms are nevertheless expected, similar to
the mixture between guest atom and framework vibrations pre-
viously reported for a related compound [16]. This expectation
is confirmed by the Eu-based NRIXS study on Eu8Ga16Ge30
by Hermann and coworkers, in which the partial VDOS
of the guest atoms extends up to approximately 70 cm−1.
The significant overlap between the Eu VDOS [13] and Sn
VDOS (this work) in the 40–70 cm−1 region unambiguously
demonstrates that the low-frequency vibrations cannot be
rigidly assigned to either guest or host vibrations, but rather
to a combination of the two. This comparison underscores
the complementariness between the two NRIXS studies on
Zintl clathrates to date, in spite of the differences between the
structures of the three materials: (Ga,Ge) versus (Zn/Ga, Sn)
frameworks; Eu versus K/Ba guest atoms.

Compared to Raman spectroscopy, NRIXS is a highly
quantitative technique. From the partial (Sn in this study)
VDOS numerous thermodynamic and elastic parameters can
be calculated [24,25,50,51]. We begin by considering the
vibrational component of the mean square displacement (msd)
along the incident photon direction ⟨z2⟩v , given by

⟨z2⟩v = 1
3k2

∫
[2n̄(ν̄) + 1]

ν̄R

ν̄
D(ν̄)d ν̄, (2)

in which D(ν̄) is the Sn VDOS, hcν̄R = !2k2/2mj is the recoil
energy of a free nucleus of mass mj absorbing a photon of
energy E = !ck, and n̄ = [exp(hcν̄/kBT ) − 1]−1 represents
the mean occupation number of mode ν̄ at temperature T
(kB is the Boltzmann constant). In this study, ν̄R = 20.76 cm−1

(the photon energy changes only ±70 meV with respect to the
nuclear excitation energy E0 = 23.88 keV), k = 12.1 Å−1 is
the magnitude of the wave vector of the absorbed photon, and∫

D(ν̄)d ν̄ = 3. The ⟨z2⟩v values at 298 K for KZS and BGS
(0.0115 and 0.0106 Å2, respectively) are much smaller than
those obtained from diffraction [31,33], as previously reported
for skutterudites as well [30].

It should be noted here that, like in other Sn-based NRIXS
measurements at room temperature [37,38], multiphonon
contributions are quite significant in both KZS and BGS
(Fig. S2 and S3, panel B, Ref. [34]), leading to somewhat low
values (0.19 for KZS, 0.21 for BGS) for the Lamb-Mössbauer
factor (or recoilless fraction)fLM = exp(−k2 < z2 >v). If fLM
becomes too low, the VDOS cannot be extracted [52].

At sufficiently high temperatures, kBT ≫ hcν̄, the msd
depend linearly on temperature [53]:

⟨z2⟩HT = T
2ν̄RkB

3hck2

∫
D(ν̄)
ν̄2

d ν̄. (3)
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FIG. 7. Temperature dependence of the vibrational contribution
to the Sn msd extrapolated from the Sn VDOS measured at a
single temperature from Eq. (2). Dashed lines represent the high-
temperature slopes determined from Eq. (3).

On the other hand, ⟨z2⟩v does not vanish as T → 0, but
approaches a finite value given by [53]

⟨z2⟩0 = ν̄R

3k2

∫
D(ν̄)

ν̄
d ν̄. (4)

A comparison between these extreme cases yields a temper-
ature T ∗ at which the high-temperature msd [Eq. (3)] first
exceeds the zero-point motion [Eq. (4)]. The T ∗ values for the
two compounds are 42 K for KZS and 44 K for BGS.

Using Eq. (2), we extrapolated the temperature dependence
of the vibrational contribution to the msd for KZS and
BGS from the Sn VDOS measured at a single temperature
(continuous lines in Fig. 7). The limiting high-temperature
slopes Eq. (3) are indicated as dashed lines. Their values are
3.8 × 10−5 Å2/K for KZS and 3.5 × 10−5 Å2/K for BGS.

As seen above, the msd depend strongly on temperature.
The concept of resilience [54],

kr = kB

d < z2 > /dT
, (5)

was introduced to describe in a compact way the temperature
dependence of the atomic fluctuations in proteins when this
dependence is approximately linear. Therefore the VDOS
obtained from NRIXS measurements at a single temperature
yields the resilience of the Sn framework [Eqs. (3) and (5)].
The kr values for KZS and BGS are 36.4 and 39.5 N/m,
respectively. The slightly stronger temperature dependence
for KZS with respect to BGS (Fig. 7) can be explained by
an increased Sn VDOS integrated area for the former below
approximately 65 cm−1 [Fig. 8(a)].

In Fig. 8, we plot the quantities D(ν̄)/ν̄ [panel (b)] and
D(ν̄)/ν̄2 [panel (c)] as a function of frequency. The modes
below 90 cm−1 represent 85% of the integrated area of D(ν̄)/ν̄2

for KZS and 84% for BGS, while they contribute only 63%
and 62%, respectively, to the integrated area of D(ν̄)/ν̄ in
the same range. These results indicate that low-frequency
vibrations dominate the high-temperature behavior of the Sn
msd [Eq. (3)], while the full spectrum contributes to the
zero-point motion [Eq. (4)]. Not surprisingly, the shift of the
55 cm−1 Raman band in KZS (Fig. 3, Table I) by ∼4 cm−1 in
BGS not only that is reflected in the Sn VDOS of the respective
compounds [Fig. 8(a)], but it leads to a noticeable difference
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the magnitude of the wave vector of the absorbed photon, and∫

D(ν̄)d ν̄ = 3. The ⟨z2⟩v values at 298 K for KZS and BGS
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those obtained from diffraction [31,33], as previously reported
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It should be noted here that, like in other Sn-based NRIXS
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On the other hand, ⟨z2⟩v does not vanish as T → 0, but
approaches a finite value given by [53]

⟨z2⟩0 = ν̄R
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A comparison between these extreme cases yields a temper-
ature T ∗ at which the high-temperature msd [Eq. (3)] first
exceeds the zero-point motion [Eq. (4)]. The T ∗ values for the
two compounds are 42 K for KZS and 44 K for BGS.

Using Eq. (2), we extrapolated the temperature dependence
of the vibrational contribution to the msd for KZS and
BGS from the Sn VDOS measured at a single temperature
(continuous lines in Fig. 7). The limiting high-temperature
slopes Eq. (3) are indicated as dashed lines. Their values are
3.8 × 10−5 Å2/K for KZS and 3.5 × 10−5 Å2/K for BGS.

As seen above, the msd depend strongly on temperature.
The concept of resilience [54],
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, (5)

was introduced to describe in a compact way the temperature
dependence of the atomic fluctuations in proteins when this
dependence is approximately linear. Therefore the VDOS
obtained from NRIXS measurements at a single temperature
yields the resilience of the Sn framework [Eqs. (3) and (5)].
The kr values for KZS and BGS are 36.4 and 39.5 N/m,
respectively. The slightly stronger temperature dependence
for KZS with respect to BGS (Fig. 7) can be explained by
an increased Sn VDOS integrated area for the former below
approximately 65 cm−1 [Fig. 8(a)].

In Fig. 8, we plot the quantities D(ν̄)/ν̄ [panel (b)] and
D(ν̄)/ν̄2 [panel (c)] as a function of frequency. The modes
below 90 cm−1 represent 85% of the integrated area of D(ν̄)/ν̄2

for KZS and 84% for BGS, while they contribute only 63%
and 62%, respectively, to the integrated area of D(ν̄)/ν̄ in
the same range. These results indicate that low-frequency
vibrations dominate the high-temperature behavior of the Sn
msd [Eq. (3)], while the full spectrum contributes to the
zero-point motion [Eq. (4)]. Not surprisingly, the shift of the
55 cm−1 Raman band in KZS (Fig. 3, Table I) by ∼4 cm−1 in
BGS not only that is reflected in the Sn VDOS of the respective
compounds [Fig. 8(a)], but it leads to a noticeable difference
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Vibrational spectroscopy of proteins, enzymes and biomimic model porphyrins and cubanes
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initial and final scans revealed no differences, confirming the
absence of measurable radiation damage.
We have previously reported both the measured excitation

probability for polycrystalline Fe(TPP)(NO)28 and total Fe
VDOS D(νj) derived from the measured NRVS signal for both
the polycrystalline sample and the oriented array of Fe(TPP)-
(NO) crystals.37 The compounds shown in Figure 2 share the
basic Fe porphyrin core (Figure 1) but differ in the axial ligand
(NO, Cl-, or no axial ligand), Fe oxidation state, and peripheral
substituents on the porphyrin. Clearly, these factors lead to
significant variations in mode structure, but inspection of Figure
2 reveals some common features and allows tentative identifica-
tion of some modes.
In particular, all five ferrous nitrosyl porphyrins (Figure 2

c-g) have an Fe mode in the 520-540 cm-1 range. In contrast,
neither the four-coordinate reduced complex Fe(OEP), nor the
five-coordinate ferric complex Fe(OEP)(Cl) shows features
above 400 cm-1. This suggests a significant motion of the FeNO
fragment for modes observed at 521 cm-1 in Fe(OEP)(NO),
533 cm-1 in Fe(DPIXDME)(NO), 526 cm-1 in Fe(MPIXDME)-
(NO), and 528 cm-1 in Fe(PPIXDME)(NO), consistent with
our previous identification of the mode at 539 cm-1 in Fe(TPP)-
(NO)28,37 with Fe-NO stretching. On the other hand, the mode

composition factors determined from the spectral areas (eFe
2 )

0.33 for Fe(OEP)(NO), eFe
2 ) 0.27 for Fe(DPIXDME)(NO),

eFe
2 ) 0.24 for Fe(MPIXDME)(NO), eFe

2 ) 0.23 for Fe-
(PPIXDME)(NO), and eFe

2 ) 0.30 for Fe(TPP)(NO)) vary
significantly, with the extreme of the range approaching the
value eFe

2 ) 0.34 expected for a two-body 57Fe-NO oscillator.
The value reported here for Fe(TPP)(NO), based on fitting a
Voigt function to the 540 cm peak, is slightly lower than the
value we previously reported based on a Lorentzian fit to the
same data.28
Raman investigations of ferrous nitrosyl porphyrins in solu-

tion have assigned Fe-NO frequencies in the range 514-530
cm-1.134-137 In particular, the Fe-NO stretching frequency is
identified at 527 cm-1 for Fe(PPIX)(NO) encapsulated in cholate
micelles in aqueous solution137 and ranges from 524 to 527 cm-1

for Fe(TPP)(NO) in various solvents.134,136 Fe-NO frequencies
were also reported at 527 cm-1 for both Fe(TPP)(NO) and Fe-
(OEP)(NO) in pyridine,135 although these were originally
believed to be six-coordinate complexes with pyridine binding
trans to NO. These observations essentially support our Fe-
NO assignment, but reported Fe-NO frequencies in solution
at room temperature differ by up to 13 cm-1 from the
frequencies we measured in the solid state at low temperatures.
In an attempt to clarify this difference, we recorded Raman

spectra on Fe(TPP)(NO) powders (Figure 3). To minimize
possible photochemical artifacts, the sample was sealed in a
rapidly spinning NMR tube. With sufficiently restricted laser
intensity, a band is apparent at 547 cm-1. Increasing the laser
power by a factor of 100 resulted in reduction of the relative
intensity of this band (Figure 3), accompanied by a shift of the
high frequency ν4 marker band (not shown) from 1369 to 1361
cm-1, suggestive of NO photolysis. The difference between this
547 cm-1 Raman frequency and the 540 cm-1 frequency we
observe in the NRVS spectra of the low temperature powder is
larger than the experimental uncertainty but may be partly
attributed to the 1.4 cm-1 57Fe/56Fe frequency shift expected28
between the 57Fe-enriched NRVS and natural isotopic abundance
Raman samples for a mode with eFe

2 ) 0.30.

(134) Choi, I.-K.; Liu, Y.; Feng, D.; Paeng, K.-J.; Ryan, M. D. Inorg. Chem.
1991, 30, 1832-1839.

(135) Lipscomb, L. A.; Lee, B. S.; Yu, N. T. Inorg. Chem. 1993, 32, 281-286.
(136) Vogel, K. M.; Kozlowski, P. M.; Zgierski, M. Z.; Spiro, T. G. J. Am.

Chem. Soc. 1999, 121, 9915-9921.

Figure 2. Measured 57Fe excitation probabilities for a series of iron
porphyrins. All nitrosyl complexes have an Fe-NO stretch/bend mode in
the 520-540 cm-1 region. Comparison among the nitrosyl complexes (c-
g) reveals that peripheral groups strongly influence the vibrational frequen-
cies and amplitudes of the central Fe. Sample temperatures were 34 K for
Fe(OEP), 30 K for Fe(OEP)(NO), 80 K for Fe(TPP)(NO), 35 K for Fe-
(DPIXDME)(NO), 34 K for Fe(PPIXDME)(NO), and 64 K for Fe-
(MPIXDME)(NO). The Fe(OEP)(Cl) spectrum is an average over multiple
scans with an estimated average temperature of 87 K. Error bars reflect
Poisson statistics.

Figure 3. Raman spectra of Fe(TPP)(NO) powders, showing elimination
of the 547 cm-1 peak with increasing laser flux. Scattering from powder in
a spinning NMR tube was excited at 413.1 nm, using laser powers of 0.1
and 10 mW.

A R T I C L E S Leu et al.

4216 J. AM. CHEM. SOC. 9 VOL. 126, NO. 13, 2004

 OEP: octaethylporphyrin; 

TPP: Tetraphenylporphyrin

DPIXDME, deuteroporphyrin IX dimethyl ester 

PPIXDME, protoporphyrin IX dimethyl ester 

MPIXDME, mesoporphyrin IX dimethyl ester
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46 elements have Mössbauer transitions. Why do we use only a few?



The Mössbauer isotopes observed with 
 synchrotron radiation (1985-2014) 

Isotope   Energy (eV)     Half-life (ns)    ΔE (neV)   Tabulated E (eV)          

181Ta 6215.5      9800.  0.067     6238                                     
169Tm 8401.3 4. 114.0         8409.9                                        
83Kr 9403.5 147. 3.1         9400                                              
57Fe 14412.5 97.8 4.67      14413                                           
151Eu 21541.4 9.7 47.0        21532                                         
149Sm 22496. 7.1 64.1        22490                                          
119Sn 23879.4 17.8 25.7        23870                                       
161Dy 25651.4 28.2 16.2        25655                            
129I 27770. 16.8 27.2        27800                                            
40K 29834. 4.25 107.0        29560                               
125Te              35460  1.48 308.0        35491.9                
121Sb 37129. 4.53 100.0        37133.                            
129Xe 39581.3 1.465 311.2        39578.                        
61Ni 67419. 5.1 89.0        67400                                  
73Ge 68752 1.86           245.      68752                          
176Hf 88349. 1.43 319.4        83000                            
176Hf 88349. 1.43 319.4        83000                            
99Ru 89571. 28.8 15.8        89651.8                                       
67Zn 93300. 9200. 0.049                                



Why limited number of isotopes ?
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• With Fe (3d-element), Sn, (semi-metal), Eu and Dy (Rare earth), and  Kr (Noble element) 
a diverse scientific program has already been created. 

Absorption cross-section, nuclear life time, and resonance energy must be suitable for a 
General User program with wide applicability

• Sb, Te, and Ge can be added in the future, if new resources, and undulators become 
available..
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Thank you ....


