Quasielastic Neutron Scattering

Ken Herwig

Instrument and Source Design Division Oak Ridge National Laboratory

August 19, 2013

OUTLINE

- Background the incoherent scattering cross section of H
- Neutrons and QENS
- Experiment Design
- Connection to Molecular Dynamics Simulations
- The Elastic Incoherent Structure Factor (EISF)
- The Role of Instrumentation
- Restricted Diffusion Example Tethered Molecules
- References and Summary

Incoherent and Coherent Scattering

- Origin incoherent scattering arises when there is a random variability in the scattering lengths of atoms in your sample – can arise from the presence of different isotopes or from isotopes with non-zero nuclear spin combined with variation in the relative orientation of the neutron spin with the nuclear spin of the scattering center
- <u>Coherent scattering</u> gives information on <u>spatial correlations and collective</u> motion.
 - Elastic: Where are the atoms? What are the shape of objects?
 - Inelastic: What is the excitation spectrum in crystalline materials e.g. phonons?
- Incoherent scattering gives information on single-particles.
 - Elastic: Debye-Waller factor, # H-atoms in sample, Elastic Incoherent Structure Factor – geometry of diffusive motion (continuous, jump, rotations)
 - Inelastic: diffusive dynamics, diffusion coefficients.
- Good basic discussion:
 - "Methods of x-ray and neutron scattering in polymer science", R.-J. Roe, Oxford University Press. (available)

- "Theory of Thermal Neutron Scattering", W. Marshall and S. W. Lovesey, Oxford Managed by UT-Bittelle for the U.S. IUniversity Press (1971). (out of print) eutron school August 2013

Neutron Properties – H is our friend!

- Isotopic sensitivity of H
 - H has a large incoherent neutron scattering cross-section
 - H and D have opposite signed scattering lengths _
 - D has a much smaller cross section
- The signal from samples with H are often dominated by the incoherent scattering from H
- The Q and ω ranges probed in QENS experiments is well-suited to the "self" part of the dynamic structure factor for the U.S. Department of Energy

Quasi-elastic Neutron Scattering (Why Should I Care?)

- Applicable to wide range of science areas
 - Biology dynamic transition in proteins, hydration water
 - Chemistry complex fluids, ionic liquids, porous media, surface interactions, water at interfaces, clays
 - Materials science hydrogen storage, fuel cells, polymers, proton conductors
- Probes true "diffusive" motions
- Range of analytic function models
 - Useful for systematic comparisons
- Close ties to theory particularly Molecular Dynamics simulations
- Complementary
 - Light spectroscopy, NMR, dielectric relaxation
- Unique Answers Questions you cannot address with other methods

Neutrons AND (QENS OR quasi-elastic OR quasielastic)

Quasi-Elastic Neutron Scattering · Neut

National x-ray/neu

7 Managed by UT-Battelle for the U.S. Department of Energy

- Neutron exchanges small amount of energy with atoms in the sample
- Harmonic motions look like flat background
- Vibrations are often treated as Inelastic Debye-Waller Factor
- Maximum of intensity is always at $\omega = 0$
- Samples the component of motion along \overrightarrow{Q}
- Low-Q typically less than 5 Å⁻¹

Experiment Design

- σ is the microscopic cross section (bn/atom) 10⁻²⁴ cm²/atom
- *n* is the number density (atom/cm³)
- Σ is the macroscopic cross-section (cm⁻¹)

$\Sigma = n\sigma$

The transmission, *T*, depends on sample thickness, *t*, as:

$$T = \exp(-\Sigma t)$$

• Good rule of thumb is T = 0.9

5 – 15 mmole H-atoms for ≈10 cm² beam (BaSiS, HFBS, CNCS, DCS)

An Example – Water

$$n = \frac{1 \text{ gm}}{\text{cm}^{3}} \times \frac{1 \text{ mole}}{18 \text{ gm}} \times \frac{6.02 \times 10^{23}}{\text{mole}} = \frac{3.34 \times 10^{22}}{\text{cm}^{3}}$$
$$\sigma = 2 \times \left(80 \times 10^{-24} \text{ cm}^{2}\right)$$
$$\Sigma = \sigma n = \frac{5.34}{\text{cm}}$$

sample thickness =
$$t = \frac{-\ln(0.9)}{5.34} = 0.2 \text{ mm}$$

9 Managed by UT-Battelle for the U.S. Department of Energy

QENS Spectra

10 Managed by UT-Battelle for the U.S. Department of Energy

Incoherent Intermediate Scattering Function, *S(Q, \varnothin)*, and Molecular **Dynamics Simulations**

- Intermediate Scattering Function
 - time dependent correlation function
 - incoherent scattering -> no pair correlations, self-correlation function
 - calculable from atomic coordinates in a Molecular Dynamics Simulation

$$I_{inc}(\mathbf{Q},t) = \frac{1}{N} \sum_{i} \left\langle \exp\{i\mathbf{Q} \bullet \mathbf{R}_{i}(t)\} \exp\{-i\mathbf{Q} \bullet \mathbf{R}_{i}(0)\} \right\rangle$$

- $S_{inc}(Q, \omega)$ - the Fourier transform of $I_{inc}(Q, t)$

$$S_{inc}(\mathbf{Q},\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} I_{inc}(\mathbf{Q},t) \exp(-i\omega t) dt$$

11 Managed by UT-Battelle for the U.S. Department of Energy

QENS and Molecular Dynamics Simulations

 Same atomic coordinates used in classical MD are all that is needed to calculate *I_{inc}(Q,t)*

1,3 diphenylpropane tethered to the pore surface of MCM-41

The Elastic Incoherent Structure Factor (EISF)

- A particle (H-atom) moves out of volume defined by 2π/Q in a time shorter than set by the reciprocal of the instrument sensitivity, dω(meV) gives rise to quasielastic broadening.
- The EISF is essentially the probability that a particle can be found in the same volume of space at some subsequent time.
- The ratio of the Elastic Intensity to the total Intensity

$$EISF = \frac{A_E}{A_E + A_Q}$$

13 Managed by UT-Battelle for the U.S. Department of Energy

QENS and Neutron Scattering Instruments

- Probe Diffusive Motions
 - Length scales set by Q, 0.1 Å⁻¹ < Q < 3.7 Å⁻¹, 60 Å > d > 1.7 Å.
 - Time scales set by the width of instrument energy resolution, typically at least 0.1 meV (fwhm) but higher resolution -> longer times/slower motion
- Energy transfers ~ ± 2 meV (or less)
 - High resolution requirements emphasizes use of cold neutrons (but long λ limits Q)
 - Incident neutron wavelengths typically 4 Å to 12 Å (5.1 meV to 0.6 meV)
- Why a variety of instruments? (Resolutions vary from 1 μeV to100 μeV)
 - Terms in the resolution add in quadrature typically primary spectrometer (before sample), secondary spectrometer (after the sample)
 - Improvement in each resolution term cost linearly in neutron flux (ideally)
 - Optimized instrument has primary and secondary spectrometer contributions approximately equal
 - Factor of 2 gain in resolution costs at a minimum a factor of 4 in flux

Role of Instrumentation

- Currently about 25 neutron scattering instruments in the world useful for QNS (6 in the U.S., including NSE)
- U.S. instruments Opportunity is Good- Competition is High
 - NIST Center for Neutron Research
 - Disc Chopper Spectrometer
 - High Flux Backscattering Spectrometer
 - Neutron Spin Echo
 - Spallation Neutron Source
 - BaSiS near backscattering spectrometer (3 µeV)
 - Cold Neutron Chopper Spectrometer (CNCS) (10 100 μeV)
 - Neutron Spin Echo (*t* to 400 nsec)
- Trade-offs
 - Resolution/count rate
 - Flexibility
 - Dynamic range
 - Neutron λ vs Q
 - large $\lambda \rightarrow$ high resolution -> long times/slow motions
 - large λ –> limited Q-range, limited length scales

The High-Resolution Neutron Spectrometer Landscape

Cold Neutron Chopper

16 Managed by UT-Battelle for the U.S. Department of Energy National x-ray Neutron Spin Echo

Restricted Diffusion – Tethered Molecules

Samples – typical 0.7 g

240 K < T < 340 K

Simple Fit – Lorentzian + δ

Pore Diameter (nm)	Coverage (molecules/nm²)
1.6	0.85 (saturation)
2.1	1.04 (saturation)
3.0	0.60 0.75 1.61 (saturation)

Elastic Scans – Fixed Window Scans

Simple Fit to data (HFBS – NCNR) 30 Å diameter pore, 320 K, Q = 1 Å⁻¹

19 Managed by UT-Battelle for the U.S. Department of Energy

EISF - 30 Å DPP sample, saturation

20 Managed by UT-Battelle for the U.S. Department of Energy

Lorentzian $\Gamma(Q)$

21 Managed by UT-Battelle for the U.S. Department of Energy

Simple Analytical Model – e.g.
Diffusion in a Sphere
$$S_{s}(Q, \omega, r, D) = A_{0}^{0}(Qr)\delta(\omega) + \frac{1}{\pi} \sum_{(l,n)\neq(0,0)} (2l+1)A_{n}^{l}(Qr) \frac{(x_{n}^{l})^{2} D/r^{2}}{\left[\left(x_{n}^{l}\right)^{2} D/r^{2}\right]^{2} + \omega^{2}}$$
EISF: $A_{0}^{0}(Q) = \left[\frac{3j_{1}(Qr)}{Qr}\right]^{2}$

22 Managed by UT-Battelle Volino and Dianoux, Mol. Phys. 41, 271-279 (1980). National x-ray/neutron school August 2013

Extend to a Sum over Spheres of Varying Size (15 H-atoms)

for the U.S. Department of Energy

DPP – 29 Å diameter pores – 370 K (BaSiS - SNS) – Beyond the EISF – Fitting the Model to the Full Data Set

24 Managed by UT-Battell. for the U.S. Department of Energy

\boldsymbol{R}_{M} – How extended is the motion?

- R_M decreases with increasing pore diameter!
- *R_M* generally is larger at higher DPP surface coverage
- Small pores and high coverage tend to drive DPP into the pore center where there is more volume available for motion

25 Managed by UT-Battelle for the U.S. Department of Energy

D_M - How fast is the motion?

- *D_M* increases with pore diameter while the radius decreases
 - Diffusion in the pore volume depends on how crowded it is
- *D_M* increases with surface coverage in large pores
 - More molecules are forced into the more open volume of the pore and away from the pore surface

²⁶ Managed by UT-Battelle for the U.S. Department of Energy

Two Instruments – Two Resolutions – Two Dynamic Ranges – 3.0 nm 320 K

E.J. Kintzel, et al., J. Phys. Chem. C 116, 923-932 (2012).

/neutron school August 2013

Two Instruments

T (K)

Geometry – nearly identical –

Example 2: Dendrimers – Colloidal Polymer – pH responsive

(targeting

(imaging)

Dendrimers bind to receptors on HIV virus preventing infection of T cells. Sharpharpm C & E News 83, 30 (2005)

"Trojan horse" – folic acid adsorbed by cancer cell delivering the anti-cancer drug as well

James R. Baker Jr., Univ. of Michigan Health Sciences Press Release

SANS Results – Global Size Constant, Redistribution of Mass

Samples: 0.05 gm protonated dendrimer in 1 ml deuterated solvent

Molecular Dynamics Simulations

Basic

Acidic

Methodology

- Determine center-of-mass translational motion with pulsed field-gradient spin echo NMR
 - Could have been determined directly from QENS measurement but this tied down parameter set
- Measure (dendrimer + deuterated solvent) (deuterated solvent) -> dendrimer signal
- Vary pH to charge dendrimer amines ($\alpha = 0$ (uncharged), $\alpha =$ 1 (primary amines charged), $\alpha = 2$ (fully charged))

 $S(Q,\omega) = S_{int}(Q,\omega) \otimes S_{COM}(Q,\omega)$

modeled localized internal motion as

$$S_{\text{int}}(Q,\omega) = A_0^0(Qr)\delta(\omega) + \frac{1}{\pi} \sum_{(l.n)\neq(0,0)} (2l+1)A_n^l(Qr) \frac{(x_n^l)^2 D/r^2}{\left[(x_n^l)^2 D/r^2\right]^2 + \omega^2}$$

$$\frac{\log d}{\log UT-Battelle}{\log U.S. Department of Energy}$$
National x-ray/neutron school August 2013

31 Managed by UT-Battelle for the U.S. Department of Energy

Localized Motion of Dendrimer Arms

 $D = \begin{bmatrix} 1.60 \pm 0.03 \ 10^{-10} \ m^2/s & \alpha = 0 \\ 2.58 \pm 0.03 \ 10^{-10} \ m^2/s & \alpha = 1 \\ 3.11 \pm 0.03 \ 10^{-10} \ m^2/s & \alpha = 2 \end{bmatrix}$ Localized motion increases as amines are charged!

32 Managed by UT-Battelle for the U.S. Department of Energy

Reference Materials - 1

- Reference Books
 - Quasielastic Neutron Scattering, M. Bee (Bristol, Adam Hilger, 1988).
 - Methods of X-Ray and Neutron Scattering in Polymer Science, R.
 J. Roe (New York, Oxford University Press, 2000).
 - Quasielastic Neutron Scattering and Solid State Diffusion, R. Hempelmann (2000).
 - Quasielastic Neutron Scattering for the Investigation of Diffusive Motions in Solids and Liquids, Springer Tracts in Modern Physics, T. Springer (Berlin, Springer 1972).

Reference Materials - 2

- Classic Papers
 - L. Van Hove
 - Phys. Rev. 95, 249 (1954)
 - Phys. Rev. 95, 1374 (1954)
 - V. F. Sears
 - Canadian J. Phys. 44, 867 (1966)
 - Canadian J. Phys. 44, 1279 (1966)
 - Canadian J. Phys. 44, 1299 (1966)
 - G. H. Vineyard
 - Phys. Rev. 110, 999 (1958)
 - S. Chandrasekhar
 - "Stochastic Problems in Physics and Astronomy", Rev. Mod. Phys. **15**, 1 (1943) (not really QNS but great reference on diffusion models)
- Data Analysis DAVE NIST Center for Neutron Research
 http://www.ncnr.nist.gov/dave/

SUMMARY

- QENS is an excellent technique to measure diffusive dynamics
 - Length scales/geometry accessible through Q-dependence
 - Many analytic models form a framework for comparison and parametric studies
 - Large range of time scales (sub-picosecond < t < nanosecond (100's nsec for NSE)
 - H-atom sensitivity
- Instrument selection is a critical decision the resolution must match the time scale of the expected motion
- World-class instrumentation is currently available in the U.S.
- Natural connection to theory (Molecular Dynamics Simulations)
- Analysis Software DAVE at the NCNR at NIST available from the NCNR Web site

