

Dale W. Schaefer Chemical and Materials Engineering Programs University of Cincinnati Cincinnati, OH 45221-0012 dale.schaefer@uc.edu

10

Source of x-rays, light or neutrons

Methods of X-Ray and Neutron Scattering in Polymer Science Ryong-Joon Roe

SAXS & SANS: $\setminus \leq 6^{\circ}$

Intensity vs Angle

Crystals: Bragg's Law and the scattering vector, q

UNIVERSITY O

Cincinnati

Disordered Structures in "Real Space"

Agglomerates

Aggregates

Precipitated Silica

(NaO) $(SiO_2)_{3.3}$ + HCl \longrightarrow SiO₂ + NaCl

Water Glass

Complex Hierarchical Disordered

Difficult to quantify structure from images.

Primary Particles

Hierarchical Structure from Scattering

Why Reciprocal Space?

8/15/2013 NX School 5

Ultra-small-angle neutron scattering: a new tool for materials research. Cur. Opinion Sol. State & Mat Sci, 2004. 8(1): p. 39-47.

Characterizing Disordered Systems in Real Space

Depends on latitude and longitude. Too much information to be useful. Depends on separation distance. Retains statistically significant info.

Resolution problems at small *r* -Opacity problems for large *r* 2-dimensional Operator prejudice

Problems with real space analysis

Imaging vs. Scattering

Anodized Aluminum

Angle dependence

Intensity and Differential Scattering Cross Section

UNIVERSITY OF Cincinnati What is "Intensity?" What do we really measure? $\frac{J_{W}}{J_{A}} = \frac{dS}{dW} \left(\frac{\text{cm}^{2}}{\text{str}}\right) = \frac{\text{detected photons/ solid angle/s}}{\text{incident photons/area/s}} = \frac{\text{cm}^{2}}{\text{str}} \sim V = \text{sample volume}$ $\frac{J_{W}(q)}{J_{A}V} = \frac{J_{W}(q)}{J_{A} \cdot \text{area} \cdot \text{length}} = \frac{\text{detected photons/str/s}}{\text{incident photons} \cdot \text{area} \cdot \text{length/s/area}} = \frac{1}{\text{length} \cdot \text{str}}$ Area beam = <u>fraction of the photons scattered into unit solid angle</u> unit sample length length

= cross section / unit sample volume/ unit solid angle

 $= \frac{dS(q)}{VdW} \left[cm^{-1} \right]$ Often called the scattering cross section or the intensity

Intensity
$$= \frac{J}{J_0} \equiv \frac{dS}{dW} \left(\frac{cm^2}{str} \right)$$
 Roe
Intensity $= \frac{J}{VJ_0} = \frac{dS}{VdW} \left(\frac{1}{cm} \right)$ Experimentalists, Irena, Indra
Intensity $= (arbitrary constant) \times J$ Common Usage

 $d\Omega$

NX School 13

UNIVERSITY OF

Cincinnati

$$\mathcal{A} = \mathcal{A}_1 + \mathcal{A}_2 = \frac{b}{R} \mathcal{A}_0 e^{i2\pi(vt - x/\lambda)} + \frac{b}{R} \mathcal{A}_0 e^{i2\pi(vt - x/\lambda) - i2\pi s \cdot r}$$

$$= \frac{b}{R} \mathcal{A}_{0} \underbrace{e^{i2\pi(\upsilon t - x/\lambda)}}_{\text{drops out}} \left(1 + e^{-i2\pi s \cdot r}\right)$$

$$J = \mathcal{A}\mathcal{A}^* = (b\mathcal{A}_0)^2 (1 + e^{-i2\pi s \cdot r}) (1 + e^{i2\pi s \cdot r})$$

8/15/2013 NX School 15

UNIVERSITY OF

Cincinnati

Adding up the Phases

 $\mathcal{A}(\mathbf{s},\mathbf{r}) = (b\mathcal{A}_0) \times (1 + e^{-i2\pi\mathbf{s}\cdot\mathbf{r}})$ Two electrons

x and t terms suppressed

$\mathcal{A}(\mathbf{s},\mathbf{r}_{1\dots N}) = (b\mathcal{A}_0) \sum_{j=0}^{N} e^{-i2\pi\mathbf{s}\cdot\mathbf{r}_j}$

Many electrons

r

$$\mathcal{A}(\mathbf{s}, \mathbf{r}_{1...N}) = \mathcal{A}_0 \int_V bn(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \qquad \qquad \sum \to \int q = 2\pi s$$
$$= \mathcal{A}_0 \int_V \rho(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \qquad \qquad \rho(\mathbf{r}) = bn(\mathbf{r})$$

Amplitude is the Fourier transform of the SLD distribution (almost)

Electron density distribution $n(\mathbf{r}) =$ number of atoms in a volume element $d\mathbf{r} = dx dy dz$ around point **r**.

 $\frac{atoms}{cm^3}$

Scattering length density distribution $\rho(\mathbf{r}) = \text{scattering length in a volume}$ element $d\mathbf{r} = dx \, dy \, dz$ around point **r**.

$$\frac{atoms}{cm^3} \cdot \frac{cm}{atom} = cm^{-2}$$

 $\frac{\mathcal{A}(q)}{\mathcal{A}_0} = \int b(\mathbf{r})n(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} = \int \rho(\mathbf{r})e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}$ Fourier transform of Can't be measured the scattering length density distribution (r) $\rho(\mathbf{r})$ $I_{scatt}(\boldsymbol{q}) = \frac{J_{\Omega}(\boldsymbol{q})}{J_{\Omega}} = \left|\mathcal{A}(\boldsymbol{q})\right|^{2} = \left|\int \rho(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}\right|^{2}$ Can't be inverted

What we measure: Square of the Fourier transform of the SLD distribution

$$I_{scatt} = \grave{0} G_n(\mathbf{r}) e^{-iqr} d\mathbf{r} \qquad \Gamma_n(r) = \int n(u)n(u+r) du$$

$$q^{-1} 0 \qquad \text{See slide 43}$$

Scattering from Spherical Particle(s)

Particle in Dilute Solution

$$\mathcal{A}(q) = \frac{4\pi}{q} (\rho_2 - \rho_1) \int_0^R r \sin(qr) dr + \rho_1 \int_0^{R_v} r \sin(qr) dr$$
$$= \underbrace{(\rho_2 - \rho_1)}_{\text{contrast}} v \frac{3(\sin qR - qR \cos qR)}{(qR)^3} + \rho_1 V \underbrace{\frac{3(\sin qR_v - qR_v \cos qR_v)}{(qR_v)^3}}_{=0 \text{ unless } qR \le 1}$$

Small-Angle Scattering from Spheres

$$\sin\theta = \frac{\lambda}{2d} \xrightarrow{d >> \lambda} \theta$$

Large object scatter at small angles

Petrovic, Z. S. *et al.* Effect of silica nanoparticles on morphology of segmented polyurethanes. *Polymer* 45, 4285-4295, (2004)

8/15/2013 NX School 20

Guinier Radius

$$\mathcal{A}(q) = \frac{\mathbf{A}(q)}{\mathbf{A}_0} = \int \mathsf{D} r(\mathbf{r}) e^{-iq \cdot \mathbf{r}} d\mathbf{r}$$
$$I(q) = \left| \mathcal{A}(q) \right|^2 = \mathsf{D} r^2 v^2 \left[1 - \frac{1}{3} q^2 R_g^2 + \cdots \right]$$
 Derived in 5.2.4.1

$$R_g^2 = \frac{1}{v} \int r^2 S(\mathbf{r}) d\mathbf{r} \quad \text{for any shape}$$
$$S(\mathbf{r}) = \begin{bmatrix} \dot{i} & 1 & r \in R & \ddot{u} \\ \dot{i} & 0 & r > R & \dot{p} \end{bmatrix}$$

$$R_g = \sqrt{\frac{3}{5}} R_{hard}$$

Guinier Fits

8/15/2013 NX School 22 Guinier radius

Radius-of-Gyration

Dense packing: Correlated Particles

Colloidal Silica in Epoxy

Using R_G: Agglomerate Dispersion

D.W. Schaefer, D. Kohls and E. Feinblum, *Morphology of Highly Dispersing Precipitated* 8/15/2013 *Silica: Impact of Drying and Sonication.* J Inorg Organomet Polym, 2012. 22(3): p. 617-623.) NX School25

hard agglomerate

Hierarchical Structure from Scattering

Fractal description of disordered objects

Mass Fractal Dimension = d

Surface Fractal Dimension

Sharp interface

fractal or self-affine surface

UNIVERSITY OF Cincinnati

Scattering from Fractal Objects: Porod Slopes

Porod Slope for Fractals

 $I(q) = q^{d_s - 2d_m}$

- $1 \leq Slope \leq -3$

	Structure	Scaling Relation	Porod Slope= $d_s - 2d_m$ qR >> 1
Smooth Surface		$d_{\rm m} = 3$ $d_{\rm S} = 2$	- 4
Rough Surface		$d_{\rm m} = 3$ $2 < d_{\rm S} \le 3$	- 3 ≤ Slope ≤ - 4

 $1 \le d_{\rm s} = d_{\rm m} \le 3$

Mass Fractal

Scattering from colloidal aggregates

Precipitated Silica

Aggregates are robust

What is the ideal aggregate size?

How valid are the cartoons? What are the implications of morphology for material properties?

Answers come from Small-Angle Scattering.

Schaefer, D.W. and R.S. Justice, How nano are nanocomposites? Macromolecules, 2007. 40(24): p. 8501-8517.

 α = aspect ratio

0.01% Loading CNTs in Bismaleimide Resin

NX School 36

838-100-2 5.0kV x100k SE 12/5/05

500nm

0.05% Carbon in Bismaleimide Resin

TEM of Nanocomposites

Hyperion MWNT in Polycarbonate

Pegel et al. Polymer (2009) vol. 50 (9) pp. 2123-2132

Morphology and Mechanical Properties

Halpin-Tsai, random, short, rigid fiber limit

$$E_{d} = \frac{E_{c}}{E_{m}} = 1 + 0.4 af \qquad a = 4.5$$
$$@ 1 + 2f$$

No better than spheres

Schaefer, D.W. and R.S. Justice, How nano are nanocomposites? Macromolecules, 2007. 40(24): p. 8501-8517.

CNTs in Epoxy

^{8/15/2013} Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Schulte, K. *Comp. Sci. & Tech.* 2005, 65, (15-16), 2300-2313. NX School 40

Don't Believe the Cartoons

Schaefer, D.W. and R.S. Justice, How nano are nanocomposites? Macromolecules, 2007. 40(24): p. 8501-8517.

If you want to determine the morphology of a disordered material

use small-angle scattering.

Correlation Functions

Scattering cross section is the Fourier transform of the ensemble average of the correlation function of the fluctuation of scattering length density.

$$G_{r}(0) = \left\langle \dot{\mathbf{0}} \ r(\mathbf{v}) \ r(\mathbf{v}) d\mathbf{v} \right\rangle = \left\langle r^{2} \right\rangle V$$
$$G_{r}(4) = \left\langle \dot{\mathbf{0}} \ r(\mathbf{v}) \ r(\mathbf{v} + 4) d\mathbf{v} \right\rangle = \left\langle r \right\rangle \left\langle r \right\rangle V = \left\langle r \right\rangle^{2} V$$

$$I(\boldsymbol{q}) = \bigotimes_{-\neq}^{\neq} \operatorname{G}_{r}(\boldsymbol{r}) e^{-i\boldsymbol{q} \cdot \boldsymbol{r}} d\boldsymbol{r} = \neq$$

r

Extending to infinite integrals

$$I(\mathbf{q}) = \mathbf{\hat{0}}_{v} \mathbf{G}_{r}(\mathbf{r}) e^{-iq\mathbf{r}} d\mathbf{r} = \mathbf{\hat{0}}_{v} \overset{\acute{e}}{\mathbf{G}}_{r}(\mathbf{r}) - \langle r \rangle^{2} V + \langle r \rangle^{2} V \overset{\acute{u}}{\mathbf{\hat{u}}} e^{-iq\mathbf{r}} d\mathbf{r}$$

$$= \mathbf{\hat{0}}_{e} \overset{\acute{e}}{\mathbf{G}}_{r}(\mathbf{r}) - \langle r \rangle^{2} V \overset{\acute{u}}{\mathbf{\hat{u}}} e^{-iq\mathbf{r}} d\mathbf{r} + \langle r \rangle^{2} V \overset{\acute{o}}{\mathbf{\hat{0}}} \mathbf{\hat{0}} \overset{\acute{e}}{\mathbf{\hat{0}}} \overset{\acute{e}}{\mathbf{\hat{0}}} e^{-iq\mathbf{r}} d\mathbf{r}$$

$$= \mathbf{\hat{0}}_{e} \overset{\acute{e}}{\mathbf{G}}_{r}(\mathbf{r}) - \langle r \rangle^{2} V \overset{\acute{u}}{\mathbf{\hat{u}}} e^{-iq\mathbf{r}} d\mathbf{r} + \langle r \rangle^{2} V \overset{\acute{o}}{\mathbf{\hat{0}}} \mathbf{\hat{0}} \overset{\acute{e}}{\mathbf{\hat{0}}} \overset{\acute{e}}{\mathbf{\hat{0}}} e^{-iq\mathbf{r}} d\mathbf{r}$$

$$= \mathbf{\hat{0}}_{e} \overset{\acute{e}}{\mathbf{\hat{G}}}_{r}(\mathbf{r}) e^{-iq\mathbf{r}} d\mathbf{r} \qquad q^{1} \mathbf{0}$$

$$= \mathbf{\hat{0}}_{e} \overset{\acute{e}}{\mathbf{\hat{0}}} \mathbf{G}_{h}(\mathbf{r}) e^{-iq\mathbf{r}} d\mathbf{r} \qquad q^{1} \mathbf{0}$$

$$= \mathbf{\hat{0}}_{e} \overset{\acute{e}}{\mathbf{\hat{0}}} \mathbf{\hat{0}}_{h}(\mathbf{r}) = \mathbf{\hat{0}}(\mathbf{r}) - \langle \rho \rangle$$

 Γ_{η} = Autocorrelation of the <u>fluctuation</u> of the scattering length density.

Scattering is determined by fluctuations of the density from the average

A dilute gas does not "diffract" (scatter coherently).

SAXS from Polymers

Scattering from Polymer Coils

NX School 48

Worm-like Chain

Correlation Functions

Scattering Cross section is the Fourier Transform of the ensemble average of the correlation function of the scattering length density (Patterson Function)