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Neutrons and Neutron Sources

B James Chadwick discovered the neutron in 1932.

B In 1936 Mitchel & Powers and Halban & Preiswerk first demonstrated coherent
neutron diffraction in (Bragg scattering by crystal lattice planes) as an exercise
In wave mechanics.

B The possibility of using the scattering of neutrons as a probe of materials
developed after 1945 with the availability of copious quantities of slow neutrons
from reactors. Fermi's and Zinn's group at Argonne’s CP-3 reactor used Bragg
scattering to measure nuclear cross-sections and develop diffraction methods.
Wollan, Shull and others worked in parallel at the Oak Ridge Graphite reactor.

B Free neutrons decay by e- emission to a proton, accompanied by a neutrino,
and have a half life T, = 881.5 seconds = 14.7 minutes and a half-life T,,, =
611.0 seconds. Although the decay process is interesting from a fundamental
physics point of view, we don’t need to account for it in materials science
applications.
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Fast and slow neutrons, efc.
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Nominally “Thermal” neutrons: Energy=25 meV, corresponds to the

average energy in a Maxwellian distribution at 293 K temperature;

Wavelength = 1.8 A; speed = 2200 m/s.




Development of Neutron Science Facilities
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How do we produce neutrons?
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Neutrons: Where do they come from?
Fission:
n + 23U = 1.5n + n + fragments

. b ~ 180 MeV/n (as heat)
Sustain chain reaction

Available

Spallation:
p + heavynucleus = 20~ 30n + fragments

1GeV e.g. W, Pb, U

~ 30 MeV/n (as heat)




Neutrons: Where do they come from?

Measured Spallation Neutron Yield vs. Proton Energy for
Various Targets, J. Frazer, et al. (1965)
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Neutron yields vs. particle energy
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e Bremsstrahlung Photoneutron Yields
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Types of Neutron Sources-cont’ d

B Reactors, e.g., HFR at ILL, HFIR at ORNL, ~1.5x10"° n/cm?/s,
FRM-2 at Munich, ~1.x107° n/cm?/s

Advantages

—  High time averaged flux.

—  Mature technology (source; instruments—development continues).
—  Very good for cold neutrons.

Drawbacks

—  Licensing (cost/politics of HEU).
—  No time structure.




Types of Neutron Sources
The Institut Laue-Langevin, Grenoble

Guide hall 2 (ILL 12}

\m
ADAM

EVA g ] DRz e Mo | @rr

Guude hall | {ILLT)

INIO DIl
> oe1l ) T3

IN6 -
A " ) = lw
(| — AN
o» INI2 B<)0,534, 551
]
cr N

HI42

INS

PNI

DI7
DI
e ———

— 550 1 TI3AC D

DIS it S0 ¢4
INI3 DI0 cT2
PN3
£ Three-axis group
D28 [0 Diffraction group
-~ Large-scale structure group
Reaceor hall ) . : 5
© Reactor core Level C — ILL instruments filled in : operational X Time-of-flightthigh-resolution group
@ Hot neutrons — jointly funded instruments < open: commissioning or 3 Nuclear and fund tal physics group
@ Thermal neutrons - CRG instruments under construction [Z  Test and other beam positions
e X A A LRl S R S S s S sl bl o e

. Cold neutrons G T ey e e e il 2 o R e il R

A

Argonne

NATIONAL LABORATORY




Types of Neutron Sources-cont’ d
Source Spectra of the FRM-Il Reactor
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Types of Neutron Sources-cont’d

B Pulsed spallation sources e.g., IPNS, ISIS, LANSCE, SNS, JSNS, ESS.
200 uA, 0.8 GeV, 160 kW
ISIS  2x10'3 n/cm?/s average flux SNS 1.4 mA, 1.0 GeV, 1.4 MW
8x10'° n/cm?/s peak flux
Advantages
— High peak flux.
— Advantageous time structure for many applications.
— Accelerator based — politics simpler than reactors.
— Technology rapidly evolving.
Disadvantages
— Low time averaged flux.
— Not all applications exploit time structure.
— Rapidly evolving technology.
— Thermoelastic shock.




Anatomy of a Pulsed Spallation Neutron Source
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SNS Instruments

B ~20 instruments approved.
— Excellent progress with funding.
e DOE, including SING1 and SING2 Projects, foreign, and NSF
initiatives
B Working to enhance instrument technology
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SNS Moderator Intensities and Pulse Widths

SNS Moderator Intensities SNS Moderator Pulse Widths
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Types of Neutron Sources-cont’d

B CW spallation source e.g., SINQ at Paul Scherrer Institut (PSI).
0.85 mA, 590 MeV, 0.9 MW

1x1074 n/cm?/s average flux

Advantages
— High time averaged flux.
— Uses reactor type instrumentation (mature technology).
— Politically acceptable.
— piggy-backed on existing accelerator.

Disadvantages
— No time structure.




Types of Neutron Sources-cont’d

Principles of the Spallation Neutron Source SINQ
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Types of Neutron Sources-cont’ d
Low-Energy Neutron Sources

B Advantages of a Low-Energy Neutron Source.
— Low cost of accelerator.
— Low cost of operation.
— Minimal shielding because of low proton energy.
— Cold moderators easy.
— Easily adaptable for testing, development and training.
— Modest flux implies low activation of components.

M Disadvantages of a low-energy neutron source.
— Modest flux implies long experiment times.
— Optimal design provides only a few neutron beams.




Neutrons: Where do they come from?

B Low-energy (p,n) reactions, e.g.
p + °Be —> n + 2alpha+p and
—> n+’B
(Most of the proton energy appears as heat.)
5-15 MeV ~ 1300 MeV/n @ E, = 13 MeV
(deposited in ~ 1.1 mm)

3.5x10° n/p




Be (p,n) Neutron Yields
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Types of Neutron Sources-cont’ d

The LENS Low-Energy Neutron Source, Indiana U.
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How Do Moderators Work?
Steady sources
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How Do Moderators Work?
Steady sources
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How Do Moderators Work?
Pulsed sources
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The Spallation Neutron Source

M

B SNS first operation April 2006. Shown in 2009.

m At 1.4 MW it will be ~ 8x ISIS, the world’ s leading pulsed spallation
source.




SNS Target-Moderator-Reflector System




Pulsed Spallation Neutron Sources

Time-Average | Proton Pulsing [ Startup Date/Status

Facility Location Beam Power Energy | Frequency
(kW) (MeV) (H2)
ZING-P Argonne 0.1 300 30 1974-75/Shutdown
ZING-P’ Argonne 3 500 30 1977-80/Shutdown
KENS KEK, Japan 3.5 500 20 1980-2006/Shutdown
IPNS Argonne 7.0 450 30 1981/Operating
ISIS Rutherford- 190 800 50 1985/Operating
Appleton Lab, UK
ISIS TS2 “ 40 800 10 2009/Operating
MLNSC Los Alamos o0 800 20 1985/0Operating
(Lujan
Center)
SNS Oak Ridge, TN 1400 1000 60 2006/Operating
JSNS | Tokaimura, Japan 1000 3000 25 2008/Operating
ESS Lund, Sweden 5000 1500 15 2019/Planned

Primary source pulse widths of all except ESS are less than 1.0 usec. ESS pulse width ~2000 usec.

2000, |||| |||%|
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Very Cold Neutrons—A Future Prospect?

Very Cold Neutrons, VCNSs, are those with “Rule of 2”
parameters that could be produced from moderators with the

spectral temperature of superfluid He (2.2 K) and in a broad
range thereabout:

e Energies ~ 200 micro-eV
» Wavelengths ~ 20 A
e Speeds ~ 200 my/s.




Very Cold Neutrons

Neutron optical devices work better at long wavelengths
than at conventional wavelengths, because refractive
indices are proportional to (wavelength)?, as is gravity

droop.
Critical angles are proportional to wavelength.

Magnetic lenses have advantages over material lenses
because they present no absorption and scattering
material to the passing neutron beams.

New opportunities and new science certainly lie in
instruments and techniques based on VCNs.

Only one relevant VCN beam exists, PF2 at ILL, for




Just for historical fun: MTA, ~1950

Cutaway View of Linear Accelerator — Looking from the Injector
End

2000.0
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End of Presentation

Thank you!




