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Outline 

!  Stuff you should know: 
–  Diffraction from single crystals 
–  Some background on crystallography 
–  Where to go for more information 

!  Why do we use powder diffraction? 
!  Diffraction from powders 
!  Instruments for powder diffraction collection 
!  Materials effects in powder diffraction 
!  Crystallographic analysis of powder diffraction data 
!  Appendices: 

–  More on peak shapes 
–  More on crystallography 
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Single Crystal Diffraction 
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Diffraction from single crystals 

!  Diffraction occurs when the reciprocal lattice planes of a crystal are 
aligned at an angle ! with respect to the beam and the wavelength of an 
incident beam satisfies: 

–  n" = 2 d sin! (or better, " = 4 # sin! / Q)   [Bragg’s Law] 

–  d = 1/|d*| = 1/|ha* + kb* + lc*| 
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Single Crystal Diffraction Intensities 

!  The Intensity of a diffracted beam, Ihkl is related to a complex quantity 
called the structure factor, Fhkl 
–  Ihkl ! |Fhkl|2 

!  The structure factor is determined by summing over all atoms in the 
crystal: 

–  Fhkl $ % fi exp[2#i(hxi + kyi + lzi)] exp(-UiQ2/2) 
 
Since adding multiples of 1 to xi,yi or zi does not change the above, the sum can 

be simplified to include only the atoms of one unit cell 
 

–  fi represents the scattering power of an atom (also used, bi) 
–  Ui represents the average displacement of an atom from its ideal site 
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Diffraction of X-rays versus Neutrons 
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Coherent Atomic Scattering Power (diffraction) 

!  X-rays: The scattering power (form 
factor, fi) of an atom depends on the 
number of electrons in the atom and 
Q (Q$sin!/") 

!  Neutrons: The scattering power 
(scattering length, bi) of an atom 
depends on the isotope and is 
independent of Q 
– A few isotopes scatter with opposite 

phase to most, for these we write f (b) 
as negative 

– Magnetic scattering is from electrons; 
fM(Q) similar to x-rays 
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Q or sin!/", Å-1 

Structure factors:     Fhkl = n% fi exp[2#i(hxi + kyi + lzi)] exp(-UiQ2/2) 
Diffraction Intensity: Ihkl ! |Fhkl|2 



Comparison of Neutron and X-ray Atomic 
Scattering Powers 
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Neutrons and x-rays 

“see” atoms 

differently 
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Resonant scattering: scattering at a resonance edge 

causes atoms to “light up” 
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Experiments are sometimes performed at wavelengths close to absorption edges to enhance 
the scattering from particular elements 



Incoherent and inelastic scattering 
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Incoherent and inelastic scattering create background. This is usually 
significant only with neutrons and most commonly for powder (less 
so single crystal) diffraction 
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Basic Crystallography 
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The Lattice  
!  Crystals are constructed from repeated arrangements of atoms. 
!  Crystalline structure can be described as set of “identical boxes” 

stacked in 3D; the contents of each box is identical (exception: 
quasicrystals) 
–  A lattice is a mathematical concept where each lattice point describes an 

identical environment; lattice points are the corners of the “identical boxes.” 
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Commonly used phrases 
such as “lattice compound” 
or “interstitials in the lattice” 
misuse the concept of a 
lattice. 



Lattice planes 

!  General Indices: lattice planes are indexed by the inverse of where they 
cut each axis:  
–  Intercept of 0.5 & index=2 
–  Intercept of ' (|| to axis) & index=0 

!  Related concept: Miller indices  
–  used for crystal faces 
–  Contain no common factors 

!  Notation: [ ] defines a direction 
–  [100] is along a axis 
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Symmetry, Space groups 
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I recommend Space Groups for Solid State 
Scientists by G. Burns and A. M. Glazer 
(Academic Press, New York, 1990) to learn how 
to understand the International Tables. 



Where to go for more… 
There are many texts available. My favorites: 
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X-Ray Structure Determination: A 
Practical Guide (2nd Ed.), G. H. Stout, & 
L. H. Jensen (Wiley, 1989, ~$150) [Focused 
on small-molecule single crystal techniques, dated, 
but very easy to read; very good explanations of 
fundamentals. 1st book for many in field.] 

Fundamentals of Crystallography (2nd Ed.), 
Carmelo Giacovazzo, et al. (Oxford, 2002, ~$90) 
[Modern & very comprehensive, quite reasonable price 
considering quality, size & scope.] 

APS Web lectures on powder diffraction crystallography: 
www.aps.anl.gov: look for Education/Schools/Powder Diffraction Crystallography 
(http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography) 
Intended to introduce Rietveld refinement techniques with GSAS & EXPGUI  



Powder Diffraction 
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Why do we do powder diffraction? 

!  Learn where the atoms are (single crystals, when available and 
appropriate, are better for this.) 

!  Determine the chemical phase(s) in a sample 

!  Measure lattice constants 

!  Quantify the components of a mixture 

!  Learn about physical specimen characteristics such as stress, preferred 
orientation or crystallite sizes 

!  Occupancies of elements amongst crystallographic sites (usually needs 
neutrons) 
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Diffraction from random polycrystalline material 
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Bragg cones in powder diffraction 
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Types of Powder Diffraction 
Measurements 
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Measuring powder diffraction 
!  Angular dispersion: a single detector is moved 

over a range of 2! angles. 
–  Sample irradiated with monochromatic radiation 
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Area Detection 
!  With an area detector, a complete powder diffraction pattern can be 

collected in a fraction of a second. 
–  Fast 
–  Medium resolution 
–  High background 
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Highest resolution requires high collimation. Optimal is a crystal 
analyzer between the sample and detector: 11-BM Diffractometer 
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beam 
Huber 480 rotation stage: 
high precision (~0.35arcsec)  
high accuracy (~1arcsec)  
slew or step scans 

12 analyzer array 
Si(111) crystals 
LaCl3 scintillator detectors 
2° apart in 2!.  

Mitsubishi robot 
custom “fingers” 
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Powder Instruments: Constant Wavelength 

beamline HB2a at HFIR 
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A pulse of protons impacting the target produces a 
shower of fast neutrons that are slowed down in a 
moderator. A new pulse is created ~30 times/sec 
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Neutron Powder Diffraction with Spallation 
Source 

!  Spallation source 
provides a broad 
band of wavelengths 
in sharp pulses 
–  TOF detection 

allows 
measurement of 
intensity versus 
wavelength 

–  Each detector 
provides a full 
diffraction pattern 

–  Data collection 
times: 

•  Seconds to 
hours 
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NPDF instrument at LANSCE (Los Alamos) 



3rd Generation TOF Instruments: High 
Intensity and High Resolution 
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Understanding Materials Effects in 
Powder Diffraction 
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Materials effects on Powder Diffraction 

Peak broadening: 

!  Crystallite size: 
–  What happens when crystals become small? 

!  Residual Stress (Strain) 
–  What happens if matrix effects do not allow crystallites to equilibrate lattice 

parameters? 

Note that these effects can vary in different crystallographic directions: 
anisotropic peak broadening (best handled in GSAS-II) 
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Crystallite Size Broadening can 
produce Lorentzian peak shapes 
(common) or Gaussian peak shapes 
(uncommon) or a combination of both. 

Crystallite Size Broadening 

The Fourier transform (FT) from 
an infinite array of regularly 
spaced objects is an array of 
delta functions.  
 

The FT from a finite length array 
is broadened.  
 

The finite sizes of crystallites will  
broaden all orders of reflections 
equally in units of Q ($ d*) 

– differing reciprocal space 
directions may have differing 
amounts of broadening, if 
crystallites dimensions are 
not isotropic on average 
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GSAS fits crystallite broadening with 
two profile terms: 

•  LX -> Lorentzian  
•  GP -> Gaussian 

Relation between avg. size (p) and 
GSAS terms: 
 
 
 
 
K + 1 (Scherrer constant, related to 
crystal shape) 

! 

p =
18000K"
#LX

! 

p =
18000K"
# GP

Crystallite Size Broadening 
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See GSAS Manual, pp 158-167. 



Microstrain Broadening 

When a material has residual 
stresses present, some crystallites 
are compressed. This must be 
balanced by other crystallites that 
are stretched (because !F=ma=0) 
 
This leads to a range of lattice 
constants. 
 
The spread between diffraction 
locations for the maximum and 
minimum lattice constant 
increases linearly with Q ("Q/Q or 
"d/d = constant) 
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GSAS fits strain broadening with two 
profile terms: 

•  LY -> Lorentzian (most common) 
•  GU -> Gaussian  

(note that GU also has an instrumental 
contribution) 

Relation between strain (as percentage) and GSAS terms: 

where GUI accounts for the instrumental contribution 

See GSAS Manual, pp 158-167. 



Fitting of Powder Diffraction Data 
(Rietveld Analysis) 
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Why did Crystallography Revolutionize Science? 

1.  Crystallography was the first scientific technique that provided direct 
information about molecular structure 
–  Early work was intuitive: structures assigned based on patterns and 

symmetry (some results predate X-rays!) 

2.  X-ray and neutron diffraction observations can be modeled very 
accurately directly when the molecular structure is known 

3.  Diffraction can provide a very large number of independent observations 
–  probability of finding an incorrect structure model that is both plausible and is 

in good agreement with the diffraction observations is very small (but not 
zero!) 

4.  Computer-assisted least-squares optimization allows structural models 
to be improved, limited only by the quality of the data 

5.  Statistical and brute-force techniques overcomes the incomplete nature 
of diffraction observations (direct methods vs. “the phase problem”). 

100+ years later, no other technique offers as much  
power for learning about molecular structure! 
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Fitting crystallographic data -- what is it all about? 

!  We perform an experiment: 
–  Get lots of intensity and position measurements in a diffraction 

measurement: what do they tell us? 

!  Obtain an unit cell that fits the diffraction positions (indexing) 
!  “Solve the structure”: determine an approximate model to match the 

intensities 
!  Add/modify the structure for completeness & chemical sense 
!  Optimize the structure (model) to obtain the best fit to the observed data 

–  This is usually done with Gauss-Newton least-squares fitting 
–  Parameters to be fit are structural and may account for other experimental 

effects 

!  Least Squares gives us a Hessian matrix; inverse is variance-covariance 
matrix which gives uncertainties in the parameters 
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Crystallography from powder diffraction: before 
Rietveld 

How did crystallographers use powder diffraction data? 
 
!  Avoided powder diffraction 
!  Manually integrate intensities 

–  discard peaks with overlapped reflections 
Or  
–  rewrote single-crystal software to refine using sums of overlapped reflections 

 
Simulation of powder diffraction data was commonly done 
!  Qualitative reasoning: similarities in patterns implied similar structures 
!  Visual comparison between computed and observed structure verifies 

approximate model 
!  Fits, where accurate (& precise) models were rarely obtained 

Error propagation was difficult to do correctly (but not impossible)  
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Hugo Rietveld’s technique 
 !  Hugo Rietveld realized that if a pattern could be modeled, the fit between 

a computed pattern and observed data could be optimized. 

–  Similar to single-crystal diffraction, except that now “experiment dependent 
parameters” must now be fit as well. 

•  Background 

•  Peak broadening 
•  Lattice constants 

–  Must have approximate model to start 
–  Fewer data are available (usually)  
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Calculation of Powder Diffraction: Graphical 
Example 
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hkl mult d-space Fobs phase
6,5,1 48 1.548 0.29 0
7,3,2 48 1.548 1.709 180
8,0,0 6 1.5236 29.45 0
7,4,1 48 1.5004 2.327 0
8,2,0 24 1.4781 3.703 0
6,5,3 48 1.4569 1.27 0
6,6,0 12 1.4365 0.242 180
8,2,2 24 1.4365 2.086 0
8,3,1 48 1.417 0.22 180
7,4,3 48 1.417 1.827 180

1)   Generate reflection list 

2)   Compute Fhkl from 
model 

 

 

3) Peak heights are 
generated from |Fhkl|
2*multiplicity 

4) Convolute peaks & add 
background 

5) Optimize model, peak 
widths, etc. to improve 
fit 

Fhkl phase D-space mult hkl 



Hugo Rietveld in the Petten Reactor (~1987) 
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Single crystal fitting 

Data: yi = Fhkl (obs) 

 

 

 

Model: Y(xi,p) = Fhkl (calc) 

 

 

 

 

 

Parameters (p1, p2, p3… pm): 
atomic coordinates, 
displacement (T) factors 

yi = observed powder diffraction 
intensities 

Y(xi,p) = computed diffraction 
intensities from (Fhkl (calc), 
background model, profile 
convolution, preferred 
orientation correction… 

 
+ lattice parameters  
+ “experimental” parameters for 

peak shapes, background… 
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Powder data fitting 

Minimize equation % wi[yi - Y(xi,p)]2 where 



Hugo Rietveld’s other breakthrough 

!  Based on intensities from the model, estimates for Fhkl can be made, 
even when reflections are completely overlapped: 
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1 
Location 1: 
20% to A 
40% to B 
40% to C 

2 

Location 2: 
100% to C 

measured 

simulated 



Rietveld Applications 

!  Crystallographic structure determination 

!  Quantify amounts of crystalline phases 

–  (Amorphous content possible indirectly) 

!  Engineering properties 

–  Residual stress/Crystallite sizes 

–  Preferred orientation 

!  Lattice constant determination 
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What sort of data are needed for Rietveld Analysis? 

!  Must be possible to fit peak shapes 
!  Q range and resolution demands dictated by structural complexity 
!  Data from lab instruments should be used with caution for structure 

determination 
!  Neutron data are usually necessary for occupancy determination 
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Disadvantage of Rietveld:  
Many non-structural parameters need to be fit 
!  Background 

–  fixed 
–  functions 

!  Peak shape 
–  “fundamental parameters” 

–  functions 
!  Lattice constants 

–  zero correction 
–  flat plate terms 

!  Scaling 
–  Phase fractions 

!  Structural parameters 
–  atom positions 
–  occupancies 
–  displacement parameters 

!  Preferential Orientation 
!  Absorption 
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Powder diffraction offers fewer observations and worse 
peak-to-background than single crystal diffraction 



Limitations of Rietveld 
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The physics that determine peak profiles  

Common factors 
!  Instrumental Resolution 
!  Axial Divergence (Low Angle 

Asymmetry) 
!  Sample placement/transparency 
!  Crystallite Broadening* 
!  Strain Broadening* 
 

* Note that these effects can vary for 
different classes of reflections 
(anisotropic peak broadening) 

Less common factors 
!  Stacking faults* 
!  Modulated Structures* 
!  Coherence differing by atom type* 
!  Compositional inhomogeneity! 
 

* Hard to model 
! Sometimes impossible to model 
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Results of these factors are convoluted to produce the observed peak shape. 



Appendix 1: more on peak profiles  
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Approaches to Profile Models 

Three different approaches to reproducing peak shapes have been used: 
!  Empirical functions 

Functions are chosen simply because they are computationally simple and fit 
peaks well. The parameters cannot be interpreted because they have no 
relationship to the underlying physics of diffraction. 

!  Physically-based parameters 
Functions are based on the physical phenomena. Parameters are usually found 

empirically, but often have a physical meaning. 

!  “Fundamental Parameters” 
Functions and where possible parameter values are determined from diffraction 

physics. The only adjustable parameters are those related to sample 
properties. 
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Lorentz (Cauchy) and Gaussian Broadening 
Functions 
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Most instrument & sample broadening contributions are Lorentzian or 
Gaussian 

Normalized Gaussian 

Normalized Lorentzian 

Gaussian & Lorentzian functions compared. 
Both curves have same FWHM & area, but 
note the much longer tails for the Lorentzian. 

Note that peak widths vary so 
"G and #L are both functions of 
Q 



Voigt vs. Pseudo-Voigt 

A Gaussian convoluted with a Lorentzian function is a Voigt function, 
however the Voigt is slow to compute and the derivatives are messy. 
Few Rietveld programs implement a Voigt. 

 
The “pseudo-Voigt” is the weighted sum of a Gaussian & Lorentzian 

function – approximation is normally pretty good 
 
Fractions of each function depend on the relative widths of each [see mixing 

factor (,) in GSAS manual, ,=0 is Gaussian, ,=1 is Lorentzian] 
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CW: Variation of FWHM with Q 

Gaussian 
!  U, V & W are Cagliotti terms, derived 

as instrument response function for 
CW neutron diffraction. Incomplete for 
x-rays. 

!  P is a crystallite broadening 
contribution 

Lorentzian 
!  X is crystallite broadening 
!  Y is strain broadening 

N.B. no instrumental broadening term 
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Axial Divergence (Low Angle Asymmetry) 

Work of Finger, Cox & Jephcoat, based on derivations by van Laar & Yelon 
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FCJ: 
Convolute 
profile with 
this curve 



F-C-J: Example 

!  The Finger-Cox-Jephcoat correctly models the effective shift of the peak 
due to axial divergence. 

Note: the “competition,” 
the split Pearson VII 
(empirical), does not  
model this effect at all! 
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Sample Displacement & Transparency 

In Bragg-Brentano geometry, samples are ideally placed exactly at 
rotation axis and all diffraction occurs from sample surface (highly 
absorbing sample). Neither is commonly true.  

 

!  Peak centers are shifted by  
–  Sample Displacement (SHFT), Ss 
–  Sample transparency (TRNS), Ts 

These corrections correlate very highly with the zero correction for 2$, 
ZERO. Do not refine this too.  

 
 
Parallel-Beam instruments (neutron or synchrotron) are very tolerant of 

displacement and transparency. Never refine SHFT or TRNS, but do 
refine ZERO (correction to 2!).  
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When Strain Differs by Reflection Class:  
“Anisotropic peak broadening” 

Strain may be anisotropic 
–  think of a layered material where the layers can be pulled apart without much 

effort, but the layers themselves are quite “hard” (resistant to applied 
forces). 

–  Such a material will be “squishy” in the layer direction and rigid in the other 
two (more broadening in the squishy direction.) 

 Canonical anisotropic strain model: P. W. Stephens, Journal of Applied 
Crystallography 32, 281 (1999). 
–  Restricts strain components in terms of 1st & 2nd-order terms allowed by 

lattice symmetry 
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Anisotropic strain broadening terms 
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Anisotropic strain broadening terms 
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Appendix 2: more on crystallography 
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The Unit Cell   

!  The unit cell describes at least one repeating unit that can be used to 
construct the structure 

!  There are 7 types of unit cells corresponding to the 7 crystal systems 
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Triclinic   Orthorhombic    Hexagonal          Cubic  
  Monoclinic     Rhombic      Tetragonal 

(Image from http://pasadena.wr.usgs.gov/office/given/geo1/lecturenotes/SevenCrystalSystems.html) 



Centering is used to increase symmetry 

!  The green (primitive) unit 
cell does not demonstrate 
two-fold symmetry that 
can be seen in the red 
(centered) cell 
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Lattice Types 

Centering causes lattice 
points to be placed inside 
units cells (body center, 
face centers) giving rise the 
14 Bravais lattices (1848) 
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(Figure from http://www.chemsoc.org/exemplarchem/entries/2003/bristol_cook/latticetypes.htm) 

Have non-perpendicular 
axes: (non-orthogonal 
coordinate systems) {



Symmetry 

!  Types of symmetry elements in crystals 
–  Lattice translations (includes lattice centering) 
–  Mirror planes 
–  Proper/improper Rotation axes (includes center of symmetry) 
–  Screw Axes 
–  Glide Planes 
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(Images from http://members.tripod.com/~EppE/302rev2.htm) 

The construction of a crystal from the unit cell requires repeated translation 
of the “building block” in all three directions: lattice symmetry 

§  Additional symmetry is almost always present between the 
atoms in a unit cell. This means the unit cell (and thus the 
entire structure) can be built from just a section of the unit cell 

–  The minimal section representative of the entire structure 
is called the asymmetric unit 



Space Groups 
!  Not all combinations of symmetry and lattice types are compatible 

–  Example: mirror plane perpendicular to a non-orthogonal pair of axes 
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"  There are only 230 unique ways to combine 
symmetry elements for a 3D lattice: 230 space 
groups 

"  Space groups are tabulated in The International 
Tables of Crystallography, Volume A 

"  I recommend Space Groups for Solid State 
Scientists by G. Burns and A. M. Glazer as a good 
place to learn about space groups and s.g. properties 

  



Fractional coordinates 

!  Atom locations are measured in fractions of 
the unit cell edges 
–  Note atom is at x=0.45,y=0.25 
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"  This notation allows for simple description of 
symmetry operations: 
(x,y,z) --> (1+x, y, z) [translation on x] 
(x,y,z) --> (1/2+x, 1/2+y, 1/2+z) [centering] 
(x,y,z) --> (-x, -y, -z) [center of symmetry @ 

origin] 
In crystallographic notation x=0.45(3) means that there is a standard uncertainty of 
0.03 on the value for x of 0.45 
 
Equivalently, there is a 95% chance that x is between 0.39 and 0.51 (±2-) 



Reciprocal Lattice 

!  To simplify math when working with non-orthogonal coordinate systems, 
we use a construct called the reciprocal lattice (indicated by star) 
where each reciprocal axis is perpendicular to two “real space” axes: 
–  a* • a = 1; a* • b = 0; a* • c = 0 
–  b* • a = 0; b* • b = 1; b* • c = 0 
–  c* • a = 0; c* • b = 0; c* • c = 1 

!  This means that if we have two vectors: 

  r = xa + yb + zc    and   d* = ha* + kb* + lc* 

 Then no cross-terms are needed for the dot product: 

  r  • d* = hx + ky + lz 

Use of the reciprocal lattice makes computation of the Fourier transform of 
the atomic positions straightforward. 

 
Historical note: the value of the reciprocal lattice for working with non-orthogonal 

coordinate  systems was first recognized by J. Willard Gibbs (1881) 
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