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Incoherent and Coherent Scattering
• Origin – incoherent scattering arises when there is a random variability in the 

scattering lengths of atoms in your sample – can arise from the presence of 
different isotopes or from isotopes with non-zero nuclear spin combined with 
variation in the relative orientation of the neutron spin with the nuclear spin of 
the scattering center

• Coherent scattering – gives information on spatial correlations and collective
motion.
– Elastic: Where are the atoms? What are the shape of objects? 
– Inelastic: What is the excitation spectrum in crystalline materials – e.g. phonons? 

• Incoherent scattering – gives information on single-particles.
– Elastic: Debye-Waller factor, # H-atoms in sample, Elastic Incoherent Structure 

Factor – geometry of diffusive motion (continuous, jump, rotations) 
– Inelastic:  diffusive dynamics, diffusion coefficients.

• Good basic discussion: 
– “Methods of x-ray and neutron scattering in polymer science”, R.-J. Roe, Oxford 

University Press. (available)
– “Theory of Thermal Neutron Scattering”, W. Marshall and S. W. Lovesey, Oxford 

University Press (1971). (out of print)
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Neutron Properties – H is our friend!

• Isotopic sensitivity of H
– H has a large incoherent neutron scattering cross-section
– H and D have opposite signed scattering lengths
– D has a much smaller cross section

• The signal from samples with H are often dominated by the incoherent scattering from H 

• The Q and ω ranges probed in QENS experiments is well-suited to the “self” part of the 
dynamic structure factor
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Quasi-elastic Neutron Scattering (Why 
Should I Care?)

• Applicable to wide range of science areas
– Biology – water-solvent mediated dynamics
– Chemistry – complex fluids, ionic liquids, porous media, surface 

interactions, water at interfaces, clays
– Materials science – hydrogen storage, fuel cells, polymers, proton 

conductors

• Probes true “diffusive” motions
• Range of analytic function models

• Useful for systematic comparisons

• Close ties to theory – particularly
Molecular Dynamics simulations

• Complementary
• Light spectroscopy, NMR, 

dielectric relaxation
• Unique – Answers Questions you 

cannot address with other methods

Neutron  AND (QENS OR quasi-elastic OR quasielastic)
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A Neutron Experiment

Measure scattered 
neutrons as a function of 
Q and ω −> S(Q,ω).

ω = 0 −> elastic

ω ≠ 0 −> inelastic

ω near 0 −> quasielastic
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Quasi-Elastic Neutron 
Scattering • Neutron exchanges small amount of energy 

with atoms in the sample
• Harmonic motions look like flat background
• Vibrations are often treated as Inelastic 

Debye-Waller Factor
• Maximum of intensity is always at ω = 0
• Samples the component of motion along Q
• Low-Q – typically less than 5 Å-1

ik

fk
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Experiment Design

• σ is the microscopic cross section (bn/atom) 10-24 cm2/atom
• n is the number density (atom/cm3)
• Σ is the macroscopic cross-section (cm-1)

The transmission, T, depends on sample thickness, t, as:

• Good rule of thumb is T = 0.9

σn=Σ

( )tT Σ−= exp

5 – 15 mmole H-atoms for ≈10 cm2 beam 
(BaSiS, HFBS, CNCS, DCS)
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An Example – Water
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QENS Spectra

(broadened by 
instrument resolution)

Slowest Time is set by the width 
of the instrument resolution

Fastest Time is set by the 
dynamic range of the instrument 
(ωmax)
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Incoherent Intermediate Scattering 
Function, S(Q,ω), and Molecular 
Dynamics Simulations
• Intermediate Scattering Function

– time dependent correlation function
– incoherent scattering –> no pair correlations, self-correlation function
– calculable from atomic coordinates in a Molecular Dynamics Simulation

– Sinc(Q,ω) – the Fourier transform of Iinc(Q,t)
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QENS and Molecular Dynamics 
Simulations

• Same atomic coordinates used in classical MD are all that is needed 
to calculate Iinc(Q,t)

1,3 diphenylpropane 
tethered to the pore 
surface of MCM-41
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2π/Q

The Elastic Incoherent Structure Factor 
(EISF)
• A particle (H-atom) moves out of 

volume defined by 2π/Q in a time 
shorter than set by the reciprocal of 
the instrument sensitivity, dω(meV) 
– gives rise to quasielastic
broadening. 

• The EISF is essentially the 
probability that a particle can be 
found in the same volume of space 
at some subsequent time.

• The ratio of the Elastic Intensity to 
the total Intensity AE

AQ
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QENS and Neutron Scattering 
Instruments

• Probe Diffusive Motions
– Length scales set by Q, 0.1 Å-1 < Q < 3.7 Å-1, 60 Å > d > 1.7 Å.
– Time scales set by the width of instrument energy resolution, typically at least 0.1 meV (fwhm)  

but higher resolution -> longer times/slower motion

• Energy transfers ~ ± 2 meV (or less)
– High resolution requirements emphasizes use of cold neutrons (but long λ limits Q)
– Incident neutron wavelengths typically 4 Å to 12 Å (5.1 meV to 0.6 meV)

• Why a variety of instruments? (Resolutions vary from 1 μeV to100 μeV)
– Terms in the resolution add in quadrature – typically primary spectrometer (before sample), 

secondary spectrometer (after the sample)
– Improvement in each resolution term cost linearly in neutron flux (ideally)
– Optimized instrument has primary and secondary spectrometer contributions approximately 

equal
– Factor of 2 gain in resolution costs at a minimum a factor of 4 in flux
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Role of Instrumentation
• Currently about 25 neutron scattering instruments in the world useful for QNS (6 in the U.S., 

including NSE)
• U.S. instruments – Opportunity is Good- Competition is High

– NIST Center for Neutron Research
• Disc Chopper Spectrometer
• High Flux Backscattering Spectrometer
• Neutron Spin Echo

– Spallation Neutron Source
• BaSiS – near backscattering spectrometer (3 μeV)
• Cold Neutron Chopper Spectrometer (CNCS) (10 – 100 μeV)
• Neutron Spin Echo (t to 400 nsec)

• Trade-offs
– Resolution/count rate
– Flexibility
– Dynamic range
– Neutron λ vs Q

• large λ −> high resolution -> long times/slow motions
• large λ −> limited Q-range, limited length scales
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Small Molecule Diffusion

The High-Resolution Neutron 
Spectrometer Landscape

Cold Neutron Chopper

Neutron Spin Echo

Backscattering
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Restricted Diffusion – Tethered Molecules

Pore Diameter 
(nm)

Coverage 
(molecules/nm2)

1.6 0.85 (saturation)
2.1 1.04 (saturation)

3.0
0.60
0.75

1.61 (saturation)

Samples – typical 0.7 g 

240 K < T < 340 K

Simple Fit – Lorentzian + δ

MCM-41

MCM-41 (2.9 nm pore diameter) 
high DPP coverage

DPP



18 Managed by UT-Battelle
for the U.S. Department of Energy National x-ray/neutron school June 2014

Elastic Scans – Fixed Window Scans

Pore Size DependenceCoverage Dependence

( ) ( ) ( )3exp0 22 uQIQI −=

Onset of diffusive and 
anharmonic motion (TT)

Onset of diffusive 
motion giving rise to 
QENS signal (typically)
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Elastic Scans
Fixed Window Scans

• TT
– No dependence on DPP surface coverage at 

3.0 nm pore diameter (≈ 130 K)
– 196 K for 2.1 nm pore (maximum DPP 

surface coverage) – Deeper potential

• Simulations indicate that at 2.1 nm (2.2 
nm) DPP molecules adopt a 
conformation that has a more uniform 
density throughout the pore volume 

• Large pores have enough surface area 
for DPP to orient near the MCM-41 
surface

1.7 nm

2.2 nm

2.9 nm
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Simple Fit to data (HFBS – NCNR) 30 Å 
diameter pore, 320 K, Q = 1 Å-1

-1

AE

AQ
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EISF – 30 Å DPP sample, saturation

Non-zero asymptote 
implies immobile H-
atoms (on the time 
scale of this 
instrument)

fm

1-fm

Curvature determines Rmax
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Lorentzian Γ(Q)

Non-zero intercept
Implies 
restricted/confined 
diffusion
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Simple Analytical Model – e.g. 
Diffusion in a Sphere

Volino and Dianoux, Mol. Phys. 41, 271-279 (1980).
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Extend to a Sum over Spheres of 
Varying Size (15 H-atoms)
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DPP – 29 Å diameter pores – 370 K 
(BaSiS - SNS) – Beyond the EISF – Fitting 
the Model to the Full Data Set
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RM – How extended is the motion?

• RM decreases with increasing pore diameter! 
(Molecules can interact with surface) 

• RM generally is larger at higher DPP surface 
coverage (Molecules are excluded from 
surface)

• Small pores and high coverage tend to drive 
DPP into the pore center where there is more 
volume available for motion

β-cristobailite

Extended DPP
O – terminal H 
distance 12 Å

Partially folded 
DPP
O – terminal H 
distance 5.9 Å

3.0 nm

Maximal DPP 
coverage
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DM – How fast is the motion?

• DM increases with pore diameter 
while the radius decreases
– Diffusion in the pore volume 

depends on how crowded it is

• DM increases with surface 
coverage in large pores
– More molecules are forced into the 

more open volume of the pore and 
away from the pore surface

3.0 nm

Maximal DPP 
coverage
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Two Instruments – Two Resolutions –
Two Dynamic Ranges – 3.0 nm 320 K

HFBS (1 μeV, ±17.5 μeV) BaSiS (3 μeV, -100 to 300 μeV)

E.J. Kintzel, et al., J. Phys. Chem. C 116, 923-932 (2012).

QENS
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Two Instruments

Dynamics
• Similar activation energies
• Different magnitudes

Geometry – nearly identical –
determined by intensity measurements
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Example 2: Dendrimers – Colloidal 
Polymer – pH responsive

Dendrimers bind to receptors on HIV virus 
preventing infection of T cells. Sharpharpm
C & E News 83, 30 (2005)

“Trojan horse” – folic acid adsorbed by 
cancer cell delivering the anti-cancer drug 
as well 
James R. Baker Jr., Univ. of Michigan Health 
Sciences Press Release
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Molecular Dynamics Simulations
AcidicBasic

SANS Results – Global Size Constant, 
Redistribution of Mass

Samples: 0.05 gm protonated
dendrimer in 1 ml deuterated
solvent
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Methodology
• Determine center-of-mass translational motion with pulsed 

field-gradient spin echo NMR
– Could have been determined directly from QENS measurement but 

this tied down parameter set
• Measure (dendrimer + deuterated solvent) – (deuterated

solvent) -> dendrimer signal
• Vary pH to charge dendrimer amines (α = 0 (uncharged), α = 

1 (primary amines charged), α = 2 (fully charged))
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Localized Motion of Dendrimer Arms

Q = 0.5 Å-1

Q = 1.3 Å-1

Localized motion modeled as Diffusion in a Sphere

R ~ 2.8 Å, α independent

1.60 ± 0.03 10-10 m2/s   α = 0
D    2.58 ± 0.03 10-10 m2/s   α = 1

3.11 ± 0.03 10-10 m2/s   α = 2
Localized motion increases as amines are charged!

X. Li, et al, Soft Matter 7, 618-
622 (2011)
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Reference Materials - 1

• Reference Books
– Quasielastic Neutron Scattering, M. Bee (Bristol, Adam Hilger, 1988).
– Methods of X-Ray and Neutron Scattering in Polymer Science,    R. 

–J. Roe (New York, Oxford University Press, 2000).
– Quasielastic Neutron Scattering and Solid State Diffusion, R. 

Hempelmann (2000).
– Quasielastic Neutron Scattering for the Investigation of Diffusive 

Motions in Solids and Liquids, Springer Tracts in Modern Physics, 
T. Springer (Berlin, Springer 1972).
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Reference Materials - 2
• Classic Papers

– L. Van Hove
• Phys. Rev. 95, 249 (1954)
• Phys. Rev. 95, 1374 (1954)

– V. F. Sears
• Canadian J. Phys. 44, 867 (1966)
• Canadian J. Phys. 44, 1279 (1966)
• Canadian J. Phys. 44, 1299 (1966)

– G. H. Vineyard
• Phys. Rev. 110, 999 (1958)

– S. Chandrasekhar
• “Stochastic Problems in Physics and Astronomy”, Rev. Mod. Phys. 15, 1 (1943) (not really 

QNS but great reference on diffusion models)

• Data Analysis – DAVE – NIST Center for Neutron Research
http://www.ncnr.nist.gov/dave/
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SUMMARY

• QENS is an excellent technique to measure diffusive dynamics
– Length scales/geometry accessible through Q-dependence
– Many analytic models form a framework for comparison and parametric studies
– Large range of time scales ( sub-picosecond < t < nanosecond (100’s nsec for NSE)
– H-atom sensitivity 

• Instrument selection is a critical decision – the resolution must match the time scale 
of the expected motion

• World-class instrumentation is currently available in the U.S.

• Natural connection to theory (Molecular Dynamics Simulations)

• Analysis Software – DAVE at the NCNR at NIST – available from the NCNR Web site


