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Examples of Dynamical Phenomena in 
Condensed Matter 1 

GHz Mechanical Materials 
and Devices 

Fundamental Excitations  
- Structure and Dynamics of Excitons in Organic 
Semiconductors 
- Phonon Generation and Dynamics 

THz Electronics and THz 
Properties of Materials 

Marciniak et al., 
Phys. Rev. Lett. 
99, 176402 
(2007). 

Rinaldi et al., IEEE 
Trans. on Ultrasonics, 
Ferroelectrics, and 
Freq. Control 57, 38 
(2010). 

B. Ferguson and 
X.-C. Zhang, 
Nature Mater. 1, 
26 (2002). 
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Magnetic Dynamics: Spin-
transfer Torque  

Dynamics in Complex Oxides 

Atomic and Thermal Transport 
- Pulsed Laser Materials Processing 
- Nanomaterials Thermal Transport 

Examples of Dynamical Phenomena 
in Condensed Matter 2 

Pribiag, et al., Nature Phys. 3, 498 (2007). 

M. A. Scarpula, et al., Appl. Phys. Lett. 82, 
1251 (2003). 

N. A. Spaldin and M. Fiebig, 
Science 309, 391 (2005). 
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Small and Fast Go Together 
•  Small and fast 

–  If you want to look at dynamical processes in small 
areas you need to be fast 

–  If you want to look at small areas the dynamics 
can be fast. 

–  1 km/sec = 1 nm/ps (~sound) 
–  (108 m/sec=100 nm/fs) 

•  Timescales/wavelengths of probes must be chosen to 
match the problem. 

•  X-rays (λ≈1 Å) match the size-scale of atomic-to-
nanoscale processes. 

•  How can we use x-rays to study dynamics? 
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What about Bandwidth? 
•  Question: Can we just find a way to chop up x-

rays and do the same experiments we’d do with 
longer pulses?  At synchrotrons: yes. 

•  The energy bandwidth and duration of optical pulses 
are related by an uncertainty relation called the time-
bandwidth product: ΔEΔt > h 

•  A 2 fs visible pulse with λ=600 nm has a bandwidth 
of nearly 300 nm, spanning nearly the whole visible 
spectrum. 

•  X-rays have far higher frequency, and the same 
frequency width is not a concern, even for fs pulses. 
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X-ray Sources are Not Yet 
Transform Limited 

•  APS: 100 ps duration pulse, 100 eV 
bandwidth from undulator, typical 1 eV 
bandwidth selected for diffraction. 
ΔEΔt=30000 h   (!!!) 

•  LCLS and other FELs based on 
spontaneous emission are closer, but not 
there yet. 

•  So far, just use the pulsed x-ray sources 
as short duration lamps. 
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How Close are FELs?  Really 
Close! 

J. Amman et al., Nature Photonics 6, 693 (2012). 

LCLS normal operation: SASI, several 
modes 

LCLS self seeding test 0.5 eV 
bandwidth at 8 keV 
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What if we were close to the 
transform limit? 

Dixit et al., 
Proc. Nat. 
Acad. Sci. 109, 
11636 (2012) 

We don’t have to worry about this in experiments yet! 

Theory of scattering with transform-limited pulses from electron 
orbital wavepackets. 
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Key Parameters and Sources of 
Short-Duration X-ray Pulses 

•  Experimental design parameters: pulse duration, x-ray photon 
energy, repetition rate, photons per pulse 

•  Synchrotrons  
–  40-100 ps duration, 100 eV-50 keV, MHz-GHz repetition 

rates, 103-107 photons/pulse  
–  (*) Also laser slicing sources, etc. for niche applications 

with short durations but very low flux. 
•  Free electron lasers 

–  LCLS ~100 Hz repetition rate, 800 eV-8 keV, 2 fs, >1010 
photons/pulse 

–  European XFEL: similar, but with ~30 kHz repetition rate 
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D. Tiede (ANL) 
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Experimental Strategies 1: 
Diffraction from Thin Films 

•  Excite sample with 
a short transient, 
e.g. a laser pulse 

•  Repeat diffraction 
experiment at a 
series of times. 

H. Wen et al., Laser-driven strain 
in BiFeO3 thin flims, submitted 
APS ID-7 
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Experimental Strategies 2: 
Solution Scattering 

D. Tiede (ANL) 
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Examples of Experiments 

1.  Condensed Matter and Materials 
Science 

2.  Chemical Transformations 

3.  Biological Molecules 
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Example 1: Dynamics in artificial 
ferroelectrics: ferroelectric/dielectric 

superlattices 

Electronic properties arise 
from the E-field driven 
reconfiguration of domains. 

Probing ultrafast structural dynamics is crucial. Future sources will provide insight 
into the mechanism of switching and the field-distorted structure of the superlattice. 
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Self-organized nm-scale domains 

Evans group, in preparation (2011). 
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Time-Resolved Diffraction: 
SrTiO3/PbTiO3 
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Nanodiffraction at APS sector 7: 100 nm spot size, ~100 ps time resolution 
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Domains 

Zubko, et al., Phys. Rev. Lett. 
104, 187601 (2010) 
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Domain Diffuse Scattering in 12(PbTiO3)/
3(SrTiO3) 

Domain period  9.5 nm 
Coherence length only 20 nm 
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Piezoelectric Expansion in the Superlattice 
Structural Reflection 

Piezoelectric coefficient: 36 pm/V 
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No Piezoelectric Expansion within 
Domains 

Domain wavevectors 

In-plane 

Out-of-plane 
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Proposed Switching Mechanism 

Challenges: 2D (or 3D) imaging of domains? During switching? 



University of Wisconsin-Madison                   Department of Materials Science and Engineering 

Timescales for Structural Phase 
Transitions 

•  Strain drives a transition 
between rhombohedral-like 
and tetragonal-like phases – 
and causes huge distortion. 

•  What are the dynamics of 
these structural transitions? 
Expect that it proceeds at the 
sound velocity, ~1 nm/ps. 

•  Pump with THz radiation, 
probe with X-ray pulses. 

“Morphotropic” phase boundary in BiFeO3 

R. J. Zeches, et al., 
Science 326, 977 (2009). 



University of Wisconsin-Madison                   Department of Materials Science and Engineering 

Example 2: Ultrafast Mechanics 
4.5 GHz NEMS resonator  
Rinaldi et al., IEEE Trans. on 
Ultrasonics, Ferroelectrics, and Freq. 
Control 57, 38 (2010). 
 

11 GHz whispering gallery mode 
resonator 
M. Tomes and T. Carmon, Phys. Rev. Lett. 
102, 113601 (2009). 
 

•   High Q and high frequency are desirable but highly challenging in 
materials and device design. 
•   What are the mechanical modes?  
•   Where does nonlinearity come from?   

100 ps is not fast enough to capture the relevant effects. 
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Time zero 

Time +50ps 

Ultrafast Coherent Diffraction 
Imaging of Strained Nanostructures 

(002) peak 

 Ni-capped ZnO 
nanorod coherent 
diffraction 

R. Harder (ANL) 
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Acoustic Modes of Nanocrystals 

J. N. Clark et al., Science 341, 56 (2013). 
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• Phonon-phonon, electron-phonon interactions 
• Time-domain often necessary to access these non-
equilibrium states 
• Future sources will match x-ray scattering to the 
natural timescale of these interactions.  
 

Nonthermal distributions, anharmonic decay 

Example 3: Tracking phonons in time and 
momentum 

M. Trigo, et al., Phys. Rev. B, 
82 235205 (2010). 

 A. Debernardi, et al., Phys. 
Rev. B., 57, 12847 (1998). 

Ultrafast thermal diffuse scattering 
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•  Can high-speed flows (often turbulent) be a well-controlled 
process? 

•  Engine sprays, high-pressure industrial sprays.  Immediate 
implication for next-generation fuel and combustion. 

Spray direction 

Humberto Chaves 
(Freiberg U)  

Example 4: Imaging Microscopic Multiphase Liquid Flows  

Challenges:  
• Optically dense due to many interfaces 
• Highly dynamic – high temporal resolution  
• Even more difficult on micrometer length scale-high spatial resolution 

• X-rays provide easily interpreted image of mass density.  

High-
pressure 
injector 

High-
pressure 
diesel 
spray 

Jet with 
in-nozzle 
vorticity 

Liquid drop 
bouncing on a 
solid surface 

J. Wang (ANL) 
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Examples of Experiments 

1.  Condensed Matter and Materials Science 

2.  Chemical Transformations 

3.  Biological Molecules 
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Example 1: Photo-decomposition of 
Iodomethane 

D. Tiede (ANL) 
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Example 2: Molecular Excited States 

D. Tiede, L. Chen (ANL) 
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Example 2 (continued): Molecular Excited 
States 

D. Tiede, L. Chen (ANL) 
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Examples of Experiments 

1.  Condensed Matter and Materials Science 

2.  Chemical Transformations 

3.  Biological Molecules 
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Example: Photo-deligation in Myoglobin 

D. Tiede (ANL) 
Cho et al., Proc. Nat. Acad. Sci. 107, 7281 (2010). 

Start in  carbon monoxy form (MbCO), optically induced transition to deoxy form (Mb).  
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Example: Photo-deligation (continued) 

D. Tiede (ANL) 
Cho et al., Proc. Nat. Acad. Sci. 107, 7281 (2010). 
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New Strategies: Single-Shot 
Experiments at FELS 

•  FELs have sufficient intensity that the sample can be damaged or 
destroyed by the first pulse!  (Each LCLS pulse has the photons of 
103-105 synchrotron bunches, but in 2 fs.) 

•  Can you get the information you need in one pulse? 
•  Can the pulses be short enough to get the information before the 

structure explodes? 

Prediction (2000):  Neutze 
et al. Nature 406, 752 
(2000). 



University of Wisconsin-Madison                   Department of Materials Science and Engineering 

Femtosecond Nanocrystallography 

Experiment (2011) 
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X-ray Nonlinear Optics 
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New Sources are Coming 
Soon 

•  Improvements in synchrotron sources 
•  New FELs 

– Building/Built: SACLA (Japan), European 
XFEL, Pohang (Korea), Swiss FEL 
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Current and Future FELs 
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Storage Ring Sources 
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Conclusions 

•  Dynamics in condensed matter, materials science, 
chemistry, and macromolecules have wide relevance to 
important questions. 

•  X-ray techniques can address these questions using 
dynamical versions of techniques we’re familiar with. 

•  Near Future: Many new sources, new techniques. 

•  Further Future: Transform-limited x-ray pulses. 


