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A Very Abbreviated Introduction  
to Powder Diffraction 

Brian H. Toby 

Outline 

!  Diffraction properties of atoms with x-rays and neutrons 
!  Diffraction from single-crystals vs. powders 
!  Why do we use powder diffraction? 
!  Materials effects in powder diffraction 
!  Instruments for powder diffraction collection 
!  Crystallographic analysis of powder diffraction data 
!  Appendices: 

–  More on peak shapes 
–  More on crystallography 
–  Where to go for more information 
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Coherent Atomic Scattering Power (diffraction) 

!  X-rays: The scattering power (form 
factor, fi) of an atom depends on the 
number of electrons in the atom and 
Q (Q∝sinθ/λ) 

–  X-ray scattering changes near 
absorption edges 

!  Neutrons: The scattering power 
(scattering length, bi) of an atom 
depends on the isotope and is 
independent of Q 
– A few isotopes scatter with opposite 

phase to most, for these we write b (f) 
as negative 

– Some isotopes atoms have neutron 
resonances (similar to x-rays) 

– Magnetic scattering is from electrons; 
fM(Q) similar to x-rays 
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Q or sinθ/λ, Å-1 

Structure factors:     Fhkl = nΣ fi exp[2πi(hxi + kyi + lzi)] exp(-UiQ2/2) 

Comparison of Neutron and X-ray Atomic 
Scattering Powers 
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Neutrons and x-rays 

“see” atoms 

differently 
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Incoherent and inelastic scattering 

With%neutrons,%some%type%of%atoms%have%large%incoherent%cross%sec6ons%(phase%is%lost%

during%the%sca9ering).%%

Hydrogen%(not%deuterium)%is%the%poster%child%for%this:%it%has%a%huge%incoherent%

sca9ering%cross>sec6on%(~80%barns)%that%tends%to%overpower%coherent%sca9ering%

(typically%<1%barns%for%most%atoms).%Samples%with%more%than%a%few%atom%%%(not%mass%

%!)%will%have%a%significant%background.%

%
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Incoherent and inelastic scattering create background. This is usually 
significant only with neutrons and most commonly for powder (less 
so single crystal) diffraction 

 
        H 

Incoherent            Coherent 

D D 
Incoherent            Coherent 

Hydrogen Deuterium 
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Resonant scattering: scattering at a resonance edge 

causes atoms to “light up” 

X"rays'
The%x>ray%form%factor%has%in%fact%three%

components:%

!  f(Q)'+'f’(λ)'+'i'f”(λ)'
–  f%is%determined%by%Q%and%the%

number%of%electrons%in%an%atom%

and%is%independent%of%wavelength%

–  f’%and%f”%are%small%except%at%

wavelengths%very%close%to%an%

atom’s%absorp6on%edge%

At%wavelengths%close%to%an%edge%

absorp6on%becomes%high;%

fluorescence%occurs%above%the%edge.%

Neutrons'
Sca9ering%lengths%for%most%atoms%are%

wavelength>independent.%%

%

A%similar%“resonant%sca9ering”%type%

experiment%can%some6mes%be%performed%

comparing%samples%containing%different%

isotopes%($$%to%$$$$$)%

%

A%few%isotopes%(mostly%lanthanides%and%

ac6nides)%have%adsorp6on%edges%at%

accessible%wavelengths.%%

!  This%is%usually%a%curse%rather%than%a%

blessing:%it%makes%TOF%neutron%

sca9ering%had%to%analyze%
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Experiments are sometimes performed at wavelengths close to absorption edges to enhance 
the scattering from particular elements 

Single-crystal vs. Powder Diffraction 
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Single crystal diffraction: the movie 
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Video from Diamond synchrotron (U.K.) 

Bragg scattering in 

single crystals 

!  Reflec6on%posi6ons%(Bragg’s%law)%

Note that d above is a reciprocal space quantity (actually d = 1/d*), |d*| = |ha* + kb* + lc*|,  

better: λ = 4 π sinθ / Q 
!  Reflec6on%intensi6es%are%related%to%the%square%of%“structure%factor”,%Fhkl 

Fhkl ∝ Σ fj exp[2πi(hxj + kyj + lzj)] exp(-UjQ2/2) sum over all atoms in the crystal (or unit cell).  
xj, yj, zj: position of atom in unit cell 
Ui: atom displacements 
fj (or bj): scattering power of atom 

%
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2θ 
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Diffraction from random polycrystalline material 
 

In%a%sufficiently%large,%randomly%

oriented%polycrystalline%sample%

(e.g.%a%powder)%contains%a%very%

large%number%of%crystallites.%%

%

A%beam%impinging%on%the%sample%

will%find%a%representa6ve%number%of%

crystallites%in%the%right%orienta6on%

for%diffrac6on%

%

Diffrac6on%occurs%only%at%specific%

angles,%those%where%Bragg’s%Law%is%

sa6sfied.%
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Incident 
Beam 

Diffracted 
Beam 

Bragg cones in powder diffraction 
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Beam 

All%reflec6ons%occurring%at%a%single%2θ%
value%(as%well%as%reflec6ons%at%nearly%

the%same%value)%are%superimposed%

and%only%the%sum%of%their%intensi6es%

can%be%measured.%For%this%reason%a%

powder%diffrac6on%pa9ern%gives%less%

informa6on%than%a%single%crystal%

measurement%

Since%there%is%a%random%distribu6on%of%

crystals%then%diffrac6on%occurs%in%all%

direc6ons%for%each%Bragg%angle,%2θ,%
thus%powder%diffrac6on%arises%in%cones%
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Measuring powder diffraction 
!  Angular dispersion: a single detector is moved 

over a range of 2θ angles. 
–  Sample irradiated with monochromatic radiation 
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Why do we do powder diffraction? 

!  Learn where the atoms are (single crystals, when available and 
appropriate, are better for this.) 

!  Determine the chemical phase(s) in a sample 

!  Measure lattice constants 

!  Quantify the components of a mixture 

!  Learn about physical specimen characteristics such as stress, preferred 
orientation or crystallite sizes 

!  Occupancies of elements amongst crystallographic sites (usually needs 
neutrons) 
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A Conceptual Basis for Understanding 
Materials Effects in Powder Diffraction 
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Materials effects on Powder Diffraction 

For real materials, the powder diffraction pattern shows not only the crystal 
structure, but also shows microstructure details: 

!  How the crystallites are oriented, if not random (texture) 
!  The average sizes of the crystallites (peak broadening) 
!  Residual stress (peak broadening) 

Less commonly: 
!  Stacking faults 
!  Modulated structures 
!  Extinction 
!  Compositional inhomogeneity 
!  Differences in ordering by atom type 
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Texture (non-random arrangement) affects 

reflection intensities 

!  Crystallite%orienta6on%will%increase%the%intensity%of%reflec6ons%in%orienta6ons%that%

are%over>represented%and%will%decrease%other%reflec6ons%

!  If%we%have%an%overabundance%of%crystals%aligned%in%along%the%(100)%face,%the%

reflec6ons%in%that%direc6on%will%have%enhanced%intensity%%
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(100) (110) (111) (200) (210) (211) (220) 
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The Fourier transform (FT) from an infinite array of regularly spaced 
objects is an array of delta functions.  
 

The FT from a finite length array is broadened; all maxima are broadened 
equally in Q (or d).  

Crystallite (size) broadening 
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a* 

b* 

a* 

b* 

Q 

Reciprocal Space 

Microstrain (residual stress) broadening 

Strain%&%stress%changes%the%ladce%constants%of%a%material%

!  In%a%material%with%residual%stress%%

–  some%crystallites%are%under%tension,%%

–  others%are%compressed%

Shie%of%peak%≈%Q,%broadening%increases%linearly%with%Q%(∆Q/Q or ∆d/d constant)%
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Reciprocal Space a* 

b* 

Q 

a* 

b* 
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Comparison of microstrain and crystallite broadening 

Crystallite'broadening'
!  ΔQ ≈�Δd* = constant 

Microstrain'broadening'
!  ΔQ/Q ≈�Δd*/d* = constant 
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Types of Powder Diffraction 
Measurements 
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Area Detection 
!  With an area detector, a complete powder diffraction pattern can be 

collected in a fraction of a second. 
–  Fast 
–  Medium resolution 
–  High background 
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Highest resolution requires high collimation. Optimal is a crystal 
analyzer between the sample and detector: 11-BM Diffractometer 
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beam 
Huber 480 rotation stage: 
high precision (~0.35arcsec)  
high accuracy (~1arcsec)  
slew or step scans 

12 analyzer array 
Si(111) crystals 
LaCl3 scintillator detectors 
2° apart in 2Θ.  

Mitsubishi robot 
custom �fingers� 

Complete'pa@ern'is'
measured'in'<1'hour'
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11-BM Robotic Data Collection 

25 25 
(Matt Suchomel: http://youtu.be/sowojskY7c4 or search APS 11-BM on YouTube) 

Reactor'Source'Neutron'DiffracHon'
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Powder Instruments: Constant Wavelength 

beamline HB2a at HFIR 
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beamline BT1  at NIST (NCNR) 

SpallaHon'Sources'

Each pulse of 
neutrons contains 
a broad spectrum 
of neutron 
energies 
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A pulse of protons impacting the target produces a 
shower of fast neutrons that are slowed down in a 
moderator. A new pulse is created ~30 times/sec 
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Time'of'Flight'DiffracHon'

Protons into 
target 

Neutrons 
to sample 

Time%of%flight%diffrac6on%uses%the%fact%that%neutrons%with%different%energies%(veloci6es)%have%

different%wavelengths, λ=h/mv (de%Broglies%rela6onship)%

Detector 

Detector 

Time-of-flight (2dsinΘ=λ) 

2Θ (
fixed  

sample!

detector!

λ varies!

(Pulsed sources: e.g. SNS)!
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Neutron Powder Diffraction with Spallation 
Source 

!  Spallation source 
provides a broad 
band of wavelengths 
in sharp pulses 
–  TOF detection 

allows 
measurement of 
intensity versus 
wavelength 

–  Each detector 
provides a full 
diffraction pattern 

–  Data collection 
times: 

•  Seconds to 
hours 
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NPDF instrument at LANSCE (Los Alamos) 

3rd Generation TOF Instruments: High 
Intensity and High Resolution 

SNS:'POWGEN["3]'

GEM'(ISIS'TS"I)' Super'HRPD'(JSNS)'



ANL/ORNL NX School: Intro to Powder Diffraction 

Brian H. Toby 17 

Fitting of Powder Diffraction Data 
(Rietveld Analysis) 
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Why did Crystallography Revolutionize Science? 

1.  Crystallography was the first scientific technique that provided direct 
information about molecular structure 
–  Early work was intuitive: structures assigned based on patterns and 

symmetry (some results predate X-rays!) 

2.  X-ray and neutron diffraction observations can be modeled very 
accurately directly when the molecular structure is known 

3.  Diffraction can provide a very large number of independent observations 
–  probability of finding an incorrect structure model that is both plausible and is 

in good agreement with the diffraction observations is very small (but not 
zero!) 

4.  Computer-assisted least-squares optimization allows structural models 
to be improved, limited only by the quality of the data 

5.  Statistical and brute-force techniques overcomes the incomplete nature 
of diffraction observations (direct methods vs. �the phase problem�). 

100+ years later, no other technique offers as much  
power for learning about molecular structure! 
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Fitting crystallographic data -- what is it all about? 

!  We perform an experiment: 
–  Get lots of intensity and position measurements in a diffraction 

measurement: what do they tell us? 

!  Obtain an unit cell that fits the diffraction positions (indexing) 
!  �Solve the structure�: determine an approximate model to match the 

intensities 
!  Add/modify the structure for completeness & chemical sense 
!  Optimize the structure (model) to obtain the best fit to the observed data 

–  This is usually done with Gauss-Newton least-squares fitting 
–  Parameters to be fit are structural and may account for other experimental 

effects 

!  Least Squares gives us a Hessian matrix; inverse is variance-covariance 
matrix which gives uncertainties in the parameters 
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Crystallography from powder diffraction: before 
Rietveld 

How did crystallographers use powder diffraction data? 
 
!  Avoided powder diffraction 
!  Manually integrate intensities 

–  discard peaks with overlapped reflections 
Or  
–  rewrote single-crystal software to refine using sums of overlapped reflections 

 
Simulation of powder diffraction data was commonly done 
!  Qualitative reasoning: similarities in patterns implied similar structures 
!  Visual comparison between computed and observed structure verifies 

approximate model 
!  Fits, where accurate (& precise) models were rarely obtained 

Error propagation was difficult to do correctly (but not impossible)  
 

36 



ANL/ORNL NX School: Intro to Powder Diffraction 

Brian H. Toby 19 

Hugo Rietveld�s technique 
 !  Hugo Rietveld realized that if a pattern could be modeled, the fit between 

a computed pattern and observed data could be optimized. 

–  Similar to single-crystal diffraction, except that now �experiment dependent 
parameters� must now be fit as well. 

•  Background 

•  Peak broadening 
•  Lattice constants 

–  Must have approximate model to start 
–  Fewer data are available (usually)  

37 

Calculation of Powder Diffraction: Graphical 
Example 
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hkl mult d-space Fobs phase
6,5,1 48 1.548 0.29 0
7,3,2 48 1.548 1.709 180
8,0,0 6 1.5236 29.45 0
7,4,1 48 1.5004 2.327 0
8,2,0 24 1.4781 3.703 0
6,5,3 48 1.4569 1.27 0
6,6,0 12 1.4365 0.242 180
8,2,2 24 1.4365 2.086 0
8,3,1 48 1.417 0.22 180
7,4,3 48 1.417 1.827 180

1)   Generate reflection list 

2)   Compute Fhkl from 
model 

 

 

3) Peak heights are 
generated from |Fhkl|
2*multiplicity 

4) Convolute peaks & add 
background 

5) Optimize model, peak 
widths, etc. to improve 
fit 

Fhkl phase D-space mult hkl 
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Hugo Rietveld in the Petten Reactor (~1987) 
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Single crystal fitting 

Data: yi = Fhkl (obs) 

 

 

 

Model: Y(xi,p) = Fhkl (calc) 

 

 

 

 

 

Parameters (p1, p2, p3… pm): 
atomic coordinates, 
displacement (T) factors 

yi = observed powder diffraction 
intensities 

Y(xi,p) = computed diffraction 
intensities from (Fhkl (calc), 
background model, profile 
convolution, preferred 
orientation correction… 

 
+ lattice parameters  
+ �experimental� parameters for 

peak shapes, background… 
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Powder data fitting 

Minimize equation Σ wi[yi - Y(xi,p)]2 where 
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Hugo Rietveld�s other breakthrough 

!  Based on intensities from the model, estimates for Fhkl can be made, 
even when reflections are completely overlapped: 
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1 
Location 1: 
20% to A 
40% to B 
40% to C 

2 

Location 2: 
100% to C 

measured 

simulated 

Rietveld Applications 

!  Crystallographic structure determination 

!  Quantify amounts of crystalline phases 

–  (Amorphous content possible indirectly) 

!  Engineering properties 

–  Residual stress/Crystallite sizes 

–  Preferred orientation 

!  Lattice constant determination 
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What sort of data are needed for Rietveld Analysis? 

!  Must be possible to fit peak shapes 
!  Q range and resolution demands dictated by structural complexity 
!  Data from lab instruments should be used with caution for structure 

determination 
!  Neutron data are usually necessary for occupancy determination 
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Disadvantage of Rietveld:  
Many non-structural parameters need to be fit 
!  Background 

–  fixed 
–  functions 

!  Peak shape 
–  �fundamental parameters� 

–  functions 
!  Lattice constants 

–  zero correction 
–  flat plate terms 

!  Scaling 
–  Phase fractions 

!  Structural parameters 
–  atom positions 
–  occupancies 
–  displacement parameters 

!  Preferential Orientation 
!  Absorption 
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Powder diffraction offers fewer observations and worse 
peak-to-background than single crystal diffraction 
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Limitations of Rietveld 

!  Rietveld%can%only%discern%parameters%that%have%effects%on%the%powder%diffrac6on%

pa9ern%

–  Some%things%cannot%ever%be%determined%from%powder%diffrac6on:%

•  Absolute%configura6on%
•  “in%symmetry%plane”%magne6c%moment%direc6ons%

!  If%two%parameters%have%approximately%the%same%effect%on%the%powder%diffrac6on%

pa9ern,%they%correlate%and%they%cannot%be%differen6ated%(e.g.%occupancies%&%

displacement%parameters)%
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