X-Ray Raman Spectroscopy — Applications

Mahalingam (Mali) Balasubramanian
Spectroscopy Group, X-ray Science Division
Advanced Photon Source, Argonne National Laboratory
Argonne, Illinois-60439, USA

NX School 2014, Argonne, IL
X-ray Absorption Spectroscopy (XAS)

\[\sigma(\omega) = 4\pi^2\alpha\omega^{-1}\sum_{f}\left|\langle f | \vec{\varepsilon} \cdot \vec{r} | i \rangle\right|^2 \cdot \delta(E_f - E_i - \hbar\omega) \]

- Dipole selection rules (\(\varepsilon.r\))
 - s\(\rightarrow\)p
 - p\(\rightarrow\)d

Incident energy tuned to a resonant absorption edge: \(\hbar\omega\)

Co K-edge \(\rightarrow\) \(\sim 7709\) eV
Convenient hard x-ray energy – Penetration several micrometers in LiCoO\(_2\)

Allows in situ/operando battery XAS studies

Co K-XAS: LiCoO\(_2\)

Co 1s initial state
X-ray Absorption Spectroscopy (XAS)

- Soft x-rays have short penetration lengths in materials
 - 525-550 eV photons (O 1s initial states)
 - penetration length only a few hundred nm in LiCoO₂

Resonant radiation is used — a bit restrictive

Incompatible or challenging to use with additional experimental apparatus, such as —
 - Electrochemical cells
 - Diamond anvil cells
High Pressure Studies

Synchrotron hard X-rays couple well with high pressure science

The penetrating ability of hard x-rays is crucial

Kr K-edge $\rightarrow \sim 14326$ eV

Hard x-rays ideal for extreme environments, but can we somehow access low energy excitation?

Nonresonant Inelastic X-ray Scattering (NIXS)

- Obtain information on low energy excitations
 - Measure intensity of scattered x-rays as a function of energy loss ($\hbar\omega$) and momentum transfer (q)

NIXS allows all excitations (meV-keV) to be monitored

Incident energy: 6-30 keV
Energy Loss Scale

Core-electron excitation: aka, X-ray Raman
XRS: Element Specific

Huotari et al., Nat. Mater. 10(7), 489 (2011).
NIXS at APS — some specific types

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Probed Excitation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3 meV</td>
<td>Phonon dispersion, phonon density of states</td>
</tr>
<tr>
<td>100-300 meV</td>
<td>Valence electron excitations – quasiparticles in strongly correlated systems</td>
</tr>
<tr>
<td>0.4-1.5 eV</td>
<td>Core or semi-core electron excitations, plasmons</td>
</tr>
</tbody>
</table>

- NIXS performed at many other sectors as well — 3, 9, 13, 16, and 33
- Specifically, high pressure XRS studies performed at sectors 13 and 16

HERIX (APS, 30ID)
\[\Delta E \sim 1 - 2 \text{ meV} \]

MERIX (APS, 30ID)
\[\Delta E \sim 100 - 200 \text{ meV} \]

LERIX (APS, 20-ID)
\[\Delta E \sim 0.4 \text{ eV} – 1.4 \text{ eV} \]
X-ray Raman Scattering: NIXS of Core Shell Electrons

\[S(q, \omega) = \sum_f |\langle f | e^{iq\cdot r} | i \rangle|^2 \delta(E_f - E_i - \hbar \omega) \]

Small momentum transfer: \(e^{iq\cdot r} : iq\cdot r \)
Dipole transitions only, i.e. \(\Delta l = \pm 1 \)

Large momentum transfer, \(q: \)

\[e^{iq\cdot r} : = 1 + \frac{iq\cdot r}{1!} + \frac{(iq\cdot r)^2}{2!} + \ldots \]
Non-dipole terms may be allowed!

Problem: Scattering cross section for process of interest very low

Energy loss (\(\hbar \omega \)) plays the same role as incident energy in soft XAS

Truly bulk-sensitive alternative to soft XAS

Both probe and signal hard x-ray photons!!

- Small \(q: s \rightarrow p \) transitions (dipole)
- Large \(q: new s \rightarrow s \) transitions
 or \(new s \rightarrow d \) transitions

XRS Early History

Davis and Mitchell, Phys. Rev. 32 (3), 331 (1928)

Compton scattering from graphite and assigned a spectral feature to the location of C 1s initial states

Followed by experiments from 1s and 2p initial states of Be and C

The C K line corresponds to an energy loss of 279 volts. This is in good agreement with K energy level of carbon.

Results interpreted by Compton as potentially the x-ray analogue of “Raman lines” in the visible light regime.

Compton, Reviews of Modern Physics 1, 74 (1929).
XRS Development (60’s-70’s)

XRS conclusively demonstrated by Suzuki et al.
Theory by Mizuno and Ohmura — showed equivalence of XRS to XAS

XRS Development (cont.)

Significant developments of XRS - detailed experiments began in the late 1980’s

Extended oscillations: Same information as EXAFS

Sc$_2$O$_3$: Sc M-edges and Sc L-edge \rightarrow 3d transition metal oxide

Wolfgang Caliebe : June 1995 data from NSLS, USA

XRS Development (contd.)

![Graphs of Cross-sections](image)

Photoelectric, coherent, and incoherent cross-sections Vs photon energy

XRS — Depends on incoherent cross-section, note the extremely small cross-section at ~ 10 KeV

XRS often present on top of large Compton background

- Need high incident flux, large detection solid angle, and excellent stray background rejection
Further improvements move XRS from a scientific curiosity to a well developed experimental tool

- 3rd generation synchrotron sources/optimized beamlines
- Anodically-bonded Si or Ge crystals for spherically-bent crystal analyzer, SBCA
- Dedicated multielement spectrometers
- SBCA used as an imaging optic in combination with 2D detectors
- Several independent theories for XAS and q-dependent XRS

(1) Huotari et al., Nat. Mater. 10(7), 489 (2011)
How to measure XRS efficiently?

SSRL (40+14+7)

SPring-8 (15)

ESRF ID16 (9)
Verbeni et al., J. Sync Radiat. 16, 469 (2009)

APS LERIX (19)
LERIX –Sector 20, APS

(Fister, Seidler et al., Rev. Sci. Inst. 2006)

- q-dependent XRS with 0.4 eV-1.5 eV resolution
- 19 Spherically-bent Si 111 wafers or diced analyzers, with each SBCA coupled to its own detector
- Total solid angle for 19 SBCA is ~1.2% of 4π sr
Measuring q-dependent XRS efficiently

Scan energy loss by changing E1 with mono and fixing E2 with analyzers. Each analyzer coupled with a detector to measure 19 q’s simultaneously.
Measuring q-dependent XRS with LERIX: example

- Broad Compton scattering background shifts to higher energy as q increases
- Wide scan taken at coarse steps showing the richness of the excitation spectra

Pressure changes bonding in graphite
XRS reveals the evolution of bonding and transformation of graphite to a new superhard phase
Approximately half of the sp² converted to sp³
XRS Applications: Water- Sub and supercritical conditions

O K XRS of water at different temperatures and pressures along the liquid-gas coexistence curve.

Interpret OK-XRS spectral changes with structural models obtained with DFT-MD simulations
The average number of hydrogen bonds per molecule decreases to \(\approx 0.6 \) at 600 \(^\circ\)C and \(p = 134 \) MPa

Sahle C J et al. PNAS, 110, 6301, 2013
Some high-pressure studies in diamond anvil cells:

- B$_2$O$_3$ glasses: Lee et al., Nat. Mat. 4, 851 (2005)

Some studies of liquid water and ice:

q-dependent XRS : some examples

q-dependent XRS: examples (contd.)

A more complete picture of the DOS
q-dependent XRS : 3d TM Oxides

Low-q dominated by dipole term:
Strong local field and band structure effects

TD-DFT calculations
Gurtubay et al. PRB 70 201201 (R)
(2004)

At high-q atomic part takes over and non-dipole transitions have strong contributions

Balasubramanian, Nagle, Seidler et al., Unpublished
Multipole transitions from semicore initial states: f-electron systems; lanthanides

- **Cerium N\textsubscript{4,5}-edges: 4d → 4f transitions** ($\Delta l = 1, 3, \text{and} 5$)

Multipole transitions: extended to actinides

- Actinide O_{4,5} edges: 5d → 5f transitions (Δl = 1, 3, and 5)

Total reflection XRS: surface sensitivity

- **Sample:** 10 nm-thick La$_{0.6}$Sr$_{0.4}$CoO$_3$ (LSCO) on SrTiO$_3$ (STO)
- **$\alpha_c = 0.28^\circ$ at 10 keV**

Probe:
- LSCO for $\alpha < \alpha_c$
- STO for $\alpha > \alpha_c$

Carbon speciation in bulk soils

Mishra, Kemner et al.; unpublished

Studies related to management of greenhouse gases
Improving soil carbon sequestration: important as a mitigation strategy
Determine in situ (without chemical extraction procedures) carbon speciation in bulk soils

Large penetration depth enables studying
- Soil aggregates.
- Organics in soils and/or minerals.
- Hydrated samples under ambient or high/low-temperatures.

Accurate speciation
- No effect of sample inhomogeneity.
- No need for vacuum conditions.
- True bulk sensitivity

Brandes et al., 2010; JSR
Using Soft X-ray

CaCO₃
XRS of standards

Mishra, Kemner et al.; unpublished

<table>
<thead>
<tr>
<th>Standard</th>
<th>Peak energy this study</th>
<th>Peak energy published</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Benzoquinone</td>
<td>283.8</td>
<td>284.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>285.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>286.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>288.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>289.82</td>
</tr>
<tr>
<td>Benzoic Acid</td>
<td>285.0</td>
<td>285.01</td>
</tr>
<tr>
<td></td>
<td>288.3</td>
<td>288.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>289.42</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>288.7</td>
<td>288.72</td>
</tr>
<tr>
<td>Thymine</td>
<td>285.1</td>
<td>285.13</td>
</tr>
<tr>
<td></td>
<td>286.0</td>
<td>286.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>286.84</td>
</tr>
<tr>
<td></td>
<td>288.1</td>
<td>288.01</td>
</tr>
<tr>
<td></td>
<td>289.6</td>
<td>289.47</td>
</tr>
<tr>
<td>Alanine</td>
<td>288.7</td>
<td>288.72</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>285.3</td>
<td>285.29</td>
</tr>
<tr>
<td></td>
<td>288.8</td>
<td>288.75</td>
</tr>
</tbody>
</table>
XRS comparison with 13C NMR analysis Alaska Soil

Mishra, Kemner et al.; unpublished

<table>
<thead>
<tr>
<th>Carbon moieties</th>
<th>Alaska Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRS</td>
<td>NMR*</td>
</tr>
<tr>
<td>Alkyl-C</td>
<td>18%</td>
</tr>
<tr>
<td>Aryl-C</td>
<td>17%</td>
</tr>
<tr>
<td>O-Alkyl-C</td>
<td>11%</td>
</tr>
<tr>
<td>Phenolic-C</td>
<td>11%</td>
</tr>
<tr>
<td>Σ (Carboxylic-C + Carbonyl-C)</td>
<td>51%</td>
</tr>
</tbody>
</table>

* NMR data courtesy Chao Liang
How Does the Battery Store and Generate Electricity

During discharge each electrode undergoes a half cell reaction

At the anode the reaction is:

$$\text{LiC}_6 \rightarrow 6\text{C} + \text{Li}^+ + e^-$$

At the cathode it is:

$$\text{Li}_{0.5}\text{Co(III)}_{0.5}\text{Co(IV)}_{0.5}\text{O}_2 + 0.5\text{Li}^+ + 0.5e \rightarrow \text{LiCo(III)O}_2$$

The driving force for the external current is the difference in electrode potentials of the half cell reactions. This yields an operating voltage of $\sim 3.9 \text{ V}$
Need to study O K-edge and TM L/M-edges to probe oxygen participation in charge compensation and TM d-dos

For Li to F: 1s
For Mg to Zn: L and/or M edges (2p/3p initial states): access to d-DOS
Can be performed using sub-keV-XAS (soft-XAS) or EELS

Problem: The interesting redox chemistry involves light elements (Li, O, C) and TM 3d orbitals, but sample environment (an operating battery) is not quite compatible with soft x-rays

Proof of Principle: XRS Experiments

Some LiC₆ data: Li K-edge

- Both chemically (lithium intercalated HOPG) and electrochemically prepared samples studied
- Penetration depth of 10 KeV x-rays in LIG well over 2mm → true bulk information obtained
- Good quality data obtained for both C 1s and Li 1s IXS
- Small amounts of residual electrolyte do not pose any problem
- Li 1s position shifts to higher energy relative to Li metal

LiC$_6$ data : C K-edge

Low q: sample oriented with q \sim parallel to c-axis

Probes bonding along c-axis (π-feature enhanced)

High q: sample oriented with q \sim in basal plane.

Probes bonding in basal plane (σ-feature enhanced)

NIXS q-dependence (in dipole limit) similar to polarization-dependence in soft XAS for non-cubic systems

Sensitive to anisotropic bonding in oriented non-cubic systems
XRS→Coordination sensitivity of Li$_2$O$_2$

Bethe-Salpeter (BSE) treatment: accurately accounts for electron–core hole interactions

BSE theory: Eric Shirley (NIST)

2 structures with distinct O–O bond distance

Féher’s: 1.28 Å
Föppl’s: 1.55 Å

Li$_4$Ti$_{5}$O$_{12}$ Ti L_{23}-edge

Ti 4+

$\text{XRS intensity (arb. units)}$

450 455 460 465 470

Energy loss (eV)

Ti^4+

t_{2g}

e_g

L_3

L_2

Ti$_2$O$_3$ Ti L_{23}-edge

Ti 3+

$\text{XRS intensity (arb. units)}$

450 455 460 465 470

Energy loss (eV)

Ti^3+

t_{2g}

e_g

L_3

L_2

$\text{XRS intensity (arb. units)}$

1.6 - 4.0 Å$^{-1}$

4.8 - 6.8 Å$^{-1}$

7.4 - 8.9 Å$^{-1}$

9.4 - 10.5 Å$^{-1}$
Chemical lithiation of $\text{Li}_{4+x}\text{Ti}_5\text{O}_{12}$

Elastic energy: ~ 9889.5 eV
Use Si (555) reflection in LERIX
Energy resolution: ~ 1.3 eV

In the dipole limit, Ti 2p XRS dominated by transitions from spin-orbit split Ti 2p levels to unoccupied Ti 3d levels; direct probe of projected unoccupied d-dos

Exact shape and position of peaks can be well understood by atomic multiplet calculations

Ti 2p XRS clearly shows the partial reduction of Ti$^{4+}$ to Ti$^{3+}$ on lithiation of $\text{Li}_4\text{Ti}_5\text{O}_{12}$

In situ capabilities of XRS: LiCoO$_2$

- See clear evidence for hole formation at t_{2g} orbitals during charge (i.e. Co$^{4+}$ formation) in O K- and Co M$_1$-edges
- In addition with Co M$_{2,3}$, L$_{2,3}$, and Co K-edge XAS a detailed set of electronic excitation spectra obtained

Electrochemical

Chemical

Bulk sensitive core shell XRS of light elements (Li, O,C : 1s) as well transition metal (TM: 2p, 3p and 3s) can be performed

Ken Nagle, Swati Pol, Balasubramanian, Seidler, (unpublished)
Instrument Developments

6 movable chambers: 12 analyzers each
K-B mirrors: focus ~8x16 μm (VxH)

LERIX: proposed upgrade tied to APS upgrade

20x20 μm beam
0.3-0.5 eV resolution
Improved detectors
Improved SBCA reflectivity
100+ ... analyzers

ESRF ID20 (UPBL6)
XRS can be used to study most elements in the periodic table

With newer generation instruments, XRS is poised to become a technique of choice to study the fundamental electronic excitations in a variety of materials — under real world and/or extreme conditions

Theory to generate the excited state spectra has progressively improved and promises to provide key insights on details of electronic structure
Acknowledgements

Ken Nagle and Jerry Seidler (Univ. Washington)

Swati Pol, Naba Karan, and Tim Fister (Argonne)

Steve Heald, Dale Brewe, Robert Gordon, and Mike Pape (Sector 20 Staff)

Work at APS user facilities supported by U.S. Department of Energy, Office of Science

Thank you for your attention