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2 Neutron Optics and Instrument Development 

What is a Neutron Scattering Instrument? 

• Neutron scattering experiments measure the number of neutrons 
scattered by a sample as a function of the wavevector change (Q) 
and the energy change (E) of the neutron. 

• What do we need to accomplish this? 

1) A source of neutrons 

2) A method for selecting the wavevector of the incident neutrons (ki) 

3) A very interesting sample 

4) A method for determining the wavevector of the scattered neutrons (kf) 

5) A neutron detector 
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Why Not Just Build a Universal Neutron 

Scattering Instrument That Can Do 

Everything We Need? 

• Two types of sources (continuous and pulsed) 

• Two methods for determining the neutron wavevector, k (time-of-flight and diffraction) 

• Two types of scattered neutrons (elastic and inelastic) 

• Two types of interactions between the neutrons and the sample (nuclear and magnetic) 

• Wide range of length scales driven by the science 

• The energy of the neutron is coupled to its wavelength and velocity:  

         l2(Å2) ~ 81.81/E(meV) and v2(m2/s2) ~ 191313×E(meV)  

• S(Q,E) the scattering properties of the sample depend only on Q and E, not on the neutron wavelength(l)  

• Message: Many different types of neutron scattering instruments are needed because the accessible Q 
and E ranges depend on the neutron energy and because the resolution and detector coverage have to 
be tailored to the science for such a signal-limited technique.  
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Pulsed vs Continuous 

SNS 

HFIR 

The peak flux of the SNS is about 10x the flux of 

the HFIR 

 

The HFIR flux is about 15x the time averaged flux 

of the SNS 
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Neutron Scattering Instruments at 

Continuous Sources Are Typically 

Based on Diffraction Techniques 
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Neutron Scattering Instruments 

at Pulsed Sources Are Typically 

Based on Neutron Time-of-

Flight Techniques 
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Fermi 

Chopper 

Time and Distance 

v(1.8Å) = 2187m/s 

TOF(s) = D(m)/v(m/s) = [D(m)×λ(Å)]/3956.0339 

D=20m, TOF(1Å)=0.005s, TOF(2Å)=0.010s, DTOF=0.005s 

l(Å) = (3956.0339 * TOF(s)) / D(m) 
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Neutron Optics 

The following neutron optical components are typically used to 
construct a neutron scattering instrument 

– Monochromators / Analyzers: Monochromate or analyze the energy 
of a neutron beam using Bragg’s law 

– Choppers: Define a short pulse of neutrons or select a small band of 
neutron energies 

– Guides / Mirrors: Allow neutrons to travel large distances without 
suffering intensity loss 

– Polarizers / Spin Manipulators: Filter and manipulate the neutron spin 

– Collimators: Define the direction of travel of the neutrons 

– Detectors: Neutron position (and arrival time for TOF) is recorded.  
Neutrons are typically detected via secondary ionization effects. 
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Liouville's Theorem 

• In the geometrical-optics the propagation of neutrons can be 

represented as trajectories in a six-dimensional phase space      
(p, q), where the components of q are the generalized coordinates 
and the components of p are the conjugate momenta.  

• Simply stated, Liouville's Theorem says that phase space volume 
is conserved. 

• Translation: It costs flux to increase resolution and it costs 
resolution to increase flux. 

• There is no way to win! 

Parallel Converging 
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Instrument Resolution 

• Uncertainty in the neutron wavelength 
and direction limit the precision that Q 
and E can be determined 

• For scattering, the uncertainty comes 
from how well ki and kf can be 
determined 

• For TOF, the uncertainty primarily 
comes from not knowing the exact 
start time for each neutron  

• The total signal observed in a 
scattering experiment is proportional 
to the phase space volume within the 
elliptical resolution volume – the 
better the resolution, the lower the 
count rate 

Figure borrowed from Roger Pynn 
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Choppers and Velocity Selectors 

TOF Timing Diagram 
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Neutron Guides 

80m Guide for HRPD at J-PARC 

Fabricated by Swiss Neutronics 

m=0.1 deg/Å 

Multichannel Curved Guide 

Fabricated by Swiss Neutronics 

Guide 

Installation 

at ISIS 
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Polarizers and Spin Manipulators 

Spherical Neutron Polarimetry 

POLI-HEiDi at FRMII 

3He Cell 

Unpolarized  

Neutron Beam 

Polarized  

Neutron Beam 

3He Spin  

Filters 

Heussler Monochromator 

AlCuMn 

Polarizing Supermirrors 

Larmor Precession 

Flipper 
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Neutron Optics: Focusing 

Doubly focusing Cu 

monochromator at the ILL 

Double focusing “Popovici” monochromator. The 

vertical curvature is fixed while the horizontal 

curvature is variable by bending stacks of thin silicon 

wafers. The gain is achieved both by spatial focusing 

and ‘wavelength focusing’. 
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Neutron Optics: Focusing 

• Focusing Mirrors : 

– Develop a nested advanced KB mirror 

system to make a more compact 

assembly and to achieve the highest 

performance. 

– Identify applications where focusing 

optics can replace neutron guides and 

offer better performance. 

90 m 
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Elastic Neutron Scattering Instruments 

• Elastic instruments include: 

– Powder diffraction 

– Single Crystal diffraction 

– SANS (typical) 

– Reflectometry 

• Used to determine the 

average structure of 

materials (i.e. how the 

atoms are arranged) 
 

Based on diagram by Roger Pynn 

Longer Length Scales 
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TOF Powder Diffractometer: POWGEN (SNS) 

Sr2Fe1.5Mo0.5O6, Electrode Material for Solid Oxide Fuel Cells 
J. Am. Chem. Soc., 134, p6826 (2012) d=

λ

2 sin θ
=
2π

Q
 

d=
(3956.0339∗TOF)/D

2 sin θ
 

λ Å =(3956.0339∗TOF(s)/D(m) 

For POWGEN D = 64.5m 
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Small Angle Neutron Scattering (SANS) 

TmNi2B2C Vortex Lattice 

PHYS REV B 86, 144501 (2012) 

http://blogs.knoxnews.com/knx/munger/IMG_0679.JPG
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Magnetism Reflectometer (SNS) 

PHY REV B 84, 245310 (2011) 
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CG1 

Monochromator 

Shield 

Sample/Detector 

Carbon foam matrix in a Li battery 

(H. Bilheux and S. Voisin) 

Neutron Imaging 

X-ray image 

Neutron Image 
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Inelastic Neutron Scattering Instruments 
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• Inelastic instruments include: 
0.1 1 10 100 

d(Å) 

• Used to study 

dynamics such as 

phonons, magnons,  

and diffusion  (i.e. what 

the atoms are doing) 
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Based on diagram by Rex Hjelm 

Slower 

Motions 

Longer Length Scales 

− Direct Geometry TOF 

Spectrometers 

− Indirect Geometry TOF 

Spectrometers 

− Triple-Axis Spectrometers 

− Backscattering 

Spectrometers 

− Neutron Spin-Echo 

Spectrometers 
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SEQUOIA: A Direct Geometry TOF 

Spectrometer at the SNS 

Quantum oscillations of nitrogen 

atoms in uranium nitride 

Nature Communications  v3, p1124 (2012) 
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Triple-Axis Spectrometer 

Lattice Dynamics of PbTe 

PHYS REV B 86, 085313 (2012) 
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BASIS: An Inverted Geometry 

Backscattering Spectrometer 

Study of water diffusion on 

single-supported bilayer lipid 

membranes by QENS 

Bai M.,  EPL 98, 48006 (2012) 
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New Instrument: IMAGINE 

CG-4 Guide 

CTAX 

Mono 

Entrance Slit 1 

Flat Mirror 

Beamstop/Slit 

Flight Tube 

Multimirrors 

Entrance Slit 2  

INSTRUMENT ENCLOSURE 

Diffractometer 

Drop-In Apertures Beamstop/Slit 

Monitor 

Elliptical 

Mirror 1 
Elliptical 

Mirror 2 

Short wavelength filter @ 2.0, 2.78, and 3.33 Å 

Long wavelength filter @ 3.0, 4.0, and 4.5 Å 

Elliptical mirrors for focusing the beam 

4 mm 

2 mm 

beam focus at 

sample position 
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Future Instrument: SESANS/SERGIS 

• Real space correlation lengths up to 20 microns (and beyond?) 

• Does not require tight collimation for high resolution 

• Can be used to probe the in-plane correlations of thin films and interfaces. 

Spin-Echo Scattering Angle Measurement: 
The neutron spin precesses through two parallelogram-shaped magnetic fields in opposite 

directions.  For scattered neutrons the path-length through the two parallelograms is 

different resulting in a net change in the spin angle.  
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Using SERGIS the specular  

and off-specular scattering  

can be distinguished 
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Concluding Remarks 

• Instrument design is driven by the needs of the scientific 
community coupled with the source capabilities along with 
advances in neutron optics and detectors.  

• In the near term instrument development will be primarily 
focused on:  

– Focusing optics  

– Polarization  

– Detectors  

– Instrument development infrastructure (computer simulations)  

– New techniques and applications  

 


