
Inelastic x-ray scattering, IXS

Esen Ercan Alp

Advanced Photon Source,  
Argonne National Laboratory

alp@anl.gov

Neutron and X-Ray Summer School
August 10-24, 2013

Argonne and Oak Ridge National Laboratory



Inelastic X-Ray Scattering & Spectroscopy @ APS

2

IXS
NRIXS

XRS
ComptonNRIS XES
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• Nuclear Resonant Inelastic X-Ray scattering, NFS, NRIXS:  Sectors 3, 16, (30)
• Momentum Resolved High Energy Resolution IXS (HERIX) Sectors 3, 30
• X-Ray Raman Scattering, XRS (LERIX): Sectors 13, 16, 20
• X-Ray Emission Spectroscopy, XES (MINIX): Sectors 13, 16, 17
• Resonant Inelastic X-Ray Scattering, RIXS (MERIX): Sectors 9, 30 --> 27



IXS: Inelastic X-Ray Scattering
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A set of vastly different techniques based on measuring exact:

i) energy, and 
ii) momentum transfer in a scattering experiment. 

It provides thermodynamic, elastic, electronic and chemical  
information about the scattering system.

Since X-ray energies extend from a few eV to a few hundred keV, we  
need to measure energy loss or gain with a resolution changing from 

nano-eV 
meV, 
eV, and 
keV.



IXS: Inelastic X-Ray Scattering
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1920-1930 : P. Debye, A. Compton and J. DuMond : 

1960-1990: Development of 
i) pure silicon and germanium with Δd/d ~ 10-9, 
ii) sophisticated high resolution monochromators, detectors
iii) crystal analyzers and 
iiv) the third generation synchrotrons

1990-present: More than a dozen new instruments around the world 

IXS can measure 
•  nuclear hyperfine interactions (neV), 
•  collective excitations of atoms such as phonons (meV), 
•  electronic excitations like plasmons or magnons (eV), 
•  core-valence electron boundary to reconstruct the Fermi surface (keV) 
•  determine orbital occupancies (keV)
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175 keV 

incident photons 
Courtesy: Y. Sakurai, Spring-8
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Inelastic X-Ray Scattering: A plethora of different techniques
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IXS

Non-Resonant Resonant

!E      ~ keV 
Compton

      ~ meV
     IXS 
!E

           NRS
!E ~ 1 meV

               RIXS
!E ~ 100 meV

2

TABLE I. Theoretically relaxed and experimentally observed

z-position for La and As atoms, and the associated magnetic

moment per Fe atom and total energy. In each case the exper-

imental lattice parameters of (a = 4.03533Å, c = 8.74090Å)

were used.
18,19

NM SDW Striped Checkerboard Exp.
18,19

zLa 0.13993 0.13875 0.13883 0.13887 0.14154

zAs 0.63829 0.64820 0.64770 0.64401 0.6512

µFe 0.0 2.32 2.30 1.91 0.36-0.78

E(Ry) 0.0 -0.032 -0.033 -0.009

LaFeAsO single crystals were synthesized in an NaAs
flux at ambient pressure as described elsewhere.12 Inelas-
tic x-ray scattering measurements were performed on the
HERIX instrument at sector 30-ID-C of the Advanced
Photon Source at Argonne National Laboratory with in-
cident beam energy of 23.724 keV and with an energy
resolution of 1.44 meV.14,15 Scattering is described in
terms of the tetragonal P4/nmm unit cell where Q =
2π
a (hi+ kj) + 2π

c lk. The vectors i, j, and k are the
fundamental translation unit vectors in real space. Be-
low TS=156K, the sample transforms to an orthorhom-
bic structure with space group Cmma.16,17 The relation-
ship between the Miller indices in the tetragonal P4/nmm
and orthorhombic Cmma phase are, h = (Ho +Ko) , k =
(Ho −Ko), and l = Lo. Below the magnetic ordering
temperature TN=138K, the sample develops long-range
spin-density wave (SDW) AFM order. The sample was
mounted in the (hhl) plane in a displex for low temper-
ature studies, and the displex was attached to a 4-circle
diffractometer.

Based on previous studies of c-axis polarized phonons
in CaFe2As2, we focused our study on phonon branches
along the (0, 0, 8 + ξ) direction in the Brillouin zone. In
order to study the dispersion and potential line broaden-
ing of the phonon modes, the scans were fit to several
peaks using a pseudo-Voigt line profile. The normal-
ized pseudo-Voigt function is given in Eqn. 1, where
fG (x;Γ) and fL (x;Γ) are normalized Gaussian and
Lorentzian functions respectively. The mixing parame-
ter η = 0.74, and resolution full-width-at-half-maximum
(FWHM) Γ = 1.44 meV was determined from fits to the
elastic scattering width of Plexiglas.

fpV = (1− η) fG (x;Γ) + ηfL (x;Γ) (1)

Figure 1 shows a line scan consisting of several phonon
excitations at Q = (0, 0, 8.3) and Q = (0, 0, 8.5) at room
temperature. The peak positions for these and other
scans were obtained from fits and used to construct the
dispersion of phonon branches along the different scan di-
rections, as shown in Fig. 2. The intensity of the phonon
modes is also represented in Fig. 2 by the diameter of
the circles.

In order to understand the features of the phonon dis-
persion, the experimental measurements were compared
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FIG. 1. (color online) Energy scan at constant-Q at a)

Q = (0.0, 0, 8.3) and b) Q = (0.0, 0, 8.5) measured at room

temperature on LaFeAsO. Experimental data are given by

solid green points. The black line is fit using a pseudo-Voigt

function.

to ab initio calculations of the phonons. The phonon
dispersion was calculated using DFT and Density Func-
tional Perturbation Theory (DFPT).20 There are sig-
nificant differences in the experimental lattice parame-
ters and parameters from the “relaxed” structure with
the lowest calculated energy. Also, in spin-polarized
calculations with the experimentally observed AFM or-
der, the lattice distorts into the orthorhombic Cmma
structure observed experimentally at lower temperatures.
With these difficulties in mind, the experimental lat-
tice parameters at room temperature in the tetragonal
phase (a = 4.03533Å , c = 8.74090Å) were used for
all calculations.18,19 In addition, there is debate over the
appropriate internal z -parameter to use for the position
of lanthanum and arsenic atoms.2,9,21,22 For better ac-
curacy of the calculated phonons, we chose the calcu-

superimposed on top of a continuum generated by particle-
hole excitations across the Mott gap [24] (estimated to be
! 0:4 eV from optical spectroscopy [25]). This is sche-
matically shown in Fig. 3(c). Taking the second derivative
of the raw data deemphasizes the intensity arising from the
particle-hole continuum and reveals a clear dispersive
feature above 0.4 eV, as shown in Fig. 4(a). The energy
scale of this excitation coincides with the known energy
scale of spin-orbit coupling in Sr2IrO4 (!SO " 0:5 eV) [7],
and thus we assign it to intrasite excitations of a hole across
the spin-orbit split levels in the t2g manifold, i.e., from the
Jeff ¼ 1=2 level to one of Jeff ¼ 3=2 quartet levels
[7,13,15] [see Fig. 4(d)]. We refer to such an excitation
as a ‘‘spin-orbit exciton’’; see Fig. 4(d) [26].

The dispersion of the spin-orbit exciton with a bandwidth
of at least 0.3 eV implies that this local excitation can
propagate coherently through the lattice. Our model of
the spin-orbit exciton starts from a recognition that the
hopping process is formally analogous to the problem of a
hole propagating in the background of AF ordered mo-
ments, which has been extensively studied in the context
of cuprate HTSC [27]. Although the spin-orbit exciton does
not carry a charge, its hopping creates a trail of misaligned
spins and thus is subject to the same kind of renormalization

by magnons as that experienced by a doped hole [28]. It is
well-known that the dispersion of a doped hole in cuprates
has a minimum at ð"=2;"=2Þ [29], i.e., at the AF magnetic
Brillouin zone boundary. Since Sr2IrO4 has a similar mag-
netic order [8], it can be understood by analogy that the
dispersion of the spin-orbit exciton should also have its
minimum at ð"=2;"=2Þ.
The overall bandwidth is determined by the parameters

involved in the hopping process, which is depicted in
Fig. 4(d) in the hole picture. It involves moving an excited
hole to a neighboring site, which happens in two steps.
First, the excited hole in site i hops to a neighboring site j
(t3=2 process), generating an intermediate state with energy
U0, which is the Coulomb repulsion between two holes at a
site in two different spin-orbital quantum levels. Then, the
other hole in site j hops back to site i (t1=2 process).
Thus, the energy scale of the dispersion is set by
2t1=2t3=2=U

0, which is of the order of the magnetic ex-
change couplings. In fact, these processes lead to the
superexchange interactions responsible for the magnetic
ordering, but here they involve both the ground state and
excited states of Ir ions.
Technically, the spin-orbit exciton hopping can be de-

scribed by the following Hamiltonian [13]:
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FIG. 3 (color online). (a) Energy loss spectra recorded at T ¼ 15 K, well below the TN ! 240 K [8,12], along a path in the constant
L ¼ 34 plane. The path was chosen to avoid the magnetic Bragg peaks, which appear at two of the four corners of the unfolded unit
cell (black square) shown in the inset (where the same conventions as in Fig. 2 are used). (b) Image plot of the data shown in (a).
(c) Schematic of the three representative features in the data. (d) A real space description of the spin-orbit exciton mode.
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IXS

Non-Resonant Resonant

      ~ meV
     IXS 
!E

Nuclear resonant
!E ~ 1 meV

T=1630 T=1630 



Spatial variation
 k= wave number
 λ=wavelength

Temporal variation
ω = angular frequency

Top view showing high 
and low field amplitudes

Electromagnetic waves



The incident plane wave incident 
upon an electron sets the electron
in oscillation. The oscillating electron
then radiates, experiencing a 

phase shift of π.

In-plane

Out-of-plane

Classical description of 
scattering of radiation 
by a charged particle



First order Born approximation 
For weakly scattering media, it is possible to obtain solution to the
integral equation by a perturbation approach, provided that the scattering 
medium is weakly interaction with the probe of x-rays.

The first order Born approximation states that amplitude of the scattered 
wave far away from the scatterer depends entirely on one and only one 
Fourier component of the scattering potential, namely the one that 
corresponds to the transferred momentum K=k(s-s0). 



Conservation of momentum has a correspondence 
between classical and quantum mechanical treatment:

  

€ 

p = hk
Δp = p − ʹ′ p = h ʹ′ k 

If a plane wave is incident on the scatterer in the 
direction of s, the Fourier component of the scattering 
potential can be determined. 

And if one has the ability to vary the amount of 
momentum transfer at will, then, the scattering 
potential can be reconstructed.

This is the essence of x-ray scattering experiments.



What is being measured ?

d 2σ
dΩ dω 
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Density-density correlations

f Q( ) = fion Q( )+ fvalence Q( ) Atomic form factor



Debye-Waller factor to account for bond strength
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Sum over phonon branch j at reduced momentum transfer, q

Sum over different atoms in the unit cell

Atomic form factor for each atom

scaling with square root of mass

Phase of the scattering amplitude

Dynamic structure factor

Polarization factor between momentum
transfer and photonʼs electric field

phonon occupation probability

delta-function in ω

phonon frequency
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Atomic form-factor measurements in the low-momentum transfer region for Li, Be, and Al
by inelastic x-ray scattering

A. Alatas,1,* A. H. Said,1,2 H. Sinn,1 G. Bortel,1,† M. Y. Hu,1,‡ J. Zhao,1 C. A. Burns,2 E. Burkel,3 and E. E. Alp1

1Argonne National Laboratory, Argonne, Illinois 60439, USA
2Western Michigan University, Kalamazoo, Michigan 49008, USA

3University of Rostock, 18055 Rostock, Germany
!Received 31 August 2007; revised manuscript received 13 December 2007; published 1 February 2008"

We report measurements of the atomic form factor of lithium, beryllium, and aluminum single crystals at
low-momentum transfers !Q=1.6–50 nm−1" from the intensity of phonons observed by inelastic x-ray scatter-
ing. Comparing to Hartree-Fock calculations, the form factor deviates significantly in the case of lithium and
beryllium around kF. These deviations can be mostly understood on the basis of electron redistribution by a
pseudopotential. The influence of multiple scattering due to coherent phonon scattering and possible deviations
from the adiabatic approximation are also discussed.

DOI: 10.1103/PhysRevB.77.064301 PACS number!s": 63.20.D!, 63.20.K!, 78.70.Ck

I. INTRODUCTION

X-ray atomic form factors for free atoms and ions are
required in numerous crystallographic calculations, in par-
ticular, least-squares structure refinement. The atomic form
factor is described as a Fourier transform of the electron
distribution and carries information on the electron wave
function. Tabulated values for free atoms and ions obtained
from atomic wave functions can be found in literature.1
However, atomic form factors in bonded environments are
different from those of isolated atoms due to the reconfigu-
ration of the valence electron distribution.

Generally speaking, the bonds that bind a solid can be
classified as one of four types: van der Waals, ionic, cova-
lent, and metallic. The fundamental question about the
mechanism of bonding is related to the alterations of the
electronic states of the individual atoms when they form the
solid. Both the ionic case, with the complete transfer of an
electron, and the weak interaction of the van der Waals force
make treatments of these systems fairly straightforward.
However, the changes due to covalent and metallic bondings
are more subtle. In metals, the binding is mainly due to the
anisotropic redistribution of the valence electrons that be-
come the conduction electrons. These conduction electrons
are spread out over several atomic spacings. Since the lowest
order Bragg reflections from x-ray measurements correspond
to changes in the electronic distribution on length scales of
order of the atomic spacing, these data from the lowest order
Bragg reflections are only of limited use. Even for most
cases, these data are usually not considered in the structure
refinement procedure to avoid the bonding effect.2

On the other hand, over the last 30 years, the two-
component nature of liquid metals has been widely accepted
and scattering cross sections have been expressed in terms of
separate ion-ion, ion-electron, and electron-electron correla-
tion functions in theoretical and experimental studies. In this
approach, the conduction electron distribution in the small-
momentum transfer region becomes an important part in the
determination of the ion-electron structure factor Sie!Q",
since Sie!Q" is represented in terms of the ion-ion structure
factor Sii!Q" and the charge distribution around a pseudo-
atom, "el!Q".3–5

Much of the work related to electron-ion correlation is
concentrated around liquid metals, since they are well known
to be binary mixture of ions and conduction electrons.4 In
these studies, however, the structure factor of a liquid metal
measured by the x-ray method is extracted from the free-
atom form factor by assuming that a liquid metal can be
taken as an assembly of isolated atoms. The main motivation
of this paper is to show experimentally that the bonding
leads to a redistribution of valence electrons and how that
alters x-ray intensities in the small-Q region.

As pointed out by Chihara3 and others,4 changes in the
valence electron density distribution affect the coherent part
of the x-ray scattering cross section by a modification of the
x-ray form factor f!Q":

f!Q" = "el!Q" + f ion!Q" , !1"

where "el!Q" is the effective screening density in Fourier
space !the form factor of the pseudoatom", which represents
the average density of conduction electrons that surrounds
each ion relative to the uniform background, and f ion!Q" is
the atomic form factor of the core electrons. It is this differ-
ence in "el!Q" from free-atom form factors that indicates a
measure of the change in electron density upon bonding.
This effect becomes more visible when the ratio of the num-
ber of valence electrons Z to the total number of electrons,
ZA, increases in the system. The changes in the form factors
associated with the effect of the bonding for several liquid
metals were recently calculated within the quantum hyper-
netted chain !QHNC" approximation,5 which self-
consistently combines integral equation techniques from the
theory of liquids with a Kohn-Sham-type treatment of elec-
trons.

Several studies on the static structure factor of simple
liquids comparing x-ray scattering and neutron scattering re-
sults have been conducted.6–8 However, because a number of
difficult corrections such as multiphonon scattering, self-
absorption, and incoherent scattering have to be performed
on both data sets, the results are sometimes ambiguous. For
example, the incoherent x-ray scattering in the case of liquid
metals—the so-called Compton correction—turns out to be

PHYSICAL REVIEW B 77, 064301 !2008"
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f Q( ) = fion Q( )+ fvalence Q( )
tered a second time inelastically by !m−h n−k o− l" giving
additional phonon scattering from a higher Brillouin zone
!BZ" that can add coherently.

An example is shown in Fig. 5!b" for the beryllium crys-
tal. The !0 1 3" Bragg reflection is simultaneosly excited
when the crystal is oriented for the !0 0 0.15" momentum
transfer point. For this specific orientation, the phonon inten-
sity was doubled due to the presence of the second phonon
scattering process at !0 −1 −2.85". In addition, the trans-
verse phonon was strongly visible at this point, although it is
not allowed in the first BZ along the #0 0 !$ direction since
the eigenvector of the transverse mode is perpendicular to
the momentum transfer vector Q. A similar situation was
also observed for lithium, but it was not as strong as in the
beryllium case. We observed this type of multiple scattering
by monitoring Bragg reflections with a fluorescence screen.
When the crystal is tilted about 0.5°, we moved into new
point !−" 2" 0.15" in the reciprocal space where "
=0.000 42, and the multiple scattering could be suppressed
#Fig. 5!b"$. For this new point, the eigenvector is calculated
from the package program UNISOFT,31 and the effect on the
intensity is less than 1% within the error bar when it is com-
pared to the !0 0 0.15" point. The origin of the intensity at the
position of the transverse phonon in the !−" 2" 0.15" point is
due to vertical momentum resolution of the analyzer. Mul-
tiphonon scattering that involves a two-phonon scattering
process,32 which is different than this interference effect, was
assumed to cause the rather broad background and is negli-
gible at small-Q values.

IV. RESULTS AND DISCUSSION

Atomic form factors were extracted from the adjusted
measured integrated intensities of the phonon excitations.
They are shown in Fig. 8 with circles and compared to
Hartree-Fock calculations of the free-atom form factor !solid
line" using the #2 minimization method. In addition, the mea-
sured form factor is also compared to QHNC calculation of
Anta and Louis5 with dashed lines at the left side in Fig. 8,
showing a much better agreement with the experimental
data. #2 values are as follows: 3.34–2.68 for lithium, 5.50–
2.04 for beryllium, and 6.31–2.62 for aluminum. Here, the
first number is for Hartree-Fock calculation and the second
number is for the QHNC calculation of Anta and Louis. The
experimental data for lithium and beryllium show a less rap-
idly decaying form factor for the ions in the metal than for
the free atom, suggesting that the valence electrons must be
more concentrated on the ion than on the atom. The devia-
tions of the measured form factor from the free-atomic form
factor, $, in terms of a fraction of the valence electron are
plotted on the right side of Fig. 8 together with the deviations
of the theoretical calculation !dashed line". For lithium and
beryllium, 20% of the valence electrons is excess charge
around kF and extended over about 1.7kF !where kF is de-
fined as Fermi wave vector". In the case of aluminum, the
measured experimental data are in agreement with both
form-factor calculations for the region Q%14 nm−1 !0.8kF",
whereas for Q&14 nm−1, our measurements fluctuate
strongly. This can be understood from the relatively smaller

weight of the x-ray scattering intensities from the valence
electrons in aluminum as compared to lithium and beryllium.

In contrast to previous studies with elastic x-ray scatter-
ing, which restricts the minimum value of Q to the lowest
order Bragg reflection peak !25.33 nm−1 for lithium,
31.74 nm−1 for beryllium, and 26.87 nm−1 for aluminum, as
shown in Fig. 8 with arrows", atomic form factors can be
studied directly by phonon intensities without any limitation
in the momentum space. Hence, complementary to previous
experiments, atomic form-factor measurements are extended
to a very low-Q range !down to 1.6 nm−1" using the IXS
method. The effect of bonding due to the reconfiguration of
the valence electrons for light elements has been directly
observed.
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FIG. 8. Comparison of measured atomic form factor !circles"
with the free-atom Hartree-Fock calculation !solid line" and the
metallic-atom form factor calculated by the QHNC approximation
!dashed line" for a given direction of lithium, beryllium and alumi-
num. The dotted line is the ionic form factor from Hartree-Fock
calculation. Triangles show the experimental data determined from
Bragg reflections !Refs. 13 and 16". The arrow indicates minimum
Q values corresponding to lowest order Bragg diffraction. On the
right side of the figure, deviations of the measured form factor from
free-atom form factor, $, in terms of a fraction of the valence elec-
tron are plotted together with the deviations of the theoretical cal-
culations !dashed line".
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!Qh = Q"S+!"S
− Q"S

= 2ki!sin""S + !"S

2
# − sin""S

2
#$ ,

%4&

where !"S=arcsin% x
2L

& is in real space. In our experiment, we
used two different momentum resolutions at the horizontal
direction, #0.36 and #0.18 nm−1, which correspond to hori-
zontal slit sizes of 4 and 2 cm, respectively. The momentum
resolution in this direction stays constant within 1% for all
scattering angles accessible with our instrument. The size of
the vertical slits was chosen such that the influence on the
momentum resolution was negligible.

A 10-mm-diameter cylindrical and 99.8%-pure lithium, a
13-mm-diameter cylindrical and 99.999%-pure beryllium,
and a 2.05-mm-thick %rectangular& and 99.9999%-pure alu-
minum single crystals were used in an evacuated sample
container. Absorptions at 21.657 keV are 10% for lithium,
40% for beryllium, and 78% for aluminum. These materials
are representative of monovalent, divalent, and trivalent met-
als, and they are in the order of increasing electronic density.
The rocking curves for beryllium and aluminum %0 0 2& re-
flections and for lithium %0 1 1& reflection show that the peak
widths are about 0.02°, 0.05°, and 0.03°, respectively.

Figures 2–4 show the spectra corresponding to measure-
ments at different momentum transfers along the '0 $ $( di-
rection for lithium and along the '0 0 $( direction for beryl-
lium and aluminum, respectively. The energy scans are done
by changing the incident energy by rotating the in-line multi-
Bragg diffracting high-resolution monochromator crystals,18

while the energies of the excitations are selected by the fixed
energy of the analyzer.22 In these measurements, phonon in-
tensities are normalized to incoming flux on the sample
monitored by the ionization chamber detector. The total flux
on the sample was 3%108 photons /s /meV. At each Q point,
an optimization of the analyzer alignment was performed

with a Plexiglas reference sample. Due to the presence of the
elastic scattering, only the energy-loss side of the excitations
was recorded in the case of lithium and beryllium %Figs. 2
and 3&. Excitation energies of beryllium were determined
from the difference of zero-energy point %i.e., elastic peak&
and the phonon peak. In principle, one should not observe
any elastic line in the case of single crystals away from the
Bragg peak, but impurities inside the crystal act as scattering
points and contribute as a background around the elastic line.
Most of this effect is minimized by a factor of 2 using

FIG. 2. Energy scans for lithium along the '0 $ $( direction for
longitudinal modes. FIG. 3. Energy scans for beryllium along the '0 0 $( direction

for longitudinal modes.

FIG. 4. Energy scans for aluminum along the '0 0 $( direction
for longitudinal modes. The elastic scattering at $=0.6 is due to air
scattering.
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Scattering geometry and physics

The physical origin of the correlations depend on how 1/q compares
with the characteristic length, lc  , of the system, which is related to spatial 
inhomogeneity (due to thermal or concentrations fluctuations)

   when q ! lc <<  1"  Collective excitations
   when q ! lc >>  1"  Single particle excitations

   when 1
q
# d  and  ! # phonon frequency"  Collective ion excitations (PHONON)

   when 1
q
#  rc  and  ! # plasma frequency"  Valence electron excitations 
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 High-resolution inelastic x-ray scattering (IXS) 
at Sector 3 and Sector 30

19

Inelastic X-Ray Scattering: two approaches

APD

Sample

IXS: Momentum resolved

NRIXS: Momentum integrated

High resolution
monochromator

High resolution
monochromator

mirror

HERIX-3 HERIX-30

6 or 9 m horizontal arm



30-ID-C: HERIX Spectrometer
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φωνή (phonē), sound
•  Phonons are periodic oscillations in condensed systems.

•  They are inherently involved in thermal and electrical conductivity.

•  They can show anomalous (non-linear) behavior near a phase transition.

•  They can carry sound (acoustic modes) or couple to electromagnetic radiation or neutrons 
(acoustical and optical).

•  Have energy of ћω as quanta of excitation of the lattice vibration mode of angular   
frequency ω. Since momentum, ћk, is exact, they are delocalized, collective excitations.

•  Phonons are bosons, and they are not conserved. They can be created or annihilated    
during interactions with neutrons or photons.

•  They can be detected by Brillouin scattering (acoustic), Raman scattering, FTIR (optical).

• Their dispersion throughout the BZ can ONLY be monitored with x-rays (IXS), or neutrons 
(INS).

• Accurate prediction of phonon dispersion require correct knowledge about the force 
constants: COMPUTATIONAL TECHNIQUES ARE ESSENTIAL.



1.2 Phononenzustgnde: Fe [Lit. S. 180 
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Fig. 2. Fe. Phonon dispersion curves in a-iron at 296 K. Experimental points: [68Va2]. Solid curve: fifth neighbour Born-von 
Karman model (Table 3 Fe [68Va2]). 

Table 2. Fe. Measured phonon frequencies in cl-iron at 295 K, [67Mil], [Oc[] T, branch Ref. [67Brl]. 

4. Y fTHz] I v [THz] r v t; v r v 

CWI L COW T D-Hz1 CTHzl D-Hz1 
COSSI L CW’~l T CNCI T, 

0.182 3.34 (7) 0.091 1.21 (5) 
0.274 4.79 (10) 
0.365 6.04 (10) 
0.456 7.08 (10) 
0.547 7.78 (7) 
0.639 8.27 (10) 
0.730 8.58 (18) 
0.821 8.66 (12) 
0.912 8.70 (15) 
1.00 8.56 (5) 

0.182 2.47 (1) 
0.274 3.63 (2) 
0.365 4.66 (5) 
0.456 5.63 (5) 
0.50 6.07 (5) 
0.60 6.94 (5) 
0.70 7.59 (7) 
0.80 8.07 (12) 
0.90 8.56 (12) 
1.0 8.56 (5) 

0.064 8.44 (12) 0.323 6.99 (12) 
0.129 8.12(10) 0.387 6.70 (10) 
0.193 7.64 (7) 0.452 6.33 (10) 
0.258 6.79 (10) 0.500 6.45 (5) 
0.300 6.31 (10) 
0.322 6.08 (7) 
0.387 5.34 (7) 
0.452 4.62 (7) 
0.484 4.47 (12) 

0.064 1.81 (7) 
0.097 2.78 (7) 
0.105 3.12 (5) 
0.113 3.34 (5) 
0.121 3.58 (5) 
0.129 3.77 (5) 
0.137 4.01 (5) 
0.145 4.21 (5) 
0.153 4.42 (5) 
0.163 4.57 (7) 
0.193 5.39 (7) 
0.226 6.16 (7) 
0.258 6.91 (5) 
0.290 7.57 (5) 
0.323 8.12 (5) 
0.339 8.32 (7) 
0.355 8.58 (7) 
0.371 8.73 (7) 
0.403 8.97 (7) 
0.436 9.24 (7) 
0.468 9.26 (10) 
0.50 9.26 (12) 

0.0625 0.80(3) 0.100 1.91 (5) 
0.125 1.63 (4) 0.150 2.88 (5) 
0.1875 2.40(4) 0.200 3.72(5) 
0.25 3.13 (4) 0.250 4.47 (5) 
0.375 4.20 (5) 0.258 4.59 (5) 
0.50 4.53 (5) 0.290 5.03 (5) 

0.323 5.42 (5) 
0.355 5.78 (5) 
0.387 6.07 (5) 
0.419 6.31 (5) 
0.452 6.41 (5) 
0.484 6.45 (5) 
0.500 6.45 (5) 

(continued) 
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    V. J. Minkiewicz, G. Shirane, and R. Nathans, Phys. Rev. 162 (1967) 528, and
Landolt-Börnstein, New Series, Group III, Vol 13, Eds. K.-H Hellwege, and J. L. Olsen, Springer Verlag, Berlin (1981) p. 53-56.

Dispersion relations and phonon density of states 
-iron (bcc)!



k π/a-π/a

!

2!0   

  

Ref. p. 1801 1.2 Phonon states: Fe 

Fe Iron 
Lattice: CI phase bee, a = 287 pm = 2.87 A. BZ: see p. 448. 

1. Phonon dispersion 
Table 1. Fe. Measurements. 

Method 
TKI 

Fig. Ref. 

neutron diffrac- 
tion (TAS) 

neutron diffrac- 
tion (TAS) 

neutron diffrac- 
tion (TAS) 

neutron diffrac- 
tion (TOF) 

295 1 Fe Minkiewicz et al. 
[67Mil] 

296 Brockhouse et al. 
[67Brl] 

296 2Fe Van Dijk and 
Bergsma 

[68Va2] 
296 Van Dingenen and 

Hautecler 
[67Val] 

Further references: [52Cul, 611yl,62Lol, 67Bel]. 

The four major measurements agree very well. A comparison of the measurements of [67Mil] and [67Brl] 
suggests an accuracy of about 1 ‘A. The dispersion curves show no indications of particular anomalies. They can 
be fitted reasonably already with a third neighbour model. For good fits forces up to the fifth neighbours have to 
be included. 

A- G- A- F- 

%- 
c- D- 

IOf N I 
P 

5- f- 

N 

0.6 

Fig. 1 a-c. Fe. Phonon dispersion 
curves in a-iron at 295 K. Experi- 
mental points: [67Mil]. Dashed 
curve: fifth neighbour Born-von 
Karman model (Table 3 Fe [67Mil]). 
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! k( ) = 2! sin ka 2( )

!!k

!k
: sound velocity

Dispersion relations



26

  

€ 

E =
2
π
VLQmax sin

π
2

Q
Qmax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

E(meV ) = 4.192 ⋅10−4 ⋅VL (m/sec)Qmax (nm
-1) ⋅ sin π

2
Q
Qmax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ € 

0

10

20

30

40

50

0 5 10 15 20

En
er

gy
 (m

eV
)

Q (nm-1)

VL = ~ 5000 m/sec

Fe
P > 1 atm



27



Why x-rays instead of neutrons or visible light ?

ΔE

Δp

Vliquid

thermal 
neutrons

Vneutron

Limited momentum transfer capability of neutrons at low energies favor 
x-rays to study collective excitations with large dispersion, like sound 
modes.

When the sound velocity exceeds that of neutrons in the liquid, x-rays 
become unique. The low-momentum/high-energy transfer region is 
only accessible by x-rays.
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Why X-Rays ?
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Methodology developments Cryo-cooled monochromators

119Sn @ 14.4 keV
  ∂E = 1.3 meV

151Eu @ 21.5 keV 
∂E = 1.4 meV

Thomas Toellner, Deming Shu,  APS



E. Mamontov, S.B. Vakhrushev, Yu. A. Kumzerov, A. Alatas, H. Sinn, Solid State Commun. 149 (15-16), 589-592 (2009). 

Acoustic phonons in chrysotile asbestos, Mg3Si2O5(OH)4

E. Mamontov et al. / Solid State Communications 149 (2009) 589–592 591

Fig. 3. Symbols: Inelastic x-ray scattering spectra measured with the scattering
vector aligned along [1 0 0] direction of the reciprocal lattice (that is, nearly parallel
to the long axis of the chrysotile asbestos fiber, which coincides with [1 0 0]
direction of the direct lattice). Lines: Fits with Eqs. (1) and (2) (for the four lowest
Q values). The spectra are normalized to have the same height of the elastic peak at
all Q values.

Fig. 4. Dependence on scattering vector of the frequency ΩQ and the half-width
ΓQ of the Brillouin peak. When not shown, the error bars are within the symbols.
Solid line: the best fit obtained using Eq. (3).

E[meV] = 4.192 × 10−4V [m/s]

×QMAX[nm−1] sin
(

π

2
Q [nm−1]

QMAX[nm−1]

)
(3)

where V is the velocity of sound and QMAX is half the distance
to the nearest reciprocal lattice point. The best fit parameters
are QMAX = (8.6 ± 0.3) nm−1 and V = (9200 ± 600) m/s.
This value of QMAX differs from either π/a = 5.9 nm−1 or
2π/a = 11.8 nm−1 (for the doubled Brillouin zone), which
one could expect for a single-crystal sample; thus, the dispersion
predicted by Eq. (3) is likely an oversimplification. As the next
step, we attempted to fit the dispersion with a more complex
functional form to include the second-nearest neighbor interaction

in one dimension, which had a minimal effect on the best fit
parameters. The relative strength of the second-nearest neighbor
interaction (also a fit parameter) was about 2% of the nearest-
neighbor interaction strength,while the best fit values forQMAX and
V remained virtually unchanged. There may be several possible
explanations for the QMAX value not corresponding to the lattice
periodicity in [1 0 0] direction. One is that the individual chrysotile
asbestos fiber studied in our experiment might be composed of
smaller fibrils. In such case, the parameter QMAX in Eq. (3) bears
no relationship to the Brillouin zone dimension in a particular
direction and instead is computed numerically as an average over
different phonon branches [17]. Another possibility is that one-
dimensional Eq. (3) is simply too crude an approximation for
chrysotile asbestos that neglects the three-dimensional character
of interatomic interactions. Yet another possibility is that the
precision of our definition of the peak position at higher Q is low
because of the development of additional inelastic features, as
we will discuss below. While this low precision would adversely
affect the accuracy of the parameter QMAX, the parameter V ,
which is mostly determined from the low Q data, should still be
accurate. Recent ultrasonic measurements carried out at 77 K in
the direction along the chrysotile asbestos fibers [18] yielded the
longitudinal sound velocity of 8300–8400 m/s. The agreement of
our results for the longitudinal sound velocity with the ultrasonic
measurements is satisfactory, especially considering that the
sound velocity sampled by a high-frequency probe such as x-
rays or neutrons may be slightly higher than the value related
to the adiabatic compressibility that is actually measured in
ultrasonic experiments. The sound velocity that we measured for
Mg3Si2O5(OH)4 is somewhat lower compared to the longitudinal
sound velocity of about 9700 m/s measured in MgO (Ref. [19,20]).

Our attempts to fit the inelastic spectra measured at higher Q
(those shown in Fig. 3 as symbols with no solid line fits) were
unsuccessful because the well-defined Brillouin peaks which are
present at lowQ becomevery broad andblurred. It appears that the
resulting broad features comprise at least three separate Brillouin
peaks. However, limited statistic of the measurement precluded
conclusive determination of the peaks positions when we tried
to use the model similar to Eq. (1) but comprising two or three
Brillouin peaks. These additional peaks are unlikely to originate
from the transverse acoustic phonons, which reportedly have the
sound velocity as low as 2600–2700 m/s (Ref. [18]). It is possible
that these additional inelastic features represent the optical
branches that become excited as the Brillouin zone boundary
is approached. In fact, these features appear to start developing
already at 4.2 and 5.3 nm−1 (see Fig. 3), which may compromise
the accuracy of determination of the main peak position and thus
theparameterQMAX (but not the longitudinal soundvelocity), aswe
discussed above. Another possibility suggested by an anonymous
referee is that the additional featuresmight be due to deep inelastic
scattering, when photons are scattered by the core electrons
with effective mass equal to the atomic mass, and the spectrum
reflects the atomic momentum distribution [21]. While in a multi-
component sample such as chrysotile asbestos there may be
several such peaks, the Q range probed in the current experiment
is an order of magnitude lower compared to that accessed in the
deep inelastic x-ray scattering experiment on liquid neon [21]. This
suggests that the explanation of the additional peaks as a result of
optical phonon excitations may be more plausible.

4. Conclusion

We performed a high-resolution (meV) inelastic x-ray scatter-
ing experiment to observe acoustic phonon excitations in an indi-
vidual fiber of chrysotile asbestos, Mg3Si2O5(OH)4. The fiber was
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Fig. 3. Symbols: Inelastic x-ray scattering spectra measured with the scattering
vector aligned along [1 0 0] direction of the reciprocal lattice (that is, nearly parallel
to the long axis of the chrysotile asbestos fiber, which coincides with [1 0 0]
direction of the direct lattice). Lines: Fits with Eqs. (1) and (2) (for the four lowest
Q values). The spectra are normalized to have the same height of the elastic peak at
all Q values.

Fig. 4. Dependence on scattering vector of the frequency ΩQ and the half-width
ΓQ of the Brillouin peak. When not shown, the error bars are within the symbols.
Solid line: the best fit obtained using Eq. (3).

E[meV] = 4.192 × 10−4V [m/s]

×QMAX[nm−1] sin
(

π

2
Q [nm−1]

QMAX[nm−1]

)
(3)

where V is the velocity of sound and QMAX is half the distance
to the nearest reciprocal lattice point. The best fit parameters
are QMAX = (8.6 ± 0.3) nm−1 and V = (9200 ± 600) m/s.
This value of QMAX differs from either π/a = 5.9 nm−1 or
2π/a = 11.8 nm−1 (for the doubled Brillouin zone), which
one could expect for a single-crystal sample; thus, the dispersion
predicted by Eq. (3) is likely an oversimplification. As the next
step, we attempted to fit the dispersion with a more complex
functional form to include the second-nearest neighbor interaction

in one dimension, which had a minimal effect on the best fit
parameters. The relative strength of the second-nearest neighbor
interaction (also a fit parameter) was about 2% of the nearest-
neighbor interaction strength,while the best fit values forQMAX and
V remained virtually unchanged. There may be several possible
explanations for the QMAX value not corresponding to the lattice
periodicity in [1 0 0] direction. One is that the individual chrysotile
asbestos fiber studied in our experiment might be composed of
smaller fibrils. In such case, the parameter QMAX in Eq. (3) bears
no relationship to the Brillouin zone dimension in a particular
direction and instead is computed numerically as an average over
different phonon branches [17]. Another possibility is that one-
dimensional Eq. (3) is simply too crude an approximation for
chrysotile asbestos that neglects the three-dimensional character
of interatomic interactions. Yet another possibility is that the
precision of our definition of the peak position at higher Q is low
because of the development of additional inelastic features, as
we will discuss below. While this low precision would adversely
affect the accuracy of the parameter QMAX, the parameter V ,
which is mostly determined from the low Q data, should still be
accurate. Recent ultrasonic measurements carried out at 77 K in
the direction along the chrysotile asbestos fibers [18] yielded the
longitudinal sound velocity of 8300–8400 m/s. The agreement of
our results for the longitudinal sound velocity with the ultrasonic
measurements is satisfactory, especially considering that the
sound velocity sampled by a high-frequency probe such as x-
rays or neutrons may be slightly higher than the value related
to the adiabatic compressibility that is actually measured in
ultrasonic experiments. The sound velocity that we measured for
Mg3Si2O5(OH)4 is somewhat lower compared to the longitudinal
sound velocity of about 9700 m/s measured in MgO (Ref. [19,20]).

Our attempts to fit the inelastic spectra measured at higher Q
(those shown in Fig. 3 as symbols with no solid line fits) were
unsuccessful because the well-defined Brillouin peaks which are
present at lowQ becomevery broad andblurred. It appears that the
resulting broad features comprise at least three separate Brillouin
peaks. However, limited statistic of the measurement precluded
conclusive determination of the peaks positions when we tried
to use the model similar to Eq. (1) but comprising two or three
Brillouin peaks. These additional peaks are unlikely to originate
from the transverse acoustic phonons, which reportedly have the
sound velocity as low as 2600–2700 m/s (Ref. [18]). It is possible
that these additional inelastic features represent the optical
branches that become excited as the Brillouin zone boundary
is approached. In fact, these features appear to start developing
already at 4.2 and 5.3 nm−1 (see Fig. 3), which may compromise
the accuracy of determination of the main peak position and thus
theparameterQMAX (but not the longitudinal soundvelocity), aswe
discussed above. Another possibility suggested by an anonymous
referee is that the additional featuresmight be due to deep inelastic
scattering, when photons are scattered by the core electrons
with effective mass equal to the atomic mass, and the spectrum
reflects the atomic momentum distribution [21]. While in a multi-
component sample such as chrysotile asbestos there may be
several such peaks, the Q range probed in the current experiment
is an order of magnitude lower compared to that accessed in the
deep inelastic x-ray scattering experiment on liquid neon [21]. This
suggests that the explanation of the additional peaks as a result of
optical phonon excitations may be more plausible.

4. Conclusion

We performed a high-resolution (meV) inelastic x-ray scatter-
ing experiment to observe acoustic phonon excitations in an indi-
vidual fiber of chrysotile asbestos, Mg3Si2O5(OH)4. The fiber was

Damped harmonic oscillator model Longitudinal sound velocity
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Box 1 |The iron-based superconductor family.

Iron, one of the most common metals on earth, has been known
as a useful element since the aptly named Iron Age. However,
it was not until recently that, when combined with elements
from the group 15 and 16 columns of the periodic table (named,
respectively, the pnictogens, after the Greek verb for choking,
and chalcogens, meaning ‘ore formers’), iron-based metals were
shown to readily harbour a new form of high-temperature su-
perconductivity. This general family of materials has quickly
grown to be large in size, with well over 50 different compounds
identified that show a superconducting transition that occurs
at temperatures approaching 60K, and includes a plethora of
different variations of iron- and nickel-based systems. So far, five
unique crystallographic structures have been shown to support
superconductivity. As shown in Fig. B1a, these structures all
possess tetragonal symmetry at room temperature and range
from the simplest α-PbO-type binary element structure to more
complicated quinternary structures composed of elements that
span the entire periodic table.

The key ingredient is a quasi-two-dimensional layer consisting
of a square lattice of iron atoms with tetrahedrally coordinated
bonds to either phosphorus, arsenic, selenium or tellurium anions
that are staggered above and below the iron lattice to form a
chequerboard pattern that doubles the unit-cell size, as shown
in Fig. B1b. These slabs are either simply stacked together, as in
FeSe, or are separated by spacer layers using alkali (for example,
Li), alkaline-earth (for example, Ba), rare-earth oxide/fluoride
(for example, LaO or SrF) or more complicated perovskite-type
combinations (for example, Sr3Sc2O5). These so-called blocking
layers provide a quasi-two-dimensional character to the crystal

because they form atomic bonds of more ionic character with the
FeAs layer, whereas the FeAs-type layer itself is held together by
a combination of covalent (that is, Fe–As) and metallic (that is,
Fe–Fe) bonding.

In the iron-basedmaterials, the commonFeAs building block is
considered a critical component to stabilizing superconductivity.
Because of the combination of strong bonding between Fe–Fe
and Fe–As sites (and even interlayer As–As in the 122-type
systems), the geometry of the FeAs4 tetrahedra plays a crucial role
in determining the electronic and magnetic properties of these
systems. For instance, the two As–Fe–As tetrahedral bond angles
seem to play a crucial role in optimizing the superconducting
transition temperature (see the main text), with the highest Tc
values found only when this geometry is closest to the ideal value
of ∼109.47◦.

Long-range magnetic order also shares a similar pattern
in all of the FeAs-based superconducting systems. As shown
in the projection of the square lattice in Fig. B1b, the iron
sublattice undergoes magnetic ordering with an arrangement
consisting of spins ferromagnetically arranged along one
chain of nearest neighbours within the iron lattice plane,
and antiferromagnetically arranged along the other direc-
tion. This is shown on a tetragonal lattice in the figure,
but actually only occurs after these systems undergo an
orthorhombic distortion as explained in the main text. In
the orthorhombic state, the distance between iron atoms with
ferromagnetically aligned nearest-neighbour spins (highlighted
in Fig. B1b) shortens by approximately 1% as compared with the
perpendicular direction.
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Figure B1 | Crystallographic and magnetic structures of the iron-based superconductors. a, The five tetragonal structures known to support
superconductivity. b, The active planar iron layer common to all superconducting compounds, with iron ions shown in red and pnictogen/chalcogen

anions shown in gold. The dashed line indicates the size of the unit cell of the FeAs-type slab, which includes two iron atoms owing to the staggered

anion positions, and the ordered spin arrangement for FeAs-based materials is indicated by arrows (that is, not shown for FeTe).

of structural parameters, disorder location, chemical bonding and
density. This is one of the key properties that has led to a
rapid but in-depth understanding of these materials. In due time,
controlled experimental comparisons — for instance of Hall effect

(carrier density) under pressure versus doping, of different chemical
substitution series and further understanding of the local nature of
chemical substitution — will help pinpoint the important tuning
parameters for these systems.
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ventional low-temperature superconductors Hg or Pb. Such an attitude has been
certainly sustained by the relatively ordinary phenomenology of the normal and su-
perconducting states compared to that of high-Tc cuprates. Among other things, the
fullerene compounds lack in fact normal state pseudogaps, have an order parameter
of s-wave symmetry and a sizeable isotope effect for the maximum Tc. This point
of view has led to interpret the high values of Tc in fullerene compounds in terms
of a strong electron-phonon (e-ph) coupling λ generated mainly by intra-molecular
phonon modes.

Such an interpretation is actually a quite heavy over-simplification of the prob-
lem and inevitably leads to the odd conclusion that, although these materials have
extremely low carrier densities, may show transitions to ferromagnetic states, are
close to a Mott-Hubbard transition, they are nevertheless the best ME superconduc-
tors known so far. This situation somehow resembles the one criticised by Anderson
and Yu in connection with the A15 compounds and the attempts to interpret their
superconducting states in terms of ordinary ME theory.3

Here, we present evidences against the ME picture commonly advocated for
the fullerene compounds. In particular, we show that the most accurate available
experimental data on Rb3C60 are clearly inconsistent with the ME theory of su-
perconductivity. Moreover, we show also how all theoretical calculations of the
e-ph interaction reported so far lead to results in contradiction with the adiabatic
hypothesis which is at the basis of the ME framework. On the contrary, the re-
laxation of the adiabatic hypothesis leads to a more natural interpretation of the
experimental data and defines a theory of nonadiabatic superconductivity which is
more promising than the ME scenario to understand the fullerene compounds.

2. Breakdown of the Migdal-Eliashberg Theory

In the present discussion of the compatibility of the experimental data with the
ME theory of superconductivity we refer solely to Rb3C60. The reason is that only
for this material sufficiently accurate data have become available. In fact, from
both tunneling and infrared measurements, the ratio gap-Tc in Rb3C60 has been
measured to be 2∆/Tc = 4.2 ± 0.2,4 and the most accurate measurements of the
carbon isotope effect on Tc has led to αC = 0.21, where αC = −d log Tc/d log MC

is the carbon isotope coefficient.5 As we show below, together with Tc = 30 K this
set of data permits to test the ME theory for Rb3C60.

Let us begin by considering the following standard strong-coupling formulas
derived form the ME equations:6

Tc =
ωln

1.2
exp

[

−
1.04(1 + λ)

λ − µ∗(1 + 0.62λ)

]

, (1)
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where λ = 2
∫

α2F (ω)dω/ω is the e-ph coupling, lnωln = (2/λ)
∫

lnωα2F (ω)dω/ω is
the relevant phonon frequency and α2F (ω) is the e-ph spectral fuction (also known
as Eliashberg function). In equations (1) and (2) µ∗ is the Coulomb repulsive
pseudopotential. Inserting the above reported experimental values of Tc, αC and
2∆/Tc in the left-hand sides of equations (1)-(3) completely determines the values
of the three unknown microscopic parameters λ, µ∗ and ωln (for the moment we
neglect the error bars of ∆ and assume therefore 2∆/Tc = 4.2). The unique solution
is given by ωln = 313 K, µ∗ = 0.43 and λ = 3.6. Although the obtained values of ωln

and µ∗ lie within a reasonable range of validity, the extremely large value λ = 3.6 is
completely unrealistic. There are mainly two reasons for this conclusion. First, such
a strong e-ph interaction is expected to be source of lattice instabilities preventing
the system to become superconductive. In fact, although the maximum allowed
value of λ compatible with superconductivity is not precisely known, it is generally
believed that λ ∼ 1.5 represents a reasonable upper limit.3 Instead this limiting
value is largely surpassed by the ME solution λ = 3.6.

A second reason which makes λ = 3.6 incompatible with the ME theory is given
by observation that the half-filled electron conduction bandwidth of Rb3C60 (as
for the other fullerene compounds) is of order W = 0.5 eV.1 In this situation, the
e-ph vertex corrections which are completely neglected in the ME theory become
important. In fact, the order of magnitude of the vertex corrections is roughly
λωph/EF, where ωph is an averaged phonon frequency and EF is the Fermi energy.7

For conventional superconductors λωph/EF is of order 10−3-10−4 and the e-ph ver-
tex corrections can be safely neglected. Instead by using λ = 3.6, ωph ∼ ωln = 313
K and EF = W/2 " 0.25 eV, we obtain λωph/EF " 0.35. This result reveals the in-
consistency of the ME theory when applied to Rb3C60 since the vertex corrections,
which should be negligible in the ME framework, turn out to be instead important.

The above analysis is confirmed also when, in place of the strong-coupling for-
mulas (1)-(3), we solve numerically the ME equations to fit the experimental data
Tc = 30 K, αC = 0.21, and 2∆/Tc = 4.2 ± 0.2. In Fig.1 we report the calculated
values of λ for a e-ph spectral function α2F (ω) schematized with a rectangle cen-
tered at ω0 and width ∆ω0. For the whole range of ∆ω0/ω0 values compatible with
the vibrational frequencies of the fullerene molecule we obtain λ ∼ 3, in agreement
with the analysis based on the strong-coupling formulas. Also the calculated values
ωln ∼ 350 K and µ∗ ∼ 0.35 are close to the values obtained above.

The above numerical evaluations of the ME equations confirm and strengthen
therefore our conclusion that ME theory fails to describe superconductivity of
Rb3C60. This situation is also supported by the various calculations of the e-ph
interaction in fullerenes reported so far. In Fig.2 we show a collection of data taken
from various theoretical calculations of the e-ph interaction V = λ/N0, N0 being the
electron density of states per spin. The data refer to various calculations schemes
including tight-binding, LDA, ab-initio etc. which estimate the coupling of the t1u
electrons to the eight Hg intra-molecular phonon modes.8,9,10,11,12,13 As it is appar-
ent from the values reported in the abscissa, there is a large uncertainty in the value

electron-phonon coupling constant

  For pnictides values of        is inconsistent with observed Tc. Estimated value of 0.2 is too 
small for the observed 26 K transition temperature. 
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the evolution of the phonon eigenvectors in the Brillouin
zone (BZ) reveals that there is no clear separation between
in- and out-of-plane vibrations, as often happens in layered
compounds. The three major peaks in the phonon DOS at
! ! 100, 200, and 300 cm"1 do not show a definite in-
plane or out-of-plane character and cannot be easily traced
back to a single vibration pattern. This complicates the
interpretation of the Eliashberg spectral function !2F#!$
shown in the rightmost panel of Fig. 3:

 !2F#!$ ! 1
N#0$

X

nmk
"#"nk$"#"mk%q$

X
#q
jg#; n#q$; (1)

together with the frequency-dependent e-ph coupling func-
tion $#!$ ! 2

R!
0 d!!2F#!$=!.

A comparison of the Eliashberg function with the pho-
non DOS shows that, except for the high-lying O modes,
which show very little coupling to electrons, the e-ph
coupling is evenly distributed among all of the phonon
branches. Low-frequency phonons around 100 cm"1 pro-
vide &75% of the total $, due to the 1=! factor in $#!$,
but the e-ph matrix elements g are comparable for all group
of phonons.

It is interesting to note that this almost perfect propor-
tionality between the Eliashberg function and the phonon
DOS is never encountered in good e-ph superconductors,
where the coupling to electrons is usually concentrated in a
few selected phonon modes. This is best explained in terms
of phonon patterns that awake dormant e-ph interaction
between strongly directed orbitals.

An extreme example in this sense is MgB2, which
achieves a Tc of 39 K thanks to a strong coupling between
bond-stretching phonons and strongly covalent % bands,
but the same applies also to more traditional superconduc-
tors, such as the A15, NbC, and even normal metals.

In LaFeAsO, all phonon modes give a comparable, small
contribution to the total $; this indicates that there are no
patterns of vibration with a dramatic effect on the elec-
tronic band structure around the Fermi level. A posteriori,
this is not surprising since in LaFeAsO the only bands
derived from directed bonds (dx2"y2 in Fig. 1), which could
experience strong coupling to Fe vibrations in plane, sit far
from the Fermi level.

The distribution of the coupling is also shown in the left
panel of Fig. 3, where the radius of the circles is propor-
tional to the mode $, i.e., to the partial contribution of each
phonon mode to the total e-ph coupling: $#q ' 1

&N#0$
'#q

!2
#q

,

where '#q are the e-ph linewidths; summing $#q over the
phonon branches # and averaging on the BZ give the total
e-ph coupling $. The circles are evenly distributed over
several phonon branches. The largest couplings are con-
centrated around the "#Z$ points, where the intraband
nesting is large, and around the M point, where the inter-
band nesting between the hole and electron cylinders takes
place.

The total e-ph coupling constant $, obtained by numeri-
cal integration of $#!$ up to ! ! 1, is 0.21; this, together
with a logarithmically averaged frequency !ln ! 205 K,
and (( ! 0, gives Tc ! 0:5 K as an upper bound for Tc,
using the Allen-Dynes formula [16]. Numerical solution of
the Eliashberg equations with the calculated !2F#!$ func-
tion gives Tc ! 0:8 K. To reproduce the experimental
Tc ! 26 K, a 5 times larger $ would be needed, even for
(( ! 0. Such a large disagreement clearly indicates that
standard e-ph theory cannot be applied in LaFeAsO, in
line with recent theoretical works which emphasize the
role of strong electronic correlations and/or spin fluctua-
tions [7,8].

The numerical uncertainty on the calculated value of $,
connected to limited sampling of the BZ in k (electrons) or
q (phonons) space integration, is at most 0.1 and definitely
not sufficient to raise $ to &1:0. We further notice that
electron doping, reducing the DOS at the Fermi level,
without introducing new bands at EF, would further reduce
the value of $. Therefore, the value $ ! 0:21 for the un-
doped material is actually an upper bound for the value in
the e-doped compound. This value is lower than what is en-
countered in any known e-ph superconductor; for compari-
son, $ ! 0:44 in metallic aluminum, where Tc ! 1:3 K.

In LaFeAsO, both the electronic DOS at the Fermi level
and the value of the average phonon force constant are in
line with those of other e-ph superconductors. The occur-
rence of a small $ is due to its extremely small matrix e-ph
elements, connected to the strongly delocalized character
of the Fe-d states at )2 eV around the Fermi level. This is
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FIG. 3 (color online). Electron-phonon properties of
LaFeAsO. Left: Phonon dispersion relations; the radius of the
symbols is proportional to the partial mode $ of each phonon
mode $#q. For " and Z points, where the coupling diverges
numerically, we use a different scaling factor. Middle: Atom-
projected phonon DOS. The projection on in- and out-of-plane
modes (not shown) does not show any clear separation between
the patterns of vibration. Right: Eliashberg function !2F#!$
(solid line) and frequency-dependent e-ph coupling $#!$
(dashed line).
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field theory (see Fig. 2). Because of the presence of Fe-Fe
directed bonds, dx2!y2 orbitals, which lie along the bonds,
create a pair of bonding-antibonding bands located at !2
and "1 eV. d3z2!1 bands states split into two subbands.
dxy states are inequivalent to dxz, dyz states, and the result-
ing t2g bands form a complicated structure centered at
#! 0:5 eV.

The Fermi level cuts the band structure in a region where
the DOS is high (2:1 states=eV spin) and rapidly decreas-
ing; a pseudogap opens in the electronic spectrum around
0.2 eV. As pointed out in previous publications, such a high
DOS at the Fermi level drives the system close to a
magnetic instability [7,8].

The Fermi surface comprises a doubly degenerate cy-
lindrical hole pocket centered at the ! point and a doubly
degenerate electron pocket centered at the M point; these
sheets have a dominant dxz, dyz character. A small 3D
pocket centered around the ! point is also present (see
Fig. 3 of Ref. [7]). The plasma frequencies are strongly
anisotropic (!xx $ 2:30 and !zz $ 0:32 eV). The distor-
tion (elongation or shrinking) of the Fe-As tetrahedra
modulates the splitting of the two d3z2!1 bands and the
relative splitting between xy and xz, yz bands along the
!! Z line, as indicated by the small arrows in Fig. 2. A 1%
percent compression of the tetrahedra along the c direction
changes the splitting of the two d3z2!1 by #0:1 eV, driving
one of them closer or further from the Fermi level. This
explains why the position of the 3dz2 ! 1 band, and the
weight of the associated DOS, varies in literature, depend-
ing on the crystal structure used [7,8].

Figure 3 summarizes the e-ph properties of LaFeAsO;
the results refer to pure LaFeAsO in the paramagnetic
phase. It has been shown that the pure compound is close
to a magnetic instability and to a metal-insulator transition

due to electronic correlations [7,8]. Electron doping
strongly suppresses the tendency to magnetism and re-
duces strong-correlation effects, and assuming a paramag-
netic ground state is probably appropriate for the F-doped
compound. Also, we checked by calculations in the virtual
crystal approximation that the effect of F doping is well
described by a rigid-band model, and the only effect of
doping is a rigid-band shift of the Fermi level, in a region
where the electronic DOS is lower (a 10% doping corre-
sponds to a 40% reduction of the DOS). Therefore, the
results for the undoped compound can be considered rep-
resentative also for the electron-doped compound, pro-
vided that the reduced DOS is taken into account.

In the left panel of Fig. 3, we show the calculated
phonon dispersion relations of LaFeAsO; our frequencies
are in very good agreement with those of Ref. [7], where a
slightly different crystal structure was used. In the middle
panel of the same figure, we show the atom-projected
phonon DOS. The spectrum extends up to 500 cm!1; the
vibrations of O atoms are well separated in energy from
those of other atomic species, lying at !> 300 cm!1. The
vibrations of La, Fe, and As occupy the same energy range,
and the eigenvectors have a strongly mixed character.
Similarly to the electronic bands, the phonon branches
have very little dispersion in the z direction. Analyzing

FIG. 2 (color online). Band structure of LaFeAsO, decorated
with partial characters of the eg (top) and t2g (bottom) Fe-d
bands. The orientation of the coordinate system is chosen so that
Fe-Fe bonds are directed along the x and y axes; the zero of the
energy coincides with the Fermi level. The arrows indicate the
splitting induced by the elongation/shrinking of the Fe-As tetra-
hedra (see text).

FIG. 1 (color online). Crystal structure of LaFeAsO.

PRL 101, 026403 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 JULY 2008

026403-2

Electron-phonon linewidth

!

Oxygen modes do 
not contribute 
much to Eliashberg 
function

the evolution of the phonon eigenvectors in the Brillouin
zone (BZ) reveals that there is no clear separation between
in- and out-of-plane vibrations, as often happens in layered
compounds. The three major peaks in the phonon DOS at
! ! 100, 200, and 300 cm"1 do not show a definite in-
plane or out-of-plane character and cannot be easily traced
back to a single vibration pattern. This complicates the
interpretation of the Eliashberg spectral function !2F#!$
shown in the rightmost panel of Fig. 3:
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A comparison of the Eliashberg function with the pho-
non DOS shows that, except for the high-lying O modes,
which show very little coupling to electrons, the e-ph
coupling is evenly distributed among all of the phonon
branches. Low-frequency phonons around 100 cm"1 pro-
vide &75% of the total $, due to the 1=! factor in $#!$,
but the e-ph matrix elements g are comparable for all group
of phonons.

It is interesting to note that this almost perfect propor-
tionality between the Eliashberg function and the phonon
DOS is never encountered in good e-ph superconductors,
where the coupling to electrons is usually concentrated in a
few selected phonon modes. This is best explained in terms
of phonon patterns that awake dormant e-ph interaction
between strongly directed orbitals.

An extreme example in this sense is MgB2, which
achieves a Tc of 39 K thanks to a strong coupling between
bond-stretching phonons and strongly covalent % bands,
but the same applies also to more traditional superconduc-
tors, such as the A15, NbC, and even normal metals.

In LaFeAsO, all phonon modes give a comparable, small
contribution to the total $; this indicates that there are no
patterns of vibration with a dramatic effect on the elec-
tronic band structure around the Fermi level. A posteriori,
this is not surprising since in LaFeAsO the only bands
derived from directed bonds (dx2"y2 in Fig. 1), which could
experience strong coupling to Fe vibrations in plane, sit far
from the Fermi level.

The distribution of the coupling is also shown in the left
panel of Fig. 3, where the radius of the circles is propor-
tional to the mode $, i.e., to the partial contribution of each
phonon mode to the total e-ph coupling: $#q ' 1
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where '#q are the e-ph linewidths; summing $#q over the
phonon branches # and averaging on the BZ give the total
e-ph coupling $. The circles are evenly distributed over
several phonon branches. The largest couplings are con-
centrated around the "#Z$ points, where the intraband
nesting is large, and around the M point, where the inter-
band nesting between the hole and electron cylinders takes
place.

The total e-ph coupling constant $, obtained by numeri-
cal integration of $#!$ up to ! ! 1, is 0.21; this, together
with a logarithmically averaged frequency !ln ! 205 K,
and (( ! 0, gives Tc ! 0:5 K as an upper bound for Tc,
using the Allen-Dynes formula [16]. Numerical solution of
the Eliashberg equations with the calculated !2F#!$ func-
tion gives Tc ! 0:8 K. To reproduce the experimental
Tc ! 26 K, a 5 times larger $ would be needed, even for
(( ! 0. Such a large disagreement clearly indicates that
standard e-ph theory cannot be applied in LaFeAsO, in
line with recent theoretical works which emphasize the
role of strong electronic correlations and/or spin fluctua-
tions [7,8].

The numerical uncertainty on the calculated value of $,
connected to limited sampling of the BZ in k (electrons) or
q (phonons) space integration, is at most 0.1 and definitely
not sufficient to raise $ to &1:0. We further notice that
electron doping, reducing the DOS at the Fermi level,
without introducing new bands at EF, would further reduce
the value of $. Therefore, the value $ ! 0:21 for the un-
doped material is actually an upper bound for the value in
the e-doped compound. This value is lower than what is en-
countered in any known e-ph superconductor; for compari-
son, $ ! 0:44 in metallic aluminum, where Tc ! 1:3 K.

In LaFeAsO, both the electronic DOS at the Fermi level
and the value of the average phonon force constant are in
line with those of other e-ph superconductors. The occur-
rence of a small $ is due to its extremely small matrix e-ph
elements, connected to the strongly delocalized character
of the Fe-d states at )2 eV around the Fermi level. This is
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FIG. 3 (color online). Electron-phonon properties of
LaFeAsO. Left: Phonon dispersion relations; the radius of the
symbols is proportional to the partial mode $ of each phonon
mode $#q. For " and Z points, where the coupling diverges
numerically, we use a different scaling factor. Middle: Atom-
projected phonon DOS. The projection on in- and out-of-plane
modes (not shown) does not show any clear separation between
the patterns of vibration. Right: Eliashberg function !2F#!$
(solid line) and frequency-dependent e-ph coupling $#!$
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CaFe2As2 under pressure

There is  a phase transition 
from magnetically ordered 
orthorhombic phase to a 
nonmagnetic “collapsed” 
tetragonal phase, 
accompanied by a 
significant volume change 
at 0.3 GPa. 
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FIG. 2. (color online) Contour plots of the calculated dynam-
ical structure factor along (0,0,L). Values range from blue (no
intensity) to red (high intensity), and have been multiplied
by the energy to improve visibility of the optical modes. The
white dots show the experimentally determined frequencies,
as described in the text, with the intensity shown by the size
of the dot. a) Nonmagnetic calculation b) SP calculation with
SDW ordering, c) SP calculation with checkerboard ordering.
d) SP calculation with striped ordering.

the A1g branches, that are also observed experimentally.

At both values of Q, the 32 meV feature consists of both

Fe and As motion, but the intensity is extremely weak.

In the spin-polarized calculation corresponding to the

observed stripe AFM structure (Fig. 4b), the effect of

the magnetization on Fe is to strongly split these two

branches at (0,0,8.5) with the 21 meV excitation, con-
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FIG. 3. (color online) Dynamical structure factor calcula-
tion of constant-Q line scan at Q = (0, 0, 8.5). The dotted
red line corresponds to non-magnetic calculations of the dy-
namical structure factor. The solid green line corresponds to
spin-polarized calculations imposing the SDW AFM ordering
observed at lower temperatures. The black dashed line and
blue dashed-dotted lines correspond to spin-polarized calcula-
tions with a striped (ferromagnetic along c) and checkerboard
ordering, respectively. The experimentally observed frequen-
cies in Fig. 1b are shown with vertical grey lines.

taining As motion, lowering in energy by approximately

8.6%. The ratio of intensities between the acoustic and

nearby optical mode moves in the direction of, though

slightly more than, what is observed experimentally. The

24 meV peak is primarily La motion. The intensity of the

32meV feature is 5.2 times stronger, in better agreement

with experiment.

In order to better understand the importance of the

specific magnetic order and size of the Fe moment on the

lattice dynamics, two additional calculations were per-

formed in hypothetical magnetic structures. First is the

“checkerboard” magnetic structure, shown in Fig. 4c.

It is a tetragonal space group, where Fe neighbors have

opposite spins. This calculation converges to a solution

0.023 Ry higher in energy and energy and with an 18%

smaller magnetic moment per Fe atom. The acoustic

mode is slightly softer and has greater intensity. The 21

meV excitation, containing As motion, is lower in energy

by approximately 19.9%. The intensity of the 32meV

feature is 2.9 times stronger than in the nonmagnetic

calculation.

Second is the CeFeAsO structure,34 also referred to as

“striped,” and shown in Fig. 4d. It is an orthorhombic

space group with ferromagnetic coupling of Fe moments

along the c-axis. The dynamical structure factor for this

material is shown with black dashes in Fig. 3. The fre-

quency and intensity of the acoustic and optical modes

at 8 and 11 meV are nearly identical. Once again, the

effect of the magnetization on Fe is to strongly split these

branches, with the 21 meV excitation lowering in energy

2

TABLE I. Theoretically relaxed and experimentally observed

z-position for La and As atoms, and the associated magnetic

moment per Fe atom and total energy. In each case the exper-

imental lattice parameters of (a = 4.03533Å, c = 8.74090Å)

were used.
18,19

NM SDW Striped Checkerboard Exp.
18,19

zLa 0.13993 0.13875 0.13883 0.13887 0.14154

zAs 0.63829 0.64820 0.64770 0.64401 0.6512

µFe 0.0 2.32 2.30 1.91 0.36-0.78

E(Ry) 0.0 -0.032 -0.033 -0.009

LaFeAsO single crystals were synthesized in an NaAs
flux at ambient pressure as described elsewhere.12 Inelas-
tic x-ray scattering measurements were performed on the
HERIX instrument at sector 30-ID-C of the Advanced
Photon Source at Argonne National Laboratory with in-
cident beam energy of 23.724 keV and with an energy
resolution of 1.44 meV.14,15 Scattering is described in
terms of the tetragonal P4/nmm unit cell where Q =
2π
a (hi+ kj) + 2π

c lk. The vectors i, j, and k are the
fundamental translation unit vectors in real space. Be-
low TS=156K, the sample transforms to an orthorhom-
bic structure with space group Cmma.16,17 The relation-
ship between the Miller indices in the tetragonal P4/nmm
and orthorhombic Cmma phase are, h = (Ho +Ko) , k =
(Ho −Ko), and l = Lo. Below the magnetic ordering
temperature TN=138K, the sample develops long-range
spin-density wave (SDW) AFM order. The sample was
mounted in the (hhl) plane in a displex for low temper-
ature studies, and the displex was attached to a 4-circle
diffractometer.

Based on previous studies of c-axis polarized phonons
in CaFe2As2, we focused our study on phonon branches
along the (0, 0, 8 + ξ) direction in the Brillouin zone. In
order to study the dispersion and potential line broaden-
ing of the phonon modes, the scans were fit to several
peaks using a pseudo-Voigt line profile. The normal-
ized pseudo-Voigt function is given in Eqn. 1, where
fG (x;Γ) and fL (x;Γ) are normalized Gaussian and
Lorentzian functions respectively. The mixing parame-
ter η = 0.74, and resolution full-width-at-half-maximum
(FWHM) Γ = 1.44 meV was determined from fits to the
elastic scattering width of Plexiglas.

fpV = (1− η) fG (x;Γ) + ηfL (x;Γ) (1)

Figure 1 shows a line scan consisting of several phonon
excitations at Q = (0, 0, 8.3) and Q = (0, 0, 8.5) at room
temperature. The peak positions for these and other
scans were obtained from fits and used to construct the
dispersion of phonon branches along the different scan di-
rections, as shown in Fig. 2. The intensity of the phonon
modes is also represented in Fig. 2 by the diameter of
the circles.

In order to understand the features of the phonon dis-
persion, the experimental measurements were compared
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FIG. 1. (color online) Energy scan at constant-Q at a)

Q = (0.0, 0, 8.3) and b) Q = (0.0, 0, 8.5) measured at room

temperature on LaFeAsO. Experimental data are given by

solid green points. The black line is fit using a pseudo-Voigt

function.

to ab initio calculations of the phonons. The phonon
dispersion was calculated using DFT and Density Func-
tional Perturbation Theory (DFPT).20 There are sig-
nificant differences in the experimental lattice parame-
ters and parameters from the “relaxed” structure with
the lowest calculated energy. Also, in spin-polarized
calculations with the experimentally observed AFM or-
der, the lattice distorts into the orthorhombic Cmma
structure observed experimentally at lower temperatures.
With these difficulties in mind, the experimental lat-
tice parameters at room temperature in the tetragonal
phase (a = 4.03533Å , c = 8.74090Å) were used for
all calculations.18,19 In addition, there is debate over the
appropriate internal z -parameter to use for the position
of lanthanum and arsenic atoms.2,9,21,22 For better ac-
curacy of the calculated phonons, we chose the calcu-

5

FIG. 4. (color online) Different AFM order used in the cal-

culations. La atoms are light blue, O atoms green, As atoms

purple and Fe atoms brown. The red and blue arrows show

up and down spin, respectively. a) expanded non-magnetic

unit cell, b) experimentally observed SDW, c) Checkerboard

ordering d) striped ordering aligned ferromagnetically along

the c-axis

by approximately 11.9%. The intensity of the 32meV

feature is half as strong as the nonmagnetic calculation.

Fig. 2 compiles all of the experimental data and cal-

culations of the different magnetic structures by showing

several contour plots of the dynamical structure factor

along (0, 0, L). Values of calculated intensities range from

blue (low intensity) to red (high intensity), and have been

multiplied by the energy to improve visibility of the op-

tical modes. The white dots show the experimentally

determined frequencies with the intensity shown by the

size of the dot. In each case, calculations with a mag-

netic moment on the Fe show splitting between the two

A1g modes near 24 meV. At the zone center, the upper

mode softens by 3.7 (SDW) - 5.3 (checkerboard) % and

the lower mode softens by 9.1 (SDW) - 16.6 (checker-

board) %. Calculated frequencies of these two modes

are a few meV lower than observed. Comparing non-

magnetic and spin-polarized calculations, the frequency

of the zone boundary the upper La-As mode is essen-

tially unchanged (< 0.6%). The intensity of the lower

mode is strongest near (0,0,9), and the intensity of the

upper mode is strongest near (0,0,8). The frequency

of the lower mode differs by 2 meV. The SDW calcu-

lation best matches the experimental frequency, but the

checkerboard pattern best matches the observed splitting

between these two modes. We note that the checker-

board ordering also introduces a pronounced softening

of the longitudinal acoustic mode when compared to the

non-magnetic calculation and other magnetically ordered

structures. Finally, we point out that the intensity of the

optical mode near 10 meV is highest in nonmagnetic cal-

culation. Overall changes in the phonon frequencies and

intensities indicate the complex and subtle effects that

magnetic ordering has on the lattice dynamics.

Despite the changes introduced by magnetic order, all

the spectra are qualitatively similar for different mag-

netic orders, and in better agreement with experiment

compared with nonmagnetic calculations. This might

be understood to occur as a consequence of Fe mo-

ments still being present above TN , though without long-

range order.35 Compared to nonmagnetic calculations,

imposing an AFM ordering better describes phonons in

LaFeAsO. Consequently, it is likely that the presence of

Fe moments, ordered or not, affects the force constants.

Considering only z-polarized phonon branches contain-

ing La and As motion significantly reduces the number of

force constants that contribute. First, only the “zz” term

in the 3x3 force constant tensor can contribute, greatly

simplifying comparisons between different magnetic unit

cells. Fe and O are essentially stationary in the modes

considered, meaning force constants between Fe-Fe,Fe-O

and O-O atoms do not contribute. La-La and La-O force

constants are essentially unchanged in each calculation,

and the bond distance between La-Fe is large and the

resulting force constant small. Therefore, we can limit

ourselves to the “zz” term for La-As, As-As, and Fe-As

force constants. Of these, the Fe-As force constant is

the largest by an order of magnitude. Even with these

simplifications, there was no clear softening of any spe-

cific pair-wise force. This provides additional evidence

for T. Yildirim’s observation that changes in the phonon

modes are due to a complicated renormalization rather

than softening of a single pair-wise force.2 In the non-

magnetic calculation the on-site force constants, which

(A) (B) (C)
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LaFeAsO

Q = (0.0,0,8.3)

Q = (0.0,0,8.5)

field theory (see Fig. 2). Because of the presence of Fe-Fe
directed bonds, dx2!y2 orbitals, which lie along the bonds,
create a pair of bonding-antibonding bands located at !2
and "1 eV. d3z2!1 bands states split into two subbands.
dxy states are inequivalent to dxz, dyz states, and the result-
ing t2g bands form a complicated structure centered at
#! 0:5 eV.

The Fermi level cuts the band structure in a region where
the DOS is high (2:1 states=eV spin) and rapidly decreas-
ing; a pseudogap opens in the electronic spectrum around
0.2 eV. As pointed out in previous publications, such a high
DOS at the Fermi level drives the system close to a
magnetic instability [7,8].

The Fermi surface comprises a doubly degenerate cy-
lindrical hole pocket centered at the ! point and a doubly
degenerate electron pocket centered at the M point; these
sheets have a dominant dxz, dyz character. A small 3D
pocket centered around the ! point is also present (see
Fig. 3 of Ref. [7]). The plasma frequencies are strongly
anisotropic (!xx $ 2:30 and !zz $ 0:32 eV). The distor-
tion (elongation or shrinking) of the Fe-As tetrahedra
modulates the splitting of the two d3z2!1 bands and the
relative splitting between xy and xz, yz bands along the
!! Z line, as indicated by the small arrows in Fig. 2. A 1%
percent compression of the tetrahedra along the c direction
changes the splitting of the two d3z2!1 by #0:1 eV, driving
one of them closer or further from the Fermi level. This
explains why the position of the 3dz2 ! 1 band, and the
weight of the associated DOS, varies in literature, depend-
ing on the crystal structure used [7,8].

Figure 3 summarizes the e-ph properties of LaFeAsO;
the results refer to pure LaFeAsO in the paramagnetic
phase. It has been shown that the pure compound is close
to a magnetic instability and to a metal-insulator transition

due to electronic correlations [7,8]. Electron doping
strongly suppresses the tendency to magnetism and re-
duces strong-correlation effects, and assuming a paramag-
netic ground state is probably appropriate for the F-doped
compound. Also, we checked by calculations in the virtual
crystal approximation that the effect of F doping is well
described by a rigid-band model, and the only effect of
doping is a rigid-band shift of the Fermi level, in a region
where the electronic DOS is lower (a 10% doping corre-
sponds to a 40% reduction of the DOS). Therefore, the
results for the undoped compound can be considered rep-
resentative also for the electron-doped compound, pro-
vided that the reduced DOS is taken into account.

In the left panel of Fig. 3, we show the calculated
phonon dispersion relations of LaFeAsO; our frequencies
are in very good agreement with those of Ref. [7], where a
slightly different crystal structure was used. In the middle
panel of the same figure, we show the atom-projected
phonon DOS. The spectrum extends up to 500 cm!1; the
vibrations of O atoms are well separated in energy from
those of other atomic species, lying at !> 300 cm!1. The
vibrations of La, Fe, and As occupy the same energy range,
and the eigenvectors have a strongly mixed character.
Similarly to the electronic bands, the phonon branches
have very little dispersion in the z direction. Analyzing

FIG. 2 (color online). Band structure of LaFeAsO, decorated
with partial characters of the eg (top) and t2g (bottom) Fe-d
bands. The orientation of the coordinate system is chosen so that
Fe-Fe bonds are directed along the x and y axes; the zero of the
energy coincides with the Fermi level. The arrows indicate the
splitting induced by the elongation/shrinking of the Fe-As tetra-
hedra (see text).

FIG. 1 (color online). Crystal structure of LaFeAsO.
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upper phonon is pulled down from the experimental value of
32 to 30 meV. Peak splitting in this calculation due to un-
equal bond lengths in the !110" and !1-10" directions #in the
tetragonal notation$ is much smaller than the experimental
resolution and is not apparent in the simulated spectra. Thus
a large Fe moment is essential to make the calculated phonon
frequencies agree with experiment, the important caveat be-
ing that the accompanying peak splitting is not observed. We
would like to note here that in the case of moving domain
walls, the magnetic order should still split these phonons if
the time scale of the motion were slower than the phonon
frequency, which is around 20 meV.

The destruction of the magnetic order by either doping or
temperature has almost no influence on the phonons. #Fig. 4
shows a possible small hardening of at most 1 meV of some
high-energy modes upon doping.$ We also found that super-
conductivity appears to only weakly, if at all, influence the
phonons that we had measured #data not shown$.

IV. DISCUSSION

Our results seem to be contradictory. On the one hand, the
substantial improvement of the agreement of the calculated
phonon frequencies with experiment upon inclusion of mag-
netism speaks in favor of large antiferromagnetic Fe mo-
ments. On the other hand, absence of split peaks points to the
opposite conclusion. It is also the fundamental feature of the
GGA18 that the calculated optimal length of the Fe-As bond
is sensitive to the angle it makes with the Fe moment. It is
this bond that is modulated by the phonons around 25 meV.
Thus it is not possible to somehow “tune” the calculation to
remove the magnetism-induced splitting but preserve the
softening in the !110" direction. Here, we would like to pro-
pose a way out of this paradox.

FIG. 1. #Color online$ Measured and calculated phonon frequen-
cies. Lines represent phonon dispersions calculated in GGA,
whereas the data points represent experimental phonon energies for
BaFe1.8Co0.2As2. The calculations ignored Co-doping since no sig-
nificant doping dependence has been found in the experiments.
#Fig. 4$ Experimental and theoretical curves are color coded to
reflect different symmetries of the eigenvectors. The experimental
points can correspond only to the calculated curves of the same
color. In black-and-white the correspondence is for both a and b:
solid line—rhomb, dashed line—square, dotted line—none, dashed-
dotted—triangle. Black circle indicates that the symmetry of the
observed phonons could not be determined. #a$ Nonmagnetic calcu-
lations with the fully optimized structure compared with experi-
ment. #b$ Same experimental results as in #a$ compared with the
magnetic calculation with the experimental lattice constants of low
temperature of BaFe2As2 and the optimized internal parameter. #c$
Comparison of the calculation in #b$ #blue dashed lines$ with the
nonmagnetic calculation with the structure fixed to the one obtained
in the magnetic calculation #red solid lines$. This is the third calcu-
lation #see text$ called nonmagnetic orthorhombic in Fig. 3. Includ-
ing magnetism mainly softens the phonons around 25 meV and
hardens the ones around 33 meV. Note that there are two inequiva-
lent !-M directions but only the one along the magnetic order
propagation vector is shown.

FIG. 2. #Color online$ Comparison of measured and calculated
inelastic spectra for BaFe1.8Co0.2As2. Arbitrary overall scaling fac-
tor has been applied to the calculation. The peak at zero energy
comes from elastic scattering. The wave vectors reduced to the first
BZ are: #a$ #0.5,0.5,0$ longitudinal #b$ #0.5,0.5,0$ transverse, #c$
#0,0,1$ longitudinal, #d$ #0.5,0.5,1$ transverse.
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upper phonon is pulled down from the experimental value of
32 to 30 meV. Peak splitting in this calculation due to un-
equal bond lengths in the !110" and !1-10" directions #in the
tetragonal notation$ is much smaller than the experimental
resolution and is not apparent in the simulated spectra. Thus
a large Fe moment is essential to make the calculated phonon
frequencies agree with experiment, the important caveat be-
ing that the accompanying peak splitting is not observed. We
would like to note here that in the case of moving domain
walls, the magnetic order should still split these phonons if
the time scale of the motion were slower than the phonon
frequency, which is around 20 meV.

The destruction of the magnetic order by either doping or
temperature has almost no influence on the phonons. #Fig. 4
shows a possible small hardening of at most 1 meV of some
high-energy modes upon doping.$ We also found that super-
conductivity appears to only weakly, if at all, influence the
phonons that we had measured #data not shown$.

IV. DISCUSSION

Our results seem to be contradictory. On the one hand, the
substantial improvement of the agreement of the calculated
phonon frequencies with experiment upon inclusion of mag-
netism speaks in favor of large antiferromagnetic Fe mo-
ments. On the other hand, absence of split peaks points to the
opposite conclusion. It is also the fundamental feature of the
GGA18 that the calculated optimal length of the Fe-As bond
is sensitive to the angle it makes with the Fe moment. It is
this bond that is modulated by the phonons around 25 meV.
Thus it is not possible to somehow “tune” the calculation to
remove the magnetism-induced splitting but preserve the
softening in the !110" direction. Here, we would like to pro-
pose a way out of this paradox.

FIG. 1. #Color online$ Measured and calculated phonon frequen-
cies. Lines represent phonon dispersions calculated in GGA,
whereas the data points represent experimental phonon energies for
BaFe1.8Co0.2As2. The calculations ignored Co-doping since no sig-
nificant doping dependence has been found in the experiments.
#Fig. 4$ Experimental and theoretical curves are color coded to
reflect different symmetries of the eigenvectors. The experimental
points can correspond only to the calculated curves of the same
color. In black-and-white the correspondence is for both a and b:
solid line—rhomb, dashed line—square, dotted line—none, dashed-
dotted—triangle. Black circle indicates that the symmetry of the
observed phonons could not be determined. #a$ Nonmagnetic calcu-
lations with the fully optimized structure compared with experi-
ment. #b$ Same experimental results as in #a$ compared with the
magnetic calculation with the experimental lattice constants of low
temperature of BaFe2As2 and the optimized internal parameter. #c$
Comparison of the calculation in #b$ #blue dashed lines$ with the
nonmagnetic calculation with the structure fixed to the one obtained
in the magnetic calculation #red solid lines$. This is the third calcu-
lation #see text$ called nonmagnetic orthorhombic in Fig. 3. Includ-
ing magnetism mainly softens the phonons around 25 meV and
hardens the ones around 33 meV. Note that there are two inequiva-
lent !-M directions but only the one along the magnetic order
propagation vector is shown.

FIG. 2. #Color online$ Comparison of measured and calculated
inelastic spectra for BaFe1.8Co0.2As2. Arbitrary overall scaling fac-
tor has been applied to the calculation. The peak at zero energy
comes from elastic scattering. The wave vectors reduced to the first
BZ are: #a$ #0.5,0.5,0$ longitudinal #b$ #0.5,0.5,0$ transverse, #c$
#0,0,1$ longitudinal, #d$ #0.5,0.5,1$ transverse.
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sure range, whereas a correction factor is needed to account for
the higher pressure (density) effect on the VP at a given tempera-
ture (25–28) (Fig. 2). We found that an empirical power-law func-
tion can be used to satisfactorily describe our VP − ρ data of hcp-
Fe (26–28):

VP ¼ CðMÞðρþ aðTÞÞλ; [1]

where CðMÞ is an atomic mass constant at a given temperature, λ
is a correction factor for the nonlinear behavior of the VP − ρ
relationship (see SI Methods) (26–28), and aðTÞ is a temperature-
dependent correction factor that is given to account for the
high-temperature effect on the VP at higher densities. Assuming
a linear VP − ρ relationship [by removing aðTÞ and λ in the
equation], on the other hand, would result in an overestimation
of the VP by 1.4% at our maximum experimental density of
11.141 %0.008ð Þ g∕cm3 (approximately 105 GPa using the equa-
tion of state parameters given in refs. 29 and 30) (Fig. 2). Com-
parison of our hcp-Fe and Fe-Si alloy results with previous studies
on Fe at high pressures showed that hcp-Fe0.85Si0.15 systemati-
cally exhibits much higher VP and much lower ρ than hcp-Fe
(10, 31–34) (Fig. 2). The overall alloying effects of Si in Fe have
resulted in reduced density and increased velocity at high pres-
sures. Systematic VP − ρ comparisons between hcp-Fe0.85Si0.15
and hcp-Fe clearly show that the addition of Si mainly contributes
to the density reduction in the VP − ρ relation of hcp-Fe at high
pressures, as the VP − ρ line of hcp-Fe0.85Si0.15 matches well with
that of hcp-Fe with a density decrease of approximately 1 g∕cm3

(Fig. 2). This density reduction behavior has been reported to
occur in the body-centered cubic (bcc) Fe-Si alloy at ambient con-
ditions (35). The finding on the solid-solution alloying effect on
the VP − ρ profile permits one to extrapolate and to interpolate
experimental data to higher pressures with more confidence.

Sound Velocities of Fe Alloys. In the past few decades, various tech-
niques, including synchrotron XRD (29, 30), NRIXS (11, 22, 36,
37), HERIX (10, 31–33, 38, 39), and impulsive stimulated light
scattering (ISLS) (40), combined with DACs, have been applied
to measure the VP of Fe-light element alloys at high pressures
(Fig. 3A). Although large systematic uncertainties exist in com-
parison to each dataset (10, 11, 22, 23, 41–43), the VP data
of hcp-Fe generally seem to follow an empirical linear VP − ρ
relation, so-called Birch’s law, for the first-order approximation

without considering potential high-temperature anharmonic and
higher pressure effects (10, 11) (Fig. 3A). Without higher P-T
data, extrapolation and interpolation of the linear relationships
in Fe alloys have been extensively used to estimate the amount
and identity of light elements in the core. Nevertheless, high tem-
peratures are reported to result in reduced sound velocities of
hcp-Fe and Fe3C in high P-T NRIXS measurements (22, 44)
and in theoretical calculations (4). However, NRIXS is relatively
sensitive to the shear-wave velocity, VS, and much less sensitive

Fig. 2. VP − ρ of hcp-Fe and hcp-Fe0.85Si0.15 at high pressures and tempera-
tures. (A) hcp-Fe. Dashed lines: linear fitting at 300 K; solid lines: the power-
law fitting. (B) hcp-Fe (solid circles) and hcp-Fe0.85Si0.15 (open circles). Insert
figure: deviations of the power-law fit (black circles) and the linear fit (red
circles) from the experimental VP of hcp-Fe (Fig. 2A) or hcp-Fe0.85Si0.15(Fig. 2B)
at high pressures and 300 K. Error bars for VP in the order of 1% or less are
smaller than the circles and are not shown (see Table S1 for details).

LA

LA

LA

TA-Dia

LA

TA-Dia
TA-Dia LA-Dia

LA

LA

LA

LA

TA-Dia

A B C

Fig. 1. Representative inelastic X-ray scattering
spectra of hcp-Fe and hcp-Fe0.85Si0.15. (A) hcp-Fe at
105 GPa [corresponding to ρ ¼ 11.141 %0.008ð Þ g∕
cm3] at 300 K. (B) hcp-Fe at 67 GPa [corresponding
to ρ ¼ 10.304 %0.004ð Þ g∕cm3] and 700 K. (C) hcp-
Fe0.85Si0.15 at 82 GPa [corresponding to ρ ¼ 9.845
ð%0.005Þ g∕cm3] and 300 K. Pressures were calcu-
lated using the equation of state of hcp-Fe (29, 30)
and hcp-Fe0.85Si0.15 (35). Experimental data in open
circles with error bars were fitted with a Lorentzian
function (solid lines) for the longitudinal acoustic
phonon peak (LA). Transverse acoustic phonon peaks
(TA) from diamond anvils were observed when the
momentum transfer (Q) was lower than approxi-
mately 8 nm−1.
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sure range, whereas a correction factor is needed to account for
the higher pressure (density) effect on the VP at a given tempera-
ture (25–28) (Fig. 2). We found that an empirical power-law func-
tion can be used to satisfactorily describe our VP − ρ data of hcp-
Fe (26–28):

VP ¼ CðMÞðρþ aðTÞÞλ; [1]

where CðMÞ is an atomic mass constant at a given temperature, λ
is a correction factor for the nonlinear behavior of the VP − ρ
relationship (see SI Methods) (26–28), and aðTÞ is a temperature-
dependent correction factor that is given to account for the
high-temperature effect on the VP at higher densities. Assuming
a linear VP − ρ relationship [by removing aðTÞ and λ in the
equation], on the other hand, would result in an overestimation
of the VP by 1.4% at our maximum experimental density of
11.141 %0.008ð Þ g∕cm3 (approximately 105 GPa using the equa-
tion of state parameters given in refs. 29 and 30) (Fig. 2). Com-
parison of our hcp-Fe and Fe-Si alloy results with previous studies
on Fe at high pressures showed that hcp-Fe0.85Si0.15 systemati-
cally exhibits much higher VP and much lower ρ than hcp-Fe
(10, 31–34) (Fig. 2). The overall alloying effects of Si in Fe have
resulted in reduced density and increased velocity at high pres-
sures. Systematic VP − ρ comparisons between hcp-Fe0.85Si0.15
and hcp-Fe clearly show that the addition of Si mainly contributes
to the density reduction in the VP − ρ relation of hcp-Fe at high
pressures, as the VP − ρ line of hcp-Fe0.85Si0.15 matches well with
that of hcp-Fe with a density decrease of approximately 1 g∕cm3

(Fig. 2). This density reduction behavior has been reported to
occur in the body-centered cubic (bcc) Fe-Si alloy at ambient con-
ditions (35). The finding on the solid-solution alloying effect on
the VP − ρ profile permits one to extrapolate and to interpolate
experimental data to higher pressures with more confidence.

Sound Velocities of Fe Alloys. In the past few decades, various tech-
niques, including synchrotron XRD (29, 30), NRIXS (11, 22, 36,
37), HERIX (10, 31–33, 38, 39), and impulsive stimulated light
scattering (ISLS) (40), combined with DACs, have been applied
to measure the VP of Fe-light element alloys at high pressures
(Fig. 3A). Although large systematic uncertainties exist in com-
parison to each dataset (10, 11, 22, 23, 41–43), the VP data
of hcp-Fe generally seem to follow an empirical linear VP − ρ
relation, so-called Birch’s law, for the first-order approximation

without considering potential high-temperature anharmonic and
higher pressure effects (10, 11) (Fig. 3A). Without higher P-T
data, extrapolation and interpolation of the linear relationships
in Fe alloys have been extensively used to estimate the amount
and identity of light elements in the core. Nevertheless, high tem-
peratures are reported to result in reduced sound velocities of
hcp-Fe and Fe3C in high P-T NRIXS measurements (22, 44)
and in theoretical calculations (4). However, NRIXS is relatively
sensitive to the shear-wave velocity, VS, and much less sensitive

Fig. 2. VP − ρ of hcp-Fe and hcp-Fe0.85Si0.15 at high pressures and tempera-
tures. (A) hcp-Fe. Dashed lines: linear fitting at 300 K; solid lines: the power-
law fitting. (B) hcp-Fe (solid circles) and hcp-Fe0.85Si0.15 (open circles). Insert
figure: deviations of the power-law fit (black circles) and the linear fit (red
circles) from the experimental VP of hcp-Fe (Fig. 2A) or hcp-Fe0.85Si0.15(Fig. 2B)
at high pressures and 300 K. Error bars for VP in the order of 1% or less are
smaller than the circles and are not shown (see Table S1 for details).
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spectra of hcp-Fe and hcp-Fe0.85Si0.15. (A) hcp-Fe at
105 GPa [corresponding to ρ ¼ 11.141 %0.008ð Þ g∕
cm3] at 300 K. (B) hcp-Fe at 67 GPa [corresponding
to ρ ¼ 10.304 %0.004ð Þ g∕cm3] and 700 K. (C) hcp-
Fe0.85Si0.15 at 82 GPa [corresponding to ρ ¼ 9.845
ð%0.005Þ g∕cm3] and 300 K. Pressures were calcu-
lated using the equation of state of hcp-Fe (29, 30)
and hcp-Fe0.85Si0.15 (35). Experimental data in open
circles with error bars were fitted with a Lorentzian
function (solid lines) for the longitudinal acoustic
phonon peak (LA). Transverse acoustic phonon peaks
(TA) from diamond anvils were observed when the
momentum transfer (Q) was lower than approxi-
mately 8 nm−1.
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The density deficit of each Fe alloy system is obtained by using
ourVP − ρ profile of hcp-Fe as the reference (Fig. 4A). At a given
VP, the density deficit is defined by the density difference be-
tween the Fe-light element alloy and the hcp-Fe. Comparison
of the deficits shows that adding Ni into Fe marginally increases
the density (32), whereas all candidate light elements decrease
the density of hcp-Fe (31–33, 36, 37, 39). The density deficit
of hcp-Fe0.85Si0.15 is fairly independent of the density increase,
though Fe3C, Fe3S, and FeH systems seem to show a marginally
positive slope (33, 37, 39), whereas FeO displays a negative slope
(33). We have also calculated the density deficits of Fe alloys
using the VΦ − ρ profiles from the XRDmeasurements following
the same method to derive the density deficits from the VP − ρ
profiles (29, 30, 35, 50–58) (Fig. 4B). With the exceptions of the
Fe3C and Fe0.85Si0.15, the density deficit of FeO, FeSi, and Fe3S,
determined from the VΦ − ρ profile, follow a similar trend with
that determined from the VP − ρ profile.

New VP − ρ Profiles of Fe and Fe-Si Alloy in the Earth’s Inner Core:
Implication for the Core Composition. As shown from our high
P-T measurements and previous NRIXS study (22, 44), the effect
of temperature at a given pressure on the sound velocity of Fe
cannot be ignored. Here we have applied our results to establish
a new VP − ρ model of hcp-Fe and hcp-Fe0.85Si0.15 at relevant
P-T conditions of the inner core. The new VP − ρ model aims to
provide preliminary constraints on the composition of the inner
core and to examine how the variation in temperature can affect
our understanding of the core composition by using a solid-solu-
tion Fe-Si alloy in the hcp structure as an example. Our experi-
mental results are extrapolated to relevant inner core conditions
using the power-law function and previous shock wave results

(Fig. 5 and see SI Text for details) (23, 41). Our model shows that
power-law extrapolated VP of hcp-Fe at 300 K is 5–6% and 3.5%
lower than that of the linear extrapolation and seismic references,
respectively, whereas VP of hcp-Fe0.85Si0.15 at 300 K are 6.2–7%
lower than that of the linear extrapolation but 2% greater than
that of the seismic references (7, 8, 10, 33) (Fig. 5). Considering
the high-temperature effect on the VP reduction of hcp-Fe, our
VP − ρ model of hcp-Fe at 6,000 K is 6% lower than the seismic
models (7, 8) (Fig. 5), whereas the extrapolated VP − ρ line of
hcp-Fe0.85Si0.15 at 6,000 K is consistent with the seismic models
of the inner core. Furthermore, theVP − ρ line of hcp-Fe0.85Si0.15
exhibits a similar slope to the seismic models (Fig. 5). That is, the
VP − ρ profile of hcp-Fe with approximately 8 wt. % Si
(Fe0.85Si0.15) at 6,000 K can satisfactorily explain the seismic
VP − ρ of the inner core.

Based on our model, the percentage of light elements such as
Si in the inner core can be assessed by comparing the seismically
known relationship between VP and ρ with laboratory measure-
ments for candidate Fe alloys. The linear VP − ρ relationship
and ideal solid-solution behavior of candidate Fe alloys has been
commonly assumed in order to extrapolate experimental results
to the inner core pressures (33). This linear model, however, does
not take the non-linear VP − ρ behavior and high-temperature
anharmonic effects into account, and would overestimate the
amount of a candidate light element needed in the inner core. For
example, extrapolation of our VP − ρ data using a linear model
would result in much higher VP than the power-law model,
requiring more than 10 wt. % Si in the inner core. This amount
of Si is much higher than the estimate in the power-law model
and is inconsistent with recent cosmochemical and geochemical
constraints (19, 59–65). Direct measurements of the VP − ρ re-
lationship of Fe-light element alloys at relevant P-T conditions of
the core now appear to be on the horizon, which in turn may
eventually answer the longstanding question on the composition
of the Earth’s core.
Methods
Polycrystalline Fe and Fe0.85Si0.15 alloys were used as the starting samples. The
Fe-Si alloy was obtained from Goodfellow Corporation (lot FE166010/6);
details of the sample have been given elsewhere (18, 35). Electron microp-
robe analyses showed that the Fe sample did not contain any detectable im-
purities and the Fe-Si sample contained 7.9 (!0.3) wt% Si homogeneously,
whereas XRD spectra showed that both samples were in the body-centered
cubic (bcc) structure.

The Fe sample was sandwiched between two NaCl layers or loaded with
Ne which served as a pressure medium and an insulating layer from the Re
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Fig. 4. Density deficits of Fe alloys with respect to hcp-Fe. (A) density deficit
derived from the VP − ρ profile. Violet line: Fe0.85Si0.15 from this study; olive
line: Fe0.78Ni0.22(31); pink line: Fe0.89Ni0.04Si0.07(32); dark cyan line: Fe3C (37);
orange line: Fe3S (36); red line: FeO (33); wine line: FeH (39); navy blue line:
FeSi (33); dark yellow line: FeS2 (33). The overall uncertainty of these density
deficits is approximately 0.05 g∕cm3. (B) density deficit derived from the
VΦ − ρ profile. Orange line: Fe3S (50, 51); violet line: Fe0.85Si0.15 (35, 51, 52);
dark cyan line: Fe3C (53, 54); red solid and dashed lines: FeO in B1 and B8
phase, respectively (55); navy blue line: FeSi (48, 56); purple line: FeS in phase
IV structure (48, 57). The overall uncertainty of these density deficits is
approximately !0.01 g∕cm3.

Fig. 5. Modeled VP − ρ relation of hcp-Fe in Earth’s core. Blue solid lines:
modeled VP at 300 K (solid circles) and 700 K (open circles) of hcp-Fe from
the power-law function, respectively; red solid line: modeled VP at 300 K of
hcp-Fe0.85Si0.15 from the power-law function; blue and red dashed lines: VP −
ρ 6,000 K derived from the measured VP in this study and shock-compression
measurements of hcp-Fe and hcp-Fe0.85Si0.15, respectively (23, 41); grey line:
shock-compression measurements of hcp-Fe (23, 41); black pluses (+) and
crosses (×): seismic observations for the outer and inner core (8), respectively.
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compressional sound measurements

shear sound measurements

The density deficit of each Fe alloy system is obtained by using
ourVP − ρ profile of hcp-Fe as the reference (Fig. 4A). At a given
VP, the density deficit is defined by the density difference be-
tween the Fe-light element alloy and the hcp-Fe. Comparison
of the deficits shows that adding Ni into Fe marginally increases
the density (32), whereas all candidate light elements decrease
the density of hcp-Fe (31–33, 36, 37, 39). The density deficit
of hcp-Fe0.85Si0.15 is fairly independent of the density increase,
though Fe3C, Fe3S, and FeH systems seem to show a marginally
positive slope (33, 37, 39), whereas FeO displays a negative slope
(33). We have also calculated the density deficits of Fe alloys
using the VΦ − ρ profiles from the XRDmeasurements following
the same method to derive the density deficits from the VP − ρ
profiles (29, 30, 35, 50–58) (Fig. 4B). With the exceptions of the
Fe3C and Fe0.85Si0.15, the density deficit of FeO, FeSi, and Fe3S,
determined from the VΦ − ρ profile, follow a similar trend with
that determined from the VP − ρ profile.

New VP − ρ Profiles of Fe and Fe-Si Alloy in the Earth’s Inner Core:
Implication for the Core Composition. As shown from our high
P-T measurements and previous NRIXS study (22, 44), the effect
of temperature at a given pressure on the sound velocity of Fe
cannot be ignored. Here we have applied our results to establish
a new VP − ρ model of hcp-Fe and hcp-Fe0.85Si0.15 at relevant
P-T conditions of the inner core. The new VP − ρ model aims to
provide preliminary constraints on the composition of the inner
core and to examine how the variation in temperature can affect
our understanding of the core composition by using a solid-solu-
tion Fe-Si alloy in the hcp structure as an example. Our experi-
mental results are extrapolated to relevant inner core conditions
using the power-law function and previous shock wave results

(Fig. 5 and see SI Text for details) (23, 41). Our model shows that
power-law extrapolated VP of hcp-Fe at 300 K is 5–6% and 3.5%
lower than that of the linear extrapolation and seismic references,
respectively, whereas VP of hcp-Fe0.85Si0.15 at 300 K are 6.2–7%
lower than that of the linear extrapolation but 2% greater than
that of the seismic references (7, 8, 10, 33) (Fig. 5). Considering
the high-temperature effect on the VP reduction of hcp-Fe, our
VP − ρ model of hcp-Fe at 6,000 K is 6% lower than the seismic
models (7, 8) (Fig. 5), whereas the extrapolated VP − ρ line of
hcp-Fe0.85Si0.15 at 6,000 K is consistent with the seismic models
of the inner core. Furthermore, theVP − ρ line of hcp-Fe0.85Si0.15
exhibits a similar slope to the seismic models (Fig. 5). That is, the
VP − ρ profile of hcp-Fe with approximately 8 wt. % Si
(Fe0.85Si0.15) at 6,000 K can satisfactorily explain the seismic
VP − ρ of the inner core.

Based on our model, the percentage of light elements such as
Si in the inner core can be assessed by comparing the seismically
known relationship between VP and ρ with laboratory measure-
ments for candidate Fe alloys. The linear VP − ρ relationship
and ideal solid-solution behavior of candidate Fe alloys has been
commonly assumed in order to extrapolate experimental results
to the inner core pressures (33). This linear model, however, does
not take the non-linear VP − ρ behavior and high-temperature
anharmonic effects into account, and would overestimate the
amount of a candidate light element needed in the inner core. For
example, extrapolation of our VP − ρ data using a linear model
would result in much higher VP than the power-law model,
requiring more than 10 wt. % Si in the inner core. This amount
of Si is much higher than the estimate in the power-law model
and is inconsistent with recent cosmochemical and geochemical
constraints (19, 59–65). Direct measurements of the VP − ρ re-
lationship of Fe-light element alloys at relevant P-T conditions of
the core now appear to be on the horizon, which in turn may
eventually answer the longstanding question on the composition
of the Earth’s core.
Methods
Polycrystalline Fe and Fe0.85Si0.15 alloys were used as the starting samples. The
Fe-Si alloy was obtained from Goodfellow Corporation (lot FE166010/6);
details of the sample have been given elsewhere (18, 35). Electron microp-
robe analyses showed that the Fe sample did not contain any detectable im-
purities and the Fe-Si sample contained 7.9 (!0.3) wt% Si homogeneously,
whereas XRD spectra showed that both samples were in the body-centered
cubic (bcc) structure.

The Fe sample was sandwiched between two NaCl layers or loaded with
Ne which served as a pressure medium and an insulating layer from the Re
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Fig. 4. Density deficits of Fe alloys with respect to hcp-Fe. (A) density deficit
derived from the VP − ρ profile. Violet line: Fe0.85Si0.15 from this study; olive
line: Fe0.78Ni0.22(31); pink line: Fe0.89Ni0.04Si0.07(32); dark cyan line: Fe3C (37);
orange line: Fe3S (36); red line: FeO (33); wine line: FeH (39); navy blue line:
FeSi (33); dark yellow line: FeS2 (33). The overall uncertainty of these density
deficits is approximately 0.05 g∕cm3. (B) density deficit derived from the
VΦ − ρ profile. Orange line: Fe3S (50, 51); violet line: Fe0.85Si0.15 (35, 51, 52);
dark cyan line: Fe3C (53, 54); red solid and dashed lines: FeO in B1 and B8
phase, respectively (55); navy blue line: FeSi (48, 56); purple line: FeS in phase
IV structure (48, 57). The overall uncertainty of these density deficits is
approximately !0.01 g∕cm3.

Fig. 5. Modeled VP − ρ relation of hcp-Fe in Earth’s core. Blue solid lines:
modeled VP at 300 K (solid circles) and 700 K (open circles) of hcp-Fe from
the power-law function, respectively; red solid line: modeled VP at 300 K of
hcp-Fe0.85Si0.15 from the power-law function; blue and red dashed lines: VP −
ρ 6,000 K derived from the measured VP in this study and shock-compression
measurements of hcp-Fe and hcp-Fe0.85Si0.15, respectively (23, 41); grey line:
shock-compression measurements of hcp-Fe (23, 41); black pluses (+) and
crosses (×): seismic observations for the outer and inner core (8), respectively.
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The density deficit of each Fe alloy system is obtained by using
ourVP − ρ profile of hcp-Fe as the reference (Fig. 4A). At a given
VP, the density deficit is defined by the density difference be-
tween the Fe-light element alloy and the hcp-Fe. Comparison
of the deficits shows that adding Ni into Fe marginally increases
the density (32), whereas all candidate light elements decrease
the density of hcp-Fe (31–33, 36, 37, 39). The density deficit
of hcp-Fe0.85Si0.15 is fairly independent of the density increase,
though Fe3C, Fe3S, and FeH systems seem to show a marginally
positive slope (33, 37, 39), whereas FeO displays a negative slope
(33). We have also calculated the density deficits of Fe alloys
using the VΦ − ρ profiles from the XRDmeasurements following
the same method to derive the density deficits from the VP − ρ
profiles (29, 30, 35, 50–58) (Fig. 4B). With the exceptions of the
Fe3C and Fe0.85Si0.15, the density deficit of FeO, FeSi, and Fe3S,
determined from the VΦ − ρ profile, follow a similar trend with
that determined from the VP − ρ profile.

New VP − ρ Profiles of Fe and Fe-Si Alloy in the Earth’s Inner Core:
Implication for the Core Composition. As shown from our high
P-T measurements and previous NRIXS study (22, 44), the effect
of temperature at a given pressure on the sound velocity of Fe
cannot be ignored. Here we have applied our results to establish
a new VP − ρ model of hcp-Fe and hcp-Fe0.85Si0.15 at relevant
P-T conditions of the inner core. The new VP − ρ model aims to
provide preliminary constraints on the composition of the inner
core and to examine how the variation in temperature can affect
our understanding of the core composition by using a solid-solu-
tion Fe-Si alloy in the hcp structure as an example. Our experi-
mental results are extrapolated to relevant inner core conditions
using the power-law function and previous shock wave results

(Fig. 5 and see SI Text for details) (23, 41). Our model shows that
power-law extrapolated VP of hcp-Fe at 300 K is 5–6% and 3.5%
lower than that of the linear extrapolation and seismic references,
respectively, whereas VP of hcp-Fe0.85Si0.15 at 300 K are 6.2–7%
lower than that of the linear extrapolation but 2% greater than
that of the seismic references (7, 8, 10, 33) (Fig. 5). Considering
the high-temperature effect on the VP reduction of hcp-Fe, our
VP − ρ model of hcp-Fe at 6,000 K is 6% lower than the seismic
models (7, 8) (Fig. 5), whereas the extrapolated VP − ρ line of
hcp-Fe0.85Si0.15 at 6,000 K is consistent with the seismic models
of the inner core. Furthermore, theVP − ρ line of hcp-Fe0.85Si0.15
exhibits a similar slope to the seismic models (Fig. 5). That is, the
VP − ρ profile of hcp-Fe with approximately 8 wt. % Si
(Fe0.85Si0.15) at 6,000 K can satisfactorily explain the seismic
VP − ρ of the inner core.

Based on our model, the percentage of light elements such as
Si in the inner core can be assessed by comparing the seismically
known relationship between VP and ρ with laboratory measure-
ments for candidate Fe alloys. The linear VP − ρ relationship
and ideal solid-solution behavior of candidate Fe alloys has been
commonly assumed in order to extrapolate experimental results
to the inner core pressures (33). This linear model, however, does
not take the non-linear VP − ρ behavior and high-temperature
anharmonic effects into account, and would overestimate the
amount of a candidate light element needed in the inner core. For
example, extrapolation of our VP − ρ data using a linear model
would result in much higher VP than the power-law model,
requiring more than 10 wt. % Si in the inner core. This amount
of Si is much higher than the estimate in the power-law model
and is inconsistent with recent cosmochemical and geochemical
constraints (19, 59–65). Direct measurements of the VP − ρ re-
lationship of Fe-light element alloys at relevant P-T conditions of
the core now appear to be on the horizon, which in turn may
eventually answer the longstanding question on the composition
of the Earth’s core.
Methods
Polycrystalline Fe and Fe0.85Si0.15 alloys were used as the starting samples. The
Fe-Si alloy was obtained from Goodfellow Corporation (lot FE166010/6);
details of the sample have been given elsewhere (18, 35). Electron microp-
robe analyses showed that the Fe sample did not contain any detectable im-
purities and the Fe-Si sample contained 7.9 (!0.3) wt% Si homogeneously,
whereas XRD spectra showed that both samples were in the body-centered
cubic (bcc) structure.

The Fe sample was sandwiched between two NaCl layers or loaded with
Ne which served as a pressure medium and an insulating layer from the Re

A

B

Fig. 4. Density deficits of Fe alloys with respect to hcp-Fe. (A) density deficit
derived from the VP − ρ profile. Violet line: Fe0.85Si0.15 from this study; olive
line: Fe0.78Ni0.22(31); pink line: Fe0.89Ni0.04Si0.07(32); dark cyan line: Fe3C (37);
orange line: Fe3S (36); red line: FeO (33); wine line: FeH (39); navy blue line:
FeSi (33); dark yellow line: FeS2 (33). The overall uncertainty of these density
deficits is approximately 0.05 g∕cm3. (B) density deficit derived from the
VΦ − ρ profile. Orange line: Fe3S (50, 51); violet line: Fe0.85Si0.15 (35, 51, 52);
dark cyan line: Fe3C (53, 54); red solid and dashed lines: FeO in B1 and B8
phase, respectively (55); navy blue line: FeSi (48, 56); purple line: FeS in phase
IV structure (48, 57). The overall uncertainty of these density deficits is
approximately !0.01 g∕cm3.

Fig. 5. Modeled VP − ρ relation of hcp-Fe in Earth’s core. Blue solid lines:
modeled VP at 300 K (solid circles) and 700 K (open circles) of hcp-Fe from
the power-law function, respectively; red solid line: modeled VP at 300 K of
hcp-Fe0.85Si0.15 from the power-law function; blue and red dashed lines: VP −
ρ 6,000 K derived from the measured VP in this study and shock-compression
measurements of hcp-Fe and hcp-Fe0.85Si0.15, respectively (23, 41); grey line:
shock-compression measurements of hcp-Fe (23, 41); black pluses (+) and
crosses (×): seismic observations for the outer and inner core (8), respectively.
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light element alloys at relevant P-T conditions of the 
core now appear to be on the horizon, which in turn 
may eventually answer the longstanding question 
on the composition of the Earthʼs core.
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to VP, a better-constrained seismic parameter, thus limiting its
direct implications to the inner core geochemistry (11, 22).

Comparison between VP − ρ of hcp-Fe and Earth’s core indi-
cates significant VP − ρ differences that call for the addition of
approximately 8–10 wt% light elements in the outer core and

4 wt% in the inner core (e.g., 12–15, 23) (Fig. 3B). The amount
of Ni in the core is approximately 5–15 wt % (14, 45) that likely
would not significantly affect the VP − ρ relation of Fe (31)
(Fig. 3B). On the other hand, adding a certain amount of light
elements can significantly decrease the density and increase the
sound velocities [VP and bulk sound velocity (VΦ)] of Fe, pro-
viding a better match for the VP − ρ profile of the Earth’s core
(31–33, 36, 38–40) (Fig. 3 B and C). Fig. 3B summarizes the VP −
ρ profiles of Fe-light element alloys (H, C, O, Si, and S) at high
pressures from recent laboratory measurements (31–33, 36, 38–
40) together with our new experimental results. All of these light
elements seem to produce some degree of alloying effects on the
VP − ρ profiles that could be interpolated with the Fe profile to
match that of the Earth’s core for the first-order approximation,
though end-member FeS2, FeSi, FeH, and FeO compounds ex-
hibit much higher VP slopes than Fe and Earth’s core. Indeed,
with the exception of Si, these light elements have extremely lim-
ited solubility in Fe at ambient conditions and, thus, exist with Fe
as end-member or intermediate compounds in various structural
forms (12). Structural transitions have been shown to affect the
VP − ρ trend significantly at high pressures (25), suggesting that
the VP − ρ profiles of end-member compounds should be exer-
cised with caution especially under the extreme P-T conditions of
the core. For instance, FeO is stable in the cesium chloride
(CsCl)-type (B2) phase at the expected P-T conditions of the
Earth’s inner core (46), yet, the VP − ρ relationship of FeO has
only been studied for the rhombohedral-B1 phase (33) (Fig. 3 B
and C). Estimation on the O content based on the VP − ρ profile
of the rhombohedral-B1 FeOmay thus introduce large uncertain-
ties. Similarly, the VP − ρ profile of FeS has only been deter-
mined for the hexagonal NiAs-type phase (IV) (33), although FeS
transforms to a CsCl-type B2 phase (VII) at above 180 GPa and
high temperatures (47, 48). A given light element could be incor-
porated into different structural forms of Fe with very different
VP − ρ relationships, making the estimation on the amount of
light elements in the Earth’s core much more complicated. For
instance, Badro et al. (33) reported the VP of FeS and FeS2 as a
function of ρ at high pressures. By linearly extrapolating the ob-
tained VP − ρ relations of Fe and Fe alloys to the relevant P-T
conditions of the core. However, the S content is estimated to be
3.9 wt% in the core, if S exists as FeS2. This estimated amount
can be as high as 9.7 wt% for the FeS phase. The same argument
also applies to Fe-C compounds such as Fe3C and Fe7C3 (37, 49),
in which the VP − ρ relation of Fe3C has been investigated ex-
perimentally (37, 44).

In addition to the VP − ρ profiles, static XRD and shock-
compression studies have provided constraints on the VΦ − ρ re-
lations of Fe alloys (18, 29, 30, 50–57) (Fig. 3C). It should be
noted that pressure-volume relations, instead of VΦ − ρ, were
measured in XRD experiments, whereas temperature measure-
ments along Hugoniot shock compressions were largely uncer-
tain, leading to potential uncertainties in the VΦ − ρ data.
Recently, Huang et al. (15) have measured the VΦ − ρ profiles
of two Fe-S-O alloys using shock-compression technique. The
VΦ − ρ profile of the sulfur-rich and oxygen-poor Fe alloy
(Fe0.925O0.053S0.022) matches that of the outer core, whereas the
VΦ − ρ profile of an oxygen-rich Fe-S-O alloy (Fe0.9O0.08S0.02)
deviates from that of the outer core, indicating that oxygen
can be ruled out as a major light element in the Earth’s outer
core. Based on the aforementioned discussions on literature
results, it is critical to have reliable velocity-density profiles of Fe
solid-solution alloys at simultaneous high P-T conditions in the
hcp crystal structure in order to evaluate more accurately the
composition of the Earth’s core.

Density Deficits of Fe Alloys. Using the new VP − ρ profiles of
hcp-Fe and Fe-Si alloy, together with the literature results, we
have evaluated the density deficits at high pressures (Fig. 4).

hcp-Fe

A

B

Fe alloys

C

Fe alloys

Fig. 3. Sound velocities of Fe and Fe alloys. (A) VP − ρ of hcp-Fe. Pink stars:
ultrasonic measurements at ambient conditions (11); magenta squares: NRIXS
measurements at high pressures and 300 K (11); olive triangles: ISLS measure-
ments (40); royal diamonds: HERIXmeasurements (10); solid red left triangles:
NRIXS measurements at 300 K (22); open red left triangles: NRIXS measure-
ments at high P-T (22); black right triangles: HERIX measurements from
highly textured hcp-Fe (38); black lines: Earth’s outer core (OC) and inner core
(IC) from seismic model AK135 (8), respectively; grey lines: shock wave mea-
surements (23, 40). Respective color lines are linear or power-law fits to the
data. (B) VP of Fe alloys. Blue solid circles: hcp-Fe from this study; open circles:
hcp-Fe (40); violet diamonds: Fe0.85Si0.15 from this study; olive diamonds:
Fe0.78Ni0.22 (31); pink triangles: Fe0.89Ni0.04Si0.07 (32); dark cyan squares:
Fe3C (37); orange left triangles: Fe3S (36); purple right triangles: FeS (33);
red stars: FeO (33); navy squares: FeSi (33); dark yellow triangles: FeS2
(33); wine down triangles: FeH (39). (C) Bulk sound velocity (VΦ) of Fe alloys.
Solid lines, except the black and grey lines, are the VΦ of Fe alloys calculated
from static compression results at 300 K. Blue line: hcp-Fe (29, 30); orange
line: Fe3S (50, 51); violet line: Fe0.85Si0.15 (35, 51, 52); dark cyan line: Fe3C
(53, 54); red solid and dashed lines: FeO in B1 and B8 phase, respectively
(55); navy blue line: FeSi (55, 56); purple line: FeS in the IV phase (53, 57);
magenta and olive circles: VΦ of Fe0.9O0.08S0.02 and Fe0.925O0.053S0.022 from
shock-compression study, respectively (15).
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1.2 Phononenzustgnde: Fe [Lit. S. 180 

lDH P 
1 

.lHz 

A- G- -0 --c 
H N P N 

1.0 0.8 0.6 0.1 0.2 
-% 

Fig. 2. Fe. Phonon dispersion curves in a-iron at 296 K. Experimental points: [68Va2]. Solid curve: fifth neighbour Born-von 
Karman model (Table 3 Fe [68Va2]). 

Table 2. Fe. Measured phonon frequencies in cl-iron at 295 K, [67Mil], [Oc[] T, branch Ref. [67Brl]. 

4. Y fTHz] I v [THz] r v t; v r v 

CWI L COW T D-Hz1 CTHzl D-Hz1 
COSSI L CW’~l T CNCI T, 

0.182 3.34 (7) 0.091 1.21 (5) 
0.274 4.79 (10) 
0.365 6.04 (10) 
0.456 7.08 (10) 
0.547 7.78 (7) 
0.639 8.27 (10) 
0.730 8.58 (18) 
0.821 8.66 (12) 
0.912 8.70 (15) 
1.00 8.56 (5) 

0.182 2.47 (1) 
0.274 3.63 (2) 
0.365 4.66 (5) 
0.456 5.63 (5) 
0.50 6.07 (5) 
0.60 6.94 (5) 
0.70 7.59 (7) 
0.80 8.07 (12) 
0.90 8.56 (12) 
1.0 8.56 (5) 

0.064 8.44 (12) 0.323 6.99 (12) 
0.129 8.12(10) 0.387 6.70 (10) 
0.193 7.64 (7) 0.452 6.33 (10) 
0.258 6.79 (10) 0.500 6.45 (5) 
0.300 6.31 (10) 
0.322 6.08 (7) 
0.387 5.34 (7) 
0.452 4.62 (7) 
0.484 4.47 (12) 

0.064 1.81 (7) 
0.097 2.78 (7) 
0.105 3.12 (5) 
0.113 3.34 (5) 
0.121 3.58 (5) 
0.129 3.77 (5) 
0.137 4.01 (5) 
0.145 4.21 (5) 
0.153 4.42 (5) 
0.163 4.57 (7) 
0.193 5.39 (7) 
0.226 6.16 (7) 
0.258 6.91 (5) 
0.290 7.57 (5) 
0.323 8.12 (5) 
0.339 8.32 (7) 
0.355 8.58 (7) 
0.371 8.73 (7) 
0.403 8.97 (7) 
0.436 9.24 (7) 
0.468 9.26 (10) 
0.50 9.26 (12) 

0.0625 0.80(3) 0.100 1.91 (5) 
0.125 1.63 (4) 0.150 2.88 (5) 
0.1875 2.40(4) 0.200 3.72(5) 
0.25 3.13 (4) 0.250 4.47 (5) 
0.375 4.20 (5) 0.258 4.59 (5) 
0.50 4.53 (5) 0.290 5.03 (5) 

0.323 5.42 (5) 
0.355 5.78 (5) 
0.387 6.07 (5) 
0.419 6.31 (5) 
0.452 6.41 (5) 
0.484 6.45 (5) 
0.500 6.45 (5) 

(continued) 

54 Schober/Dederichs 

Re
f. 

p.
 1

80
1 

1.
2 

Ph
on

on
 s

ta
te

s:
 F

e 

Ta
ble

 2
. 

Fe
. 

(c
on

tin
ue

d)
 

l 
v 

[T
Hz

] 
5 

v 
[T

Hz
] 

r 
v 

[T
Hz

] 
5 

v 
[T

Hz
] 

0.
10

5 
3.

14
(1

0)
 

0.
10

5 
1.

91
(1

0)
 

0.
15

8 
5.

42
(1

2)
 

0.
15

8 
2.

90
(5

) 
0.

21
1 

6.
77

(1
2)

 
0.

21
1 

3.
89

(5
) 

0.
26

3 
7.

91
 (

12
) 

0.
26

3 
4.

81
(7

) 
0.

31
6 

8.
20

 (
10

) 
0.

31
6 

5.
66

 (1
0)

 
0.

34
3 

8.
39

 (1
0)

 
0.

36
8 

6.
23

(5
) 

0.
36

9 
8.

36
(7

) 
0.

42
2 

6.
12

(5
) 

0.
42

2 
8.

17
 (

5)
 

0.
41

4 
7.

11
 (

5)
 

0.
47

4 
7.

59
(7

) 
0.

52
9 

%
35

(5
) 

0.
50

0 
%

20
(5

) 
0.

57
9 

7.
69

(5
) 

0.
52

7 
6.

89
(2

) 
0.

63
2 

7.
95

(7
) 

0.
55

3 
6.

60
(2

) 
0.

68
5 

8.
07

(7
) 

0.
57

9 
6.

26
(2

) 
0.

73
8 

8.
34

(7
) 

0.
60

6 
5.

91
(5

) 
0.

79
0 

8.
32

 (1
0)

 
0.

63
2 

5.
75

 (
2)

 
0.

84
3 

8.
44

 (1
5)

 
0.

68
5 

5.
73

 (1
0)

 
0.

89
6 

8.
49

(1
0)

 
0.

73
8 

6.
02

(1
2)

 
0.

94
8 

8.
61

 (1
0)

 
0.

78
9 

6.
70

(5
) 

1.
00

 
8.

56
(5

) 
0.

84
2 

7.
35

(5
) 

0.
89

5 
8.

03
(5

) 
0.

94
8 

8.
44

(7
) 

1.
oo

o 
8.

56
(5

) 

2.
 F

re
qu

en
cy

 s
pe

ct
ru

m
 a

nd
 re

la
te

d 
pr

op
er

tie
s 

0.
5 

TH
z-

' 

0.
4 

I 
0.

3 
-2

 
-G

 0
.2

 

0.
1 0 

2 
4 

6 
8 

TH
z 

Y-
 

IO
 

Fi
g.

 3
. F

e.
 F

re
qu

en
cy

 s
pe

ct
ru

m
 of

 a-
iro

n 
at

 2
95

 K 
ca

lcu
lat

ed
 

fro
m

 t
he

 B
or

n-
vo

n 
Ka

rm
an

 f
or

ce
 c

on
st

an
ts

 o
f T

ab
le 

3 
Fe

 
[6

7M
il].

 

4 Fi
g.

 4
. 

Fe
. D

eb
ye

 
cu

to
ff 

fre
qu

en
cie

s,
 

v,,
 i

n 
a-

Fe
, c

al
cu

- 

-1
0 

0 
IO

 
20

 
30

 
lat

ed
 fr

om
 th

e s
pe

c-
 

tru
m

 o
f F

ig
. 

3 F
e.

 
n-

 

0.
09

1 
9.

26
 (

10
) 

0.
58

8 
7.

11
 (

10
) 

0.
13

7 
9.

02
(1

2)
 

0.
68

1 
6.

96
(1

2)
 

0.
18

2 
8.

90
 (1

0)
 

0.
11

2 
6.

77
(7

) 
0.

27
3 

8.
56

(7
) 

0.
86

3 
6.

62
(1

0)
 

0.
36

5 
8.

05
(7

) 
0.

95
4 

6.
45

 (1
0)

 
0.

45
6 

7.
49

(7
) 

0.
54

1 
6.

96
(7

) 
0.

68
1 

6.
21

(1
0)

 
0.

77
2 

5.
42

(1
2)

 
0.

86
3 

4.
86

(7
) 

0.
95

4 
4.

55
(5

) 

Ta
ble

 3
. 

Fe
. 

Bo
rn

-v
on

 
Ka

rm
an

 
co

up
lin

g 
co

ns
ta

nt
s,

 
@

‘;, 
fo

r 
a-

iro
n.

 

T Re
f. 

m
 

ij 

11
1 

xx
 

XY
 

20
0 

xx
 

YY
 

22
0 

xx
 

zz
 

XY
 

31
1 

xx
 

YY
 

YZ
 

xz
 

22
2 

xx
 

XY
 

I 

48
C K 46
C 

I 0 
44

0 - 
0 

42
0 

- 

29
5 

K 
29

6 
K 

67
M

il 
68

Va
2 

~0
: 

[N
m

-‘1
 

16
.8

8 
17

.8
6(

10
) 

15
.0

1 
14

.9
1(

13
) 

14
.6

3 
14

.9
2(

25
) 

0.
55

 
0.

36
(1

4)
 

0.
92

 
1.

24
(8

) 
-0

.5
7 

-1
.0

9(
13

) 
0.

69
 

0.
30

(1
2)

 
-0

.1
2 

-0
.6

0(
8)

 
0.

03
 

-0
.0

6(
4)

 
0.

52
 

0.
28

(8
) 

0.
00

7 
0.

10
 (5

) 
-0

.2
9 

-0
.2

3(
7)

 
0.

32
 

-0
.2

4 
(1

0)
 

40
0 1 0 

80
 

16
0 

32
0 

K 
LO

O
 

T-
 

Fi
g.

 5
. F

e.
 D

eb
ye

 te
m

pe
ra

tu
re

s 
0,

 
in

 a
-F

e 
ca

lcu
lat

ed
 fr

om
 

a 
fif

th
 n

eig
hb

ou
r 

Bo
rn

-v
on

 K
ar

m
an

 m
od

el
 [6

7B
rl]

. 

Sc
ho

be
r / D

ed
er

ich
s 

55
 

    V. J. Minkiewicz, G. Shirane, and R. Nathans, Phys. Rev. 162 (1967) 528, and
Landolt-Börnstein, New Series, Group III, Vol 13, Eds. K.-H Hellwege, and J. L. Olsen, Springer Verlag, Berlin (1981) p. 53-56.

Dispersion relations and phonon density of states 
-iron (bcc)!



k π/a-π/a

!

2!0   

  

Ref. p. 1801 1.2 Phonon states: Fe 

Fe Iron 
Lattice: CI phase bee, a = 287 pm = 2.87 A. BZ: see p. 448. 

1. Phonon dispersion 
Table 1. Fe. Measurements. 

Method 
TKI 

Fig. Ref. 

neutron diffrac- 
tion (TAS) 

neutron diffrac- 
tion (TAS) 

neutron diffrac- 
tion (TAS) 

neutron diffrac- 
tion (TOF) 

295 1 Fe Minkiewicz et al. 
[67Mil] 

296 Brockhouse et al. 
[67Brl] 

296 2Fe Van Dijk and 
Bergsma 

[68Va2] 
296 Van Dingenen and 

Hautecler 
[67Val] 

Further references: [52Cul, 611yl,62Lol, 67Bel]. 

The four major measurements agree very well. A comparison of the measurements of [67Mil] and [67Brl] 
suggests an accuracy of about 1 ‘A. The dispersion curves show no indications of particular anomalies. They can 
be fitted reasonably already with a third neighbour model. For good fits forces up to the fifth neighbours have to 
be included. 

A- G- A- F- 

%- 
c- D- 

IOf N I 
P 

5- f- 

N 

0.6 

Fig. 1 a-c. Fe. Phonon dispersion 
curves in a-iron at 295 K. Experi- 
mental points: [67Mil]. Dashed 
curve: fifth neighbour Born-von 
Karman model (Table 3 Fe [67Mil]). 
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! k( ) = 2! sin ka 2( )

!!k

!k
: sound velocity

Dispersion relations
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a few questions

• Can one measure phonon dispersion and/or phonon 
dos 
– from a monolayer?
– at a buried interface?
– from nanosized particles on the surface?
– at 3 Mbar and at 4 K to 5000K extreme conditions?
– from a nanogram sample?
– in a way that is element and isotope selective?
– in a way that can be completely tested by DFT, i.e. both 

the frequency and amplitude of vibrations are determined
45



Characteristics of a Mössbauer nuclei

t1/2 = 270 days

9 % 91 %

9 %

Electron capture

122  keV

t1/2 = 8.7 ns, Γ=	  52 neV

t1/2 = 97.8 ns,	  Γ=	  4.6 neV

t1/2 = ∞,	  Γ=	  0  14.4  keV

136  keV

Transitions to ground state with a relatively low energy is what makes a nuclei a Mössbauer nuclei



Nuclear Resonance and Fallout in 57Fe-decay



Standard Time structure @ APS
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Sample

NRIXS: Nuclear Resonant Inelastic X-ray Scattering
NRVS: Nuclear Resonant Vibrational Spectroscopy

SMS: Synchrotron Mössbauer Spectroscopy
NFS : Nuclear Forward Scattering
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-speed of sound
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-phonon confinement
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Multi-phonon decomposition
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Detailed Balance

I(!E) = I(E)e!E /kT

T = E(eV )
kB ln I(E) I(!E)[ ]

(22.6 meV, 2762)

(-22.6 meV, 1158)
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Detailed Balance

I(!E) = I(E)e!E /kT

kB = 8.6173"10!2meV /K
E = 22.6 meV
I(!E) =1158,   I(E) = 2762

T = E(eV )
kB ln I(E) I(!E)[ ]

= 297.03K



How to measure temperature in a DAC ?

€ 

I(E) = I(−E)e E / kT( )

I(E)dE =∫ ∫ I(−E)e E / kT( )dE

€ 

J.F. Lin, et al, Geophys. Res. Lett., 
31 (2004) L13611
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Temperature dependence of  phonon excitation probability
V-1.1 A.I. Chumakov, W. Sturhahn / Inelastic nuclear resonance scattering 793

Figure 6. Energy spectra of inelastic nuclear absorption of synchrotron radiation by α-57Fe at various
temperatures. Solid lines are calculations according to eqs. (5.1)–(5.3), based on the results of neutron
scattering at room temperature [15] and convoluted with the instrumental function of the monochromator.

From [14].

factor vanishes, i.e., there are no phonons excited in the lattice. Therefore, an incident
X-ray quantum cannot gain energy from lattice vibrations. However, it may still lose
energy by creating new phonons.

At low temperatures, besides vanishing in the phonon-annihilation part, the energy
spectrum of inelastic absorption also vanishes at the low energy transfer region in the

Chumakov, et al, Phys. Rev. B 54 (1996) 9596.
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Lipkinʼs sum rules related to phonon excitation probability

H. Lipkin, Phys. Rev. B, 52 (1995) 10073
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Extraction of phonon density of states
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KS : adiabatic bulk modulus
G :  shear modulus
VP : compression wave velocity
VS : shear wave velocity
VD : Debye sound velocity
Ρ   : density

Measurement of vD, Debye sound velocity allows to 
resolve longitudinal and shear sound velocity, 
provided that bulk modulus and density, is 
independently and simultaneously measured by x-
ray diffraction.  
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Property Information content

Lamb-Mössbauer Factor,
or recoil-free fraction

fLM, recoil free fraction obtained from density of
states, g(E):

    

€ 

fLM = exp −E R
g(E )

E
⋅ coth βE

2
dE∫⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

Second order Doppler shift

€ 

δSOD = −E0
< v2 >

2c2
Average kinetic energy Extracted from second moment of energy spectrum:

  

€ 

T =
1

4ER
E − E R( )2

Average force constant Extracted from third moment of energy spectrum:

    

€ 

∂ 2U
∂z 2

=
m

2h2
E 3

Phonon density of states Extracted one-phonon absorption probability, S1(E):

    

€ 

g(E )=
E
ER

tanh βE /2( ) S1(E )+ S1(−E )( )

Specific heat
(vibrational part only)     

€ 

CV = 3kB βE /2( )2 csch(βE ) 
0

∞

∫ g(E )dE

Vibrational entropy
    

€ 

SV = 3kB
βE
2

coth(βE)− ln 2sinh( βE )[ ]
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ g(E )
0

∞

∫ dE

Debye sound velocity
(aggregate sound velocity)

From low-energy portion of the density of states:

      

€ 

g(E )=
3V

2πh3vD
3

E 2

Mode specific vibrational
amplitude

Contribution of mode α o f atom j to zero-point
fluctuation [11,12]:

    

€ 

r jα
2

0
=

h2

2mjωα
2

e jα
2

Mode specific Gruneisen
constant

From pressure dependence of phonon frequencies ωα

of acoustic or optical modes:
 

€ 

γα = −
∂ lnωα
∂ lnV

Temperature of the sample From detailed balance between phonon occupation
probability
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Some unique advantages of NRIXS

1.    Low frequency motions: ~ total mass
2. No selection rule except motion of atoms 

along x-ray propagation
3. Peak intensity ~ mode participation ~ actual 

displacement
4. No matrix effects or limitations
5. Element and isotope selective
6. No unpredictable cancellations in scattering 

terms

Matt Smith, et al, Inorganic Chemistry, 2005, 44,5562
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