X-ray Detectors

Antonino Miceli (amiceli@aps.anl.gov)
June 15, 2014
NX School
Outline

- Counting vs. integrating
- Indirect versus direct detection
 - Scintillation Counters
 - Area detectors using scintillators
 - Large area for diffraction (low spatial resolution, \(\sim 100\ \mu\text{m}\))
 - Small area for imaging (high spatial resolution, \(\sim 1\ \mu\text{m}\))
 - Ion Chambers
 - Pixel array detectors (e.g., Pilatus)
 - Energy resolving detectors (i.e., spectroscopic detectors)
 - Measuring the energy of photons
 - Silicon diodes
 - Superconducting detectors
How do you detect x-rays?

- Need to convert to something that you can measure
 - **Electrons**... \(Q = CV \)
 - Indirectly (x-rays \(\rightarrow \) optical photons \(\rightarrow \) electrons)
 - Scintillators + Optics + photomultiplier/CCDs
 - Directly (x-rays \(\rightarrow \) electrons)
 - Ion Chambers, Pixel Array detectors (e.g., Pilatus)
 - **Temperature**
 - \(\Delta T = E_\gamma / (\text{Heat Capacity}) \)
 - Superconducting calorimeters
Counting versus Integrating

Counting

Integrating

threshold

counter

ADC

dexposure current
Counting versus Integrating

- **Counting**
 - Single photon counting
 - Scintillator counting detectors (e.g., Cyberstar)
 - Pilatus (counting pixel array detectors)
 - Energy-resolving Detectors (Silicon or Germanium diode detectors)
 - Deadtime limitations!!!
 - Dark current rejected with a sufficiently high threshold.

- **Integrating**
 - Signal accumulates
 - CCDs, Ion chamber
 - No deadtime limitations
 - Read noise and dark current are issues to consider
Shaping time - counting detectors

- Response time of detector
- Gain is usually associated with longer shaping time.
- Longer shaping time improved the energy resolution
 - But reduced the total count rate throughput.
Deadtime limitations for counting detectors

Analog pulses

[Diagram showing the pulse shapes for different voltages (Vf) with labels: Vf = -0.15 V, Vf = -0.20 V, Vf = -0.30 V]

Discriminator output
Deadtime

- As you increase the input count rate (ICR), does the output count rate (OCR) follow linearly?
 - The longer the shaping time, the lower the ICR before deviating from linearity.

When to worry?
- Rate > $1 / (2 \times \tau)$
Deadtime for synchrotron (pulsed source)

- Depends on the fill pattern and speed of the detector

324 or 24 bunch mode

Hybrid Singlet

- 1.59 µs

Fast detector (shorter shaping time)

What fill pattern pattern will you be using???

- Hybrid singlet and 324 bunch mode each 2 weeks a run.
- Hybrid singlet useful for special timing experiments.
 - Not great for high count rate experiments.
Indirectly (x-rays \rightarrow optical photons \rightarrow electrons)

Scintillation Counters

NaI(Tl) is the most common scintillator and gives an energy resolution ($\Delta E/E$) of about 35% - 40%. Organic (plastic) scintillators are used for higher speed applications but energy resolution is sacrificed.
Indirectly (x-rays → optical photons → electrons)
Charge Coupled Devices (CCDs)

- Optical detectors are everywhere in our lives... camera phones, etc.

CCDs are integrating detectors. No dead-time issues, but read noise and dark current
Indirectly (x-rays \rightarrow optical photons \rightarrow electrons)
Charge Coupled Devices (CCDs) + x-ray scintillators
Indirectly (x-rays \rightarrow optical photons \rightarrow electrons)
Charge Coupled Devices (CCDs) + x-ray scintillators

- With demagnification for large area detectors
 - Diffraction (< 30 keV)

<table>
<thead>
<tr>
<th>Fiber Optic Taper (Optical photons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 – 3 De-Magnification)</td>
</tr>
</tbody>
</table>

- Spatial resolution ~ 100 μm
- No deadtime correction
- Calibrations
 - Dark Subtraction
 - Spatial Distortion
 - Spatial gain variations

- Scintillator (e.g., Gd$_2$O$_2$S)
Indirectly (x-rays \rightarrow optical photons \rightarrow electrons) Amorphous Silicon Flat Panel + x-ray scintillators

- Used at higher energies (> 50 keV)
- Thin film transistor (TFT) technology (a-Si photo-sensors) allows large area detectors
 - Cheaper than CCDs, but more noise!
Indirectly (x-rays → optical photons → electrons)
Charge Coupled Devices (CCDs) + x-ray scintillators

- Magnification → Microscopy
 - μm-scale spatial resolution with x-rays
Directly (x-rays \rightarrow electrons)

Ion Chambers

- Integrating detectors... ion current \sim x-ray flux
- Used to monitor beam intensity
- Used to normalize data to the beam intensity ("I_0")
- Also used for transmission XAS measurements.
Directly (x-rays → electrons)
Pixel Array Detectors (e.g., Pilatus)

Diode Detection Layer
- Fully depleted, high resistivity
- Direct x-ray conversion in Si

Connecting Bumps
- Solder, 1 per pixel

CMOS Layer
- Signal processing
- Signal storage & output

Sol Gruner et al
Directly (x-rays ➔ electrons)
Pixel Array Detectors (e.g., Pilatus)

Diode Layer (Sensor)

Photodiode layer ➔ high resistivity silicon
(3,000–10,000 ohm-cm).
Thick detector ➔ effective up to 20 keV x-rays.

Diode Cross Section

Sol Gruner et al
Directly (x-rays \rightarrow electrons)
Pixel Array Detectors (e.g., Pilatus)

CMOS readout chip (i.e., Application Specific Integrated circuit, ASIC)

Pilatus is a *digital* PAD (photon counting)

PSI/SLS Detector Group
Directly (x-rays \rightarrow electrons)

Integrating Pixel Array Detectors

- You can design the CMOS readout in anyway you like.
 - e.g., with an integrating front end.

Figure 1: Simplified pixel schematic. The hybridized detector will have the bump-bonding connections between the detector diode and CMOS electronics at the node labeled "IN". All pixels have a switched capacitor charge injection circuit for testing pixel functionality and secondary verification of the calibrated gain profile.

Figure 1

Simplified pixel schematic that differentiates the front-end stage and the sampling stage. The reversed biased diode represents the high-resitivity detector layer.

CSPAD at LCLS

Gruner et al.,
Directly (x-rays \rightarrow electrons)

Pixel Array Detectors (e.g., Pilatus)

- Each pixel is a single photon counting detectors!
- Thus has count rate limitations

- 487 x 195 pixels (172 μm)
- 8.3 cm x 3.3 cm Area
- Count Rate \sim 1 MHz/pixel
- 20-bit counter/pixel
- 5ms readout (Frame Rate = 200 Hz !!)
- 320 micron thick Silicon sensor
- Gateable & electronic shutter

Lower Level Discriminator only

Brönnimann et al. @ PSI in Switzerland (Dectris)
Directly (x-rays \rightarrow electrons)

Pixel Array Detectors - Pilatus Threshold

- Where to set the threshold?
- Is there an “optimal” threshold?
Pilatus Threshold - pixel charge sharing

X-rays

500 μm

X-ray absorption and conversion to photocurrent

Pixels
If threshold is too high, then you under count events (effectively a small pixel).
If threshold is too low, then you double count events.
“Optimal” threshold is 50% of beam energy.
Unless you need to reject fluorescent background.
Energy Resolving Detectors

(aka Energy Dispersive Detectors)
(aka Spectroscopic Detectors)
(aka XRF detector)
Fluorescence (XRF) Measures...

- Abundance (ppm level) and spatial correlations of heavy elements

Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust (Flynn et al. 2006)

Solid-phases and desorption processes of arsenic within Bangladesh sediments (Polizzotto et al. 2006)

A link between copper and dental caries in human teeth identified by X-ray fluorescence elemental mapping (Harris et al. 2008)

Levels of Zinc, Selenium, Calcium, and Iron in Benign Breast Tissue and Risk of Subsequent Breast Cancer (Cui et al. 2007)
Spectroscopic Detectors

Diode

(Silicon or Germanium)

X-ray

X-Ray Energy \sim # of e-h pair

(3.67 eV are need to produce 1 e-h pair for Silicon!!)
In reality, we use *Silicon Drift Diodes* ...
Spectroscopic Detectors – Signal Chain

x-ray → diode → Preamp → Shaping Amp → Digitizer

Pulse Height Analyzer
Multi-Channel Analyzer
Histogram

Energy ~ P.H. ~ channel #

Pulse Height

1 V

3 µs
Spectroscopic Detectors – Pulses to Histograms

Fe-55 Source

Pulse Height

3 µs

1 V

MCA = histogram (e.g., 2048 channels)

SCA = Single Channels (i.e., ROIs)
4-element Silicon Drift Diode

Peak-to-Background Important!!!

- Usually signal is buried here!
- Recombination, incomplete charge capture, etc.

Best Energy Resolution ~ 150eV
Trade-off between count rate and energy resolution!!!

- Shorter shaping time (length of pulse) means more count rate, but less energy resolution.
 - Depends on your experiment.

![Resolution vs. Peaking Time for Amptek Si-PIN and SDD Detectors](image)
Beyond Silicon ... Superconducting sensors

Thermal sensors

- energy (calorimeter) or power (bolometer)

```
<table>
<thead>
<tr>
<th>C</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Capacity</td>
<td>Thermal Conductance</td>
</tr>
</tbody>
</table>
```

- Transition-Edge Sensor (TES) = thin-film biased in superconducting-normal transition
- Use strong dR/dT in transition as thermometer

- molybdenum-copper: robust and temperature stable
 - $T_c \sim 0.92$ K normal

Kent Irvin et al, NIST-Boulder

1/e response time = 100 μs - 1 ms
Transition Edge Sensors

High resolution, low count rates \rightarrow Need to make arrays

- Optimized TES: energy resolution = 2.4 eV FWHM at 5.9 keV
- NSLS U7A: soft-X-ray (200–800 eV) spectroscopy beamline.

Note:
- useful device:
 - integrated into close-packed array
 - 1.5 μm Bi absorber \rightarrow QE ~ 55% at 5.9 keV
 - 260 μs decay time

Best resolution of any energy-dispersive detector at 6 keV.
Microwave Kinetic Inductance Detectors

‘Microwave’ refers to the readout frequency!
Why use Low Temperature Superconductors?

Energy Gap
- Silicon: 1.10000 eV
- Aluminum: 0.00018 eV

Energy resolution:
\[R = \frac{1}{2.355} \sqrt{\frac{\eta \hbar \nu}{F \Delta}} \]
Microwave Kinetic Inductance Detectors

- Excess quasiparticles or ΔT generated by x-ray causes an inductance increase (i.e., “kinetic inductance”)
 - Measure inductance change in a LC resonating circuit

Multiplexing: Lithographically vary geometric inductance/resonant frequency...

Observables...

- ΔL_s
- ΔR_s
- $\delta \theta$
- δP
Cryogenic Detector R&D at APS

- The goal is energy resolution < 5eV with good count rate capabilities (> 100kcps)
- Three Main Aspects:
 1. **Device Fabrication**
 - Completely in-house with dedicated deposition chamber
 2. **Cryogenics and Device Characterization**
 - Turnkey 100 mK cryostat (cryogen-free)
 3. **Readout electronics**
 - Multi-pixel implementation in progress
Anatomy of a thermal MKID (i.e., calorimeter)

- **Feedline**
- **Capacitor**
- **Inductor**
- **Absorber**
- **Empty Space**

- 0.5 μm thick SiN
- 300 μm
- 0.5 x 300 x 300 μm Tantalum Absorber
- 100 nm WSi₂ resonator
Microfabration Fabrication Process

1. 0.5 µm SiN + 300 µm Silicon wafer
2. Resonator deposition (@ APS)
3. Resonator Lithography (MA-6, CNM)
4. Resonator Etch (Oxford RIE, CNM)
5. Resist strip (1165 remover, CNM)
6. Absorber Lithography (MA-6, CNM)
7. Absorber deposition (@ APS, CNM)
8. Absorber liftoff (1165 remover, CNM)
9. SiN bridge lithography(MA-6, CNM)
10. Backside SiN membrane lithography (MA-6, CNM)
11. Backside SiN etch (March etcher, CNM)
12. Bulk Si etch (KOH, CNM)
13. Backside protective Al depositions (@ APS)
14. SiN bridge etch (March etcher, CNM)
15. Al wet etch (CNM)
16. Resist strip (1165 remover, CNM)
Conclusions

- Take a moment to analyze what kind of detector you are using!
 - Counting or Integrating?
 - Counting: Deadtime limitations (what’s the fill pattern during my experiment?)
 - Integrating: Dark Subtraction?
 - Pilatus detector (counting pixel array detectors)
 - What threshold should use?
 - Energy resolving detectors?
 - What shaping time to use?
 - Speed versus resolution
 - Interested in detector physics? Come talk to me!
 - Looking for some young minds to develop new detectors!