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1.  Fundamental excitations in solids

- phonons

- spin-waves (and more)

2.  The basic techniques

- triple-axis

- time-of-flight

3.  A few case studies



Basic experimental considerations

For measuring fundamental excitations in solids,
one of the most important tools is
inelastic neutron scattering.

Advantages over inelastic x-ray scattering:
1) Neutrons achieve better energy resolution

- especially with cold neutrons (down to few eV)
2) Neutrons have large (and well understood) 

scattering cross-section with magnetic 
moments (-- neutrons rule magnetism!)

Disadvantages of neutron scattering:
1) typically require large samples/crystals
2) cannot take advantage of x-ray resonant scattering



A couple excitations of interest in solids:
phonons and spin-waves

Let’s start with phonons:
- a collective motion of atoms in a solid
- the normal modes of vibration may be 

longitudinal or transverse
(In liquids, only longitudinal excitations can  
propagate. Here, I will only focus on solids.)

Measuring the phonons can tell us about 
- interatomic potentials & bonding 
- structural phase transitions (soft modes) 
- many-body physics (eg. electron-phonon coupling) 

longitudinal transverse



Phonon dispersion relation in gold

J. W. Lynn, H. G. Smith, and R. M. 
Nicklow, Phys. Rev. B 8, 3493 (1973). 



The scattering cross section (coherent, one-phonon)

Can separately measure longitudinal and transverse modes

(Adapted from 
Bruce Gaulin,
NXS 2011)



HB1 triple-axis spectrometer at the
High Flux Isotope Reactor at Oak Ridge

Your sample
goes in here

Example of a triple-axis spectrometer
for inelastic scattering



Triple-axis neutron scattering technique

Monochromator/analyzer crystals typically pyrolytic graphite (PG).
Filters (also PG) are placed in beam to remove /2 neutrons.



Using neutrons to measure a dispersion surface



The triple-axis measurement concept is straightforward,
however, for any experiment, we must understand the
resolution of the instrument.

ki kf

The neutrons in the incident beam have
a spread in ki (magnitude and direction).
Same with the outgoing beam and kf.

The instrumental resolution function 
(spread in Q and ) is an ellipsoid



A little more on the resolution function

Consider 14.7 meV (2.67 A-1) incident neutrons, and scattering
process with Q ~ 1 A-1 and  ~ 1 meV.  A depiction of 
the scattering triangle is below.

ki

- kf

Answer: the one on the right. A spread in the magnitude of kf (or ki) mostly 
couples to the direction transverse to Q.

Fact:  the resolution ellipsoid is tilted in 
(Q,) spaceQ

Question: which of the following is more
correct?

 

Qlong Qtrans



Different ways to scan through the dispersion surface

Resolution “focusing”

q



constant-Q versus
constant-

For a constant-Q scan, the intrinsic -width (after deconvolving the resolution)
is zero for harmonic phonons. For real phonons with a finite lifetime, we can
introduce a finite width (say, using a damped oscillator model). The width
in energy of the peak is proportional to the inverse-lifetime of the excitation.



Example: Phonon lineshapes in conventional superconductors

Shapiro, Shirane, and Axe studied phonons in superconducting
niobium crystals with neutron scattering at energies below the SC gap.

Shapiro, et al, PRB 12, 4899 (1975)

Question: below Tc, did the phonon peaks become
a) sharper or
b) broader?



Example: Phonon lineshapes in conventional superconductors
Shapiro, et al, PRB 12, 4899 (1975)

The linewidth decreased below TC (life-time increased),
due to removal of decay channels with the metallic
electrons which are gapped out.



Magnetic order and excitations

The ferromagnetic and antiferromagnetic ground states typically break

a continuous symmetry (ie. Heisenberg and XY models).

The low energy excited states are referred to as “spin waves” and the 

quantum of excitation is a “magnon.”

Goldstone’s Theorem (1963):

The energy of very long-wavelength spin waves vanishes.
“Whenever the original Lagrangian has a continuous symmetry group, 
the new solutions have a reduced symmetry and contain massless bosons.”
“The massless particles … correspond to spin-wave excitation in which only
the direction of the [phase angle] makes infinitesmal oscillations”



Simple case: the Heisenberg ferromagnet

Here, the exchange parameter J(Ri-Rj) is positive and
may, in principle, couple spins beyond nearest neighbors.

is the exact ground state (a good quantum eigenstate).

By writing the Hamiltonian using raising and lower operators,
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it is clear that the fully aligned state



Simple case: the Heisenberg ferromagnet (cont’d)

The ground state has total spin NS.

The lowest energy excited states have total spin (NS-1).
For S=1/2, this may be thought of as having a single
flipped spin, which is shared by the ensemble of spins.

These low energy excitations are spin waves.
Classical picture:

Note: the energy ħ of the excitation depends
on the wavelength q.



Simple case: the Heisenberg ferromagnet (cont’d)

One can calculate the dispersion relation (q) using
linear spin wave theory (as seen in Lovesey, chapter 9).
(A convenient method is to use a Holstein-Primakoff
transformation of the spin operators to independent
boson operators.)

Result:

where

For interactions between nearest neighbors only:

where



Simple case: the Heisenberg ferromagnet (cont’d)

For cubic lattice (with lattice parameter a), the
dispersion at small q is quadratic in q:

where D = 2JSa2

(q)  gBH + Dq2

How can we measure this with neutron scattering?



The one-magnon neutron scattering cross-section
We saw that the magnetic neutron scattering cross-section
is related to the dynamic correlation function.
For spin waves, only the transverse terms in the correlation function
(ie., <Si

+Sj
-(t)> and <Si

-Sj
+(t)> ) give rise to inelastic scattering.

Result:

First term in sum corresponds to magnon creation and 
second term corresponds to magnon annihilation.



Pop quiz:

1) You measure an inelastic peak in several
Brilliouin zones at the same reduced q (note, 
the Q wavevector is not the same).  You notice
the intensity of the peak decreases rapidly as
Q gets larger.

You can conclude:
a) the peak is likely due to a spin-wave
b) the peak is likely due to a phonon

a) is correct
recall: the phonon peak intensity grows at Q2



The one-magnon neutron scattering cross-section
A few more notes about the one-magnon cross-section:

1) Roughly the same magnitude as inelastic scattering from phonons.
Also, takes similar form as sharp surfaces of dispersion.

2) Depends on the form factor of the magnetic ion as F2(Q)
which falls off with increasing Q.
Useful: can distinguish between excitations from spin waves 
and phonons (whose cross-section increases with Q) by
measurements in multiple Brillouin zones out to large Q.

3) Depends on the orientation factor where

This arises from the form of the neutron interaction with the spin.
Note, z is chosen to be the quantization axis of the spin
(which may be aligned using an applied field for the FM case).
For the Heisenberg FM, the spin waves are transverse modes
which are 2-fold degenerate.  Useful.



Triple-axis spectroscopy on
single crystals

- quadratic dispersion (FM in iron)
- overlap with acoustic phonons



Measurements at small q near (0,0,0) yield D.
Requirements:
1) A ferromagnet on a cubic lattice
2) Good energy- and Q- resolution

Using powder samples to extract the small q dispersion



Next “simple” case:
the nearest neighbor Heisenberg antiferromagnet

is not a quantum eigenstate.

Again, by writing the Hamiltonian using:
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it is clear that the Néel state
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Here, J is positive and the expected classical ground state

is also called the Néel state.



Next “simple” case:
the nearest neighbor Heisenberg antiferromagnet

Result:

Let’s use the Néel state as an approximate ground state
consisting of two sublattices (one with spin-up and one with
spin-down). 

Again, calculate the dispersion using linear spin wave theory.

For a simple cubic lattice (with lattice parameter a), the
dispersion at small q is linear in q:



v (m/msec) = 3.96 /  (A) 

We can measure a neutron’s wavelength by measuring its speed.
Can get resolutions of 1-5% of Ei.

(adapted from Bruce
Gaulin, NXS 2011)

Time-of-flight methods



Planning an experiment:
Time-of-flight versus triple-axis
Time-of-flight advantages:
1) Large detector banks give efficient collection of data

in a broad swath of (Q,) space.
- excellent for measuring dispersions throughout
multiple Brilliouin zones

2) Spallation sources are better at producing higher energy
neutrons (>100 meV) compared to reactors

Triple-axis advantages:
1) Extremely flexible

- can tailor resolution function with choice of energy, 
collimations, monochromator crystals,…

2) Excellent for focused studies of specific (Q,) coordinates
3) Polarized beam readily accessible



Neutron scattering from spin waves in the 
S=5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4

T. Huberman et al, PRB 72, 014413 (2005)

Measured using a time-of-flight technique on 
the MAPS spectrometer (ISIS, UK)



Neutron scattering from spin waves in the 
S=5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4

T. Huberman et al, PRB 72, 014413 (2005)

No dispersion along
zone boundary
(if only NN exchange)

Small gap at zone center
due to Ising-like anisotropy



Neutron scattering and S=1/2 spin chain

1-dim has the advantage of being relatively
simple for calculations.
- J can be accurately determined by comparing

Susceptibilty with Bonner-Fisher model

, et al.

Also, the dispersion relation of the low energy excitations was calculated
by des Cloizeaux &Pearson (Phys. Rev. 128, 2131 (1962)):

“CPC”

(q) =  J |sin(qc)| In contrast with:  (q) =  J |sin(qc)|
for classical spin waves



Neutron scattering and S=1/2 spin chain

A recurring theme in the early days:
synergy between theory and neutron experiments

, et al.

Question at the time: are these spin-wave excitations?



Neutron scattering and S=1/2 spin chain

Magnetic scattering

, et al.

Question:
The asymmetry of the inelastic 
scatttering is:
1) an instrumental artifact--a 
resolution effect
2) real, indicating new physics

Answer: It is real physics



Neutron scattering and S=1/2 spin chain

Magnetic scattering

, et al.

Phonon scattering

The asymmetry in the magnetic 
scattering is real.
 the magnetic peaks are not

due to spin-waves
(it’s a sharp lower bound to
a continuum scattering)



The quantum spin liquid in one-dimension 

The excitations are novel: spinons (not spin-waves).

For S=1/2 antiferromagnetic (AF) Heisenberg chain

An S=1 excitation breaks up
into two S=1/2 spinons

gapless at the
AF wave vector

/a/a
q

spinon continuum

Spin excitation spectrum

No long-range Néel order, even at T=0 K!  (H. Bethe, 1931)
Ground state: superposition of singlets, short-range AF order



Neutron scattering and S=1/2 spin chain

Clear observations of a
continuum of spinon excitations.

Has well-defined lower and
upper bounds.

, et al.

Using time-of-flight techniques:



The main ingredient for geometrical frustration:

Lattices based
on triangles

?
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J > 0 (antiferromagnetic)

Case study:  A novel spin wave mode due to

geometrical frustration on the kagome lattice



A few more basics: 120° arrangement of spins on
each triangle minimizes energy

Edge sharing

Kagomé
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Broken symmetries in ordered state:
1) Spin rotation
2) Chirality

Many chiral patterns.
One possible state:
“Q = 0”Higher degree of degeneracy
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One triangle constrains 
entire lattice
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Example: spin-waves for classical spins on kagomé
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 Excitations usually disperse:

E  q  for antiferromagnet
Due to frustrated geometry,
a dispersionless mode exists

zero-energy 
mode

Harris, Kallin, Berlinsky, PRB 45, 2899 (1992)



Model calculation with test parameters:

out of
plane

in-plane

out of
plane

For real materials, add spin-anisotropy:
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J=2 meV
D=0.1 meV
E=0.1 meV 1

3

2

 The zero-mode gets "lifted"



a1a2
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Fe3+ S=5/2
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= ?

• Single, undistorted
kagomé layers

• Stoichiometrically pure
• Crystals can be made

Studying crystals of the classical kagome 
antiferromagnet:  iron jarosite KFe3(OH)6(SO4)2

K Matan et al, PRL 96, 247201 (2006)
D Grohol et al, Nature Materials 4, 323 (2005)



The Dzyaloshinski–Moriya interaction
- dominant perturbation to Heisenberg Hamiltonian
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Dz :  gives XY-like anisotropy,  selects chirality

Dy :  gives Ising-like anisotropy,  cants spins (weak FM)



Constant-Q and constant-E scans taken on HB1 at HFIR
4 parameters (J, J2 & Dz, Dy components) determine  
all peak positions

Novel “dispersionless” modeGaps at zone center

Inelastic neutron scattering from spin wave modes



J = 3.18 (4) meV

J2 = 0.11 (1) meV

Dz = -0.196 (4) meV
|Dy| = 0.197 (2) meV

1) “Flat” dispersion of a mode indicative of a localized excitation
(here, due to frustration)
Other local excitations: Ising magnet, crystal fields, rattler modes

verified with a momentum-resolved probe

Spin waves in iron jarosite (S=5/2 kagomé lattice)

T= 10 K K Matan, YL, et al.,
PRL 96, 247201 (2006)

(Dzyaloshinski-Moriya int.)



The lynchpin experiment:

Inelastic neutron scattering on single crystals
(find spinons in a 2D kagome magnet !)

Obstacles for this experiment:
1) Small spin value S=1/2
2) No sharp peaks expected in  or Q
3) No recipe for crystals

Question: can spinons exist in a two-
dimensional antiferromagnet?



S=1/2 Cu2+ kagomé layers separated by
non-magnetic Zn2+ layers

An ideal S=1/2 kagomé lattice material
Herbertsmithite (ZnCu3(OH)6Cl2)

Shores et al., J. Am. Chem. Soc. 127, 13 462 (2005)
Helton et al, Phys. Rev. Lett., 98, 107204 (2007)

This has the ideal kagomé structure



2cm

All 15 crystals (1.25 g total mass) coaligned within 2 degrees
(the divergence of the neutron beam is ~1-2 degrees)

Inventing and perfecting a new crystal
growth method --the "hydrothermal zone"

The importance of single crystals for neutron scattering
T. H. Han et al.,
PRB 83, 100402(R) (2011)



Multi Channel Spectroscopic Detector

4810/26/2010

A powerful variation of the triple-axis technique:
New high-throughput multi-axis crystal spectrometer MACS

(at NIST Center for Neutron Research)

For measurements of spinons, low background is key



Expectations for the magnetic excitation spectrum

S=1/2 square lattice

ordinary spin-waves

=0
slice

=J/5

=J/2

S=1/2 kagomé lattice

???

=0
no Bragg
peaks

qx

qy

Tchernyshyov et al (2010) 

A possible ≠0 slice (theory)



Spin correlations of the S=1/2 kagomé antiferromagnet

The observed scattering is:
- intrinsic to the kagomé spins

(not just due to impurities)

- diffuse
 no sharp dispersion surfaces !

Re:
magnetic coupling is ~17 meV

 = 6 meV

 = 2 meV

 = 0.75 meV

T = 1.6 K

),( Q


SPlots of (background measured with empty sample holder
and subtracted)

T Han, YL, et al,
Nature 492, 406 (2012)



A continuum of spin excitations in a two-dim magnet
Direct evidence for spinons (fractionalized excitations)

S=1/2 
ZnCu3(OD)6Cl2

Integrating up to 11 meV,
we see 20% of the total 
moment



Brief conclusions

1)  Inelastic neutron scattering: ideal probe of phonons
and magnetic excitations of all kinds

2)  Different techniques: (variations of triple-axis and time-of-flight)
think critically about your requirements
(resolution, sample size, etc…)

3)  Enjoy your experiments. Good luck!


