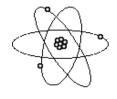
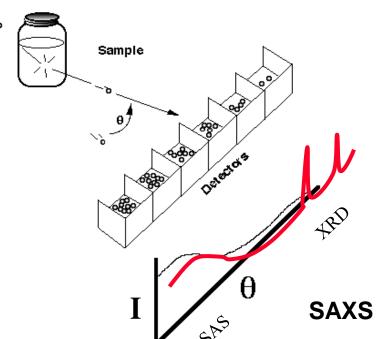


Exploring the Nanoworld with Small-Angle Scattering

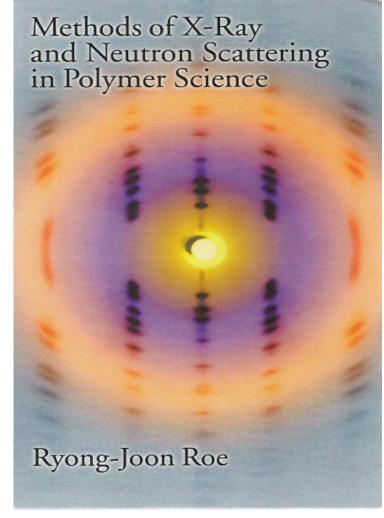
Dale W. Schaefer Chemical and Materials Engineering Programs University of Cincinnati Cincinnati, OH 45221-0012 dale.schaefer@uc.edu



Source of x-rays, light or neutrons

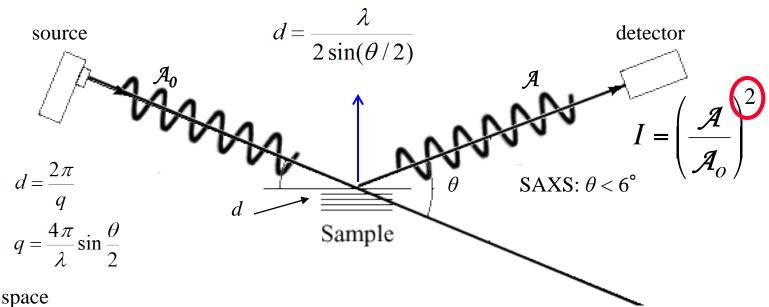


Intensity vs Angle

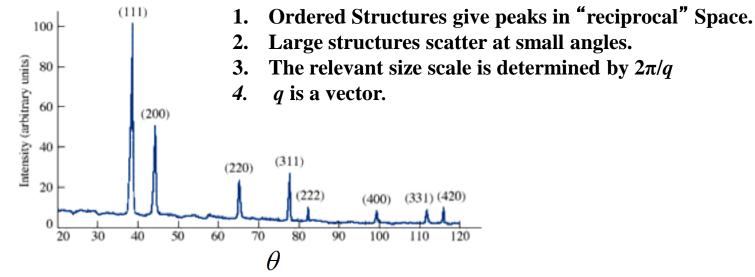


SAXS & SANS: \≤6°

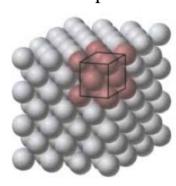
Crystals: Bragg's Law and the scattering vector, q



Reciprocal space



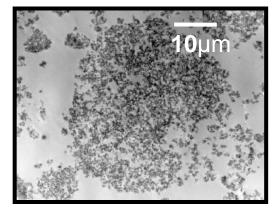
real space



Problem: Nanomaterials are seldom ordered

Disordered Structures in "Real Space"

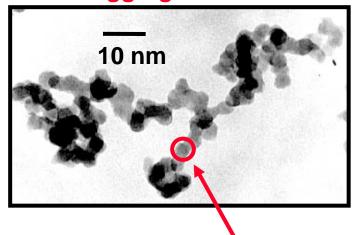
Agglomerates



Precipitated Silica

$$(NaO) (SiO_2)_{3.3} + HCl \longrightarrow SiO_2 + NaCl$$
Water Glass

Aggregates

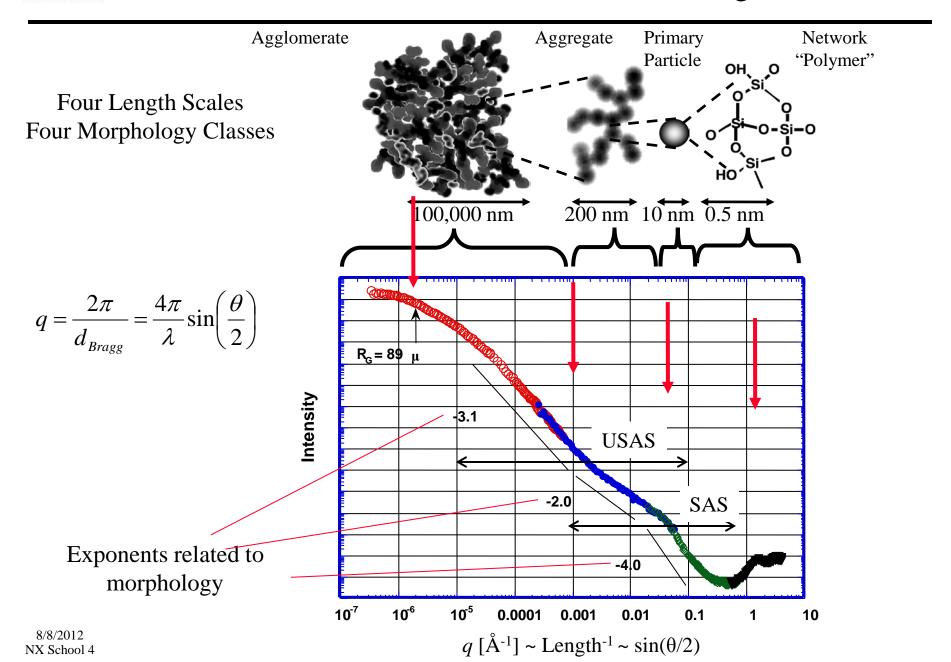


Complex Hierarchical Disordered

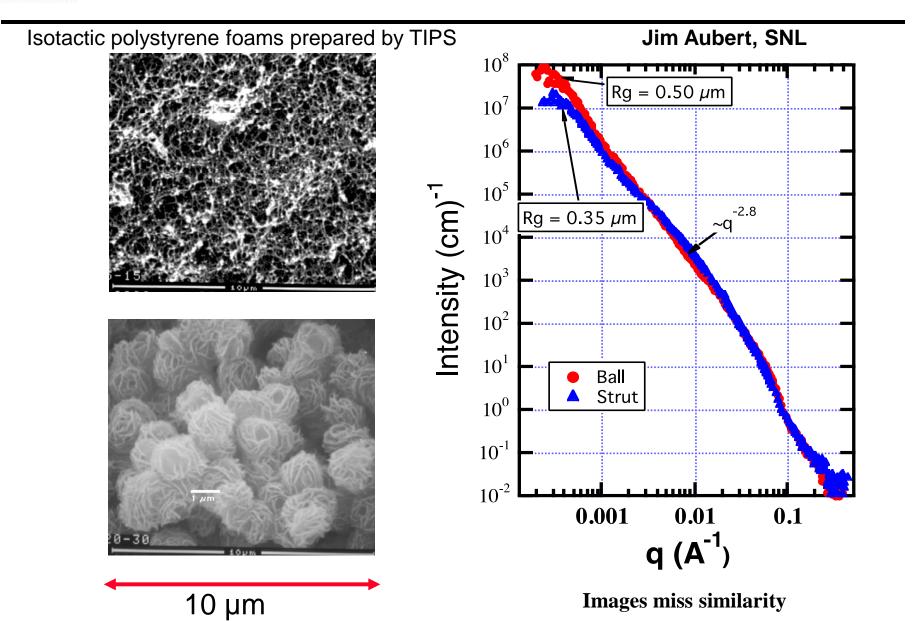
Difficult to quantify structure from images.

Primary Particles

Hierarchical Structure from Scattering



Why Reciprocal Space?



Characterizing Disordered Systems in Real Space

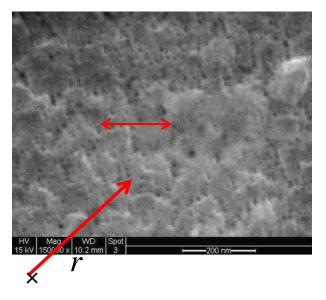
Electron Density Distribution

n(r)

Throw out phase information

Correlation Function of the Electron Density Distribution

$$\Gamma_n(r) = \int n(u)n(u+r)du$$



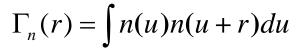
 $\Gamma_n(r)$ Real space ξ

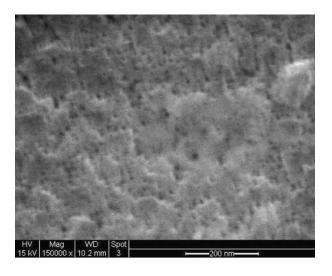
Depends on latitude and longitude. Too much information to be useful. Depends on separation distance. Retains statistically significant info.

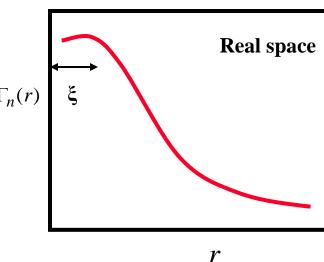
Resolution problems at small *r*Opacity problems for large *r*2-dimensional
Operator prejudice

Problems with real space analysis

Imaging vs. Scattering



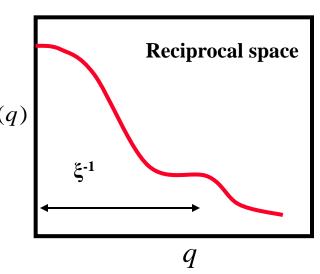




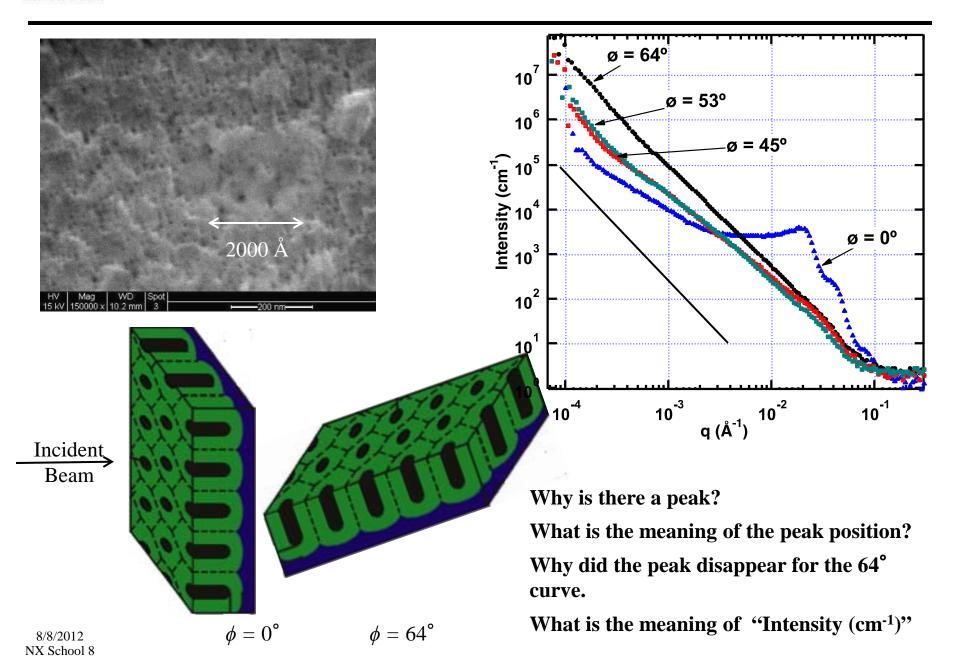
$$I_{scatt} \cong \int \Gamma_n(\mathbf{r}) e^{-iq\mathbf{r}} d\mathbf{r}$$

Schaefer, D. W. & Agamalian, M. Ultra-small-angle neutron scattering: a new tool for materials research. *Curr Opin Solid St & Mat Sci* 8, 39-47, (2004).

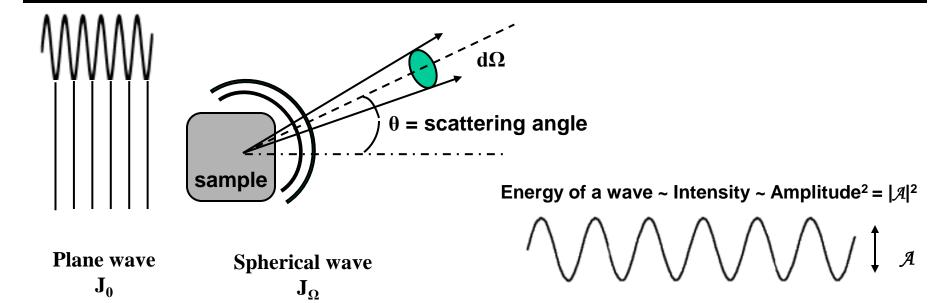
Pegel, S., Poetschke, P., Villmow, T., Stoyan, D. & Heinrich, G. Spatial statistics of carbon nanotube polymer composites. *Polymer* 50, 2123-2132, (2009).



Anodized Aluminum



Intensity and Differential Scattering Cross Section



Flux J_{Ω} = energy/unit solid angle/s or photons/ unit solid angle/s

Plane wave:

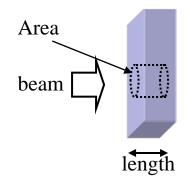
Flux $J_{\theta} = \text{energy/unit area/s}$ or photons/unit area/s

$$\frac{J_{\Omega}}{J_0} = \frac{d\sigma}{d\Omega} \left(\frac{\text{cm}^2}{\text{str}} \right)$$
 differential scattering cross section

What is "Intensity?" What do we really measure?

$$\frac{J_{\Omega}}{J_{A}} = \frac{d\sigma}{d\Omega} \left(\frac{\text{cm}^{2}}{\text{str}} \right) = \frac{\text{detected photons/solid angle/s}}{\text{incident photons/area/s}} = \frac{\text{cm}^{2}}{\text{str}} \sim V = sample \ volume$$

$$\frac{J_{\Omega}(q)}{J_{A}V} = \frac{J_{\Omega}(q)}{J_{A} \cdot \text{area} \cdot \text{length}} = \frac{\text{detected photons/str/s}}{\text{incident photons} \cdot \text{area} \cdot \text{length/s/area}} = \frac{1}{\text{length} \cdot \text{str}}$$



= fraction of the photons scattered into unit solid angle unit sample length

= cross section / unit sample volume/ unit solid angle

$$= \frac{d\sigma(q)}{Vd\Omega} \left[cm^{-1} \right]$$

 $= \frac{d\sigma(q)}{Vd\Omega} \left[cm^{-1} \right]$ Often called the scattering cross section or the intensity

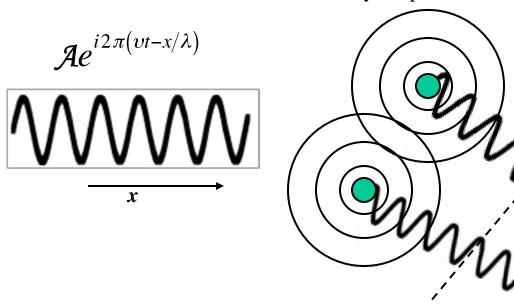
Intensity =
$$\frac{J}{J_0} = \frac{d\sigma}{d\Omega} \left(\frac{\text{cm}^2}{\text{str}} \right)$$
 Roe

Intensity =
$$\frac{J}{VJ_0} = \frac{d\sigma}{Vd\Omega} \left(\frac{1}{cm}\right)$$
 Experimentalists, Irena, Indra

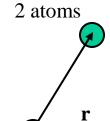
Intensity = $(arbitrary constant) \times J$ Common Usage

Generalized Bragg's Law for Disordered System

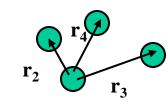
What is the relationship between real space and reciprocal space when there are no crystal planes?



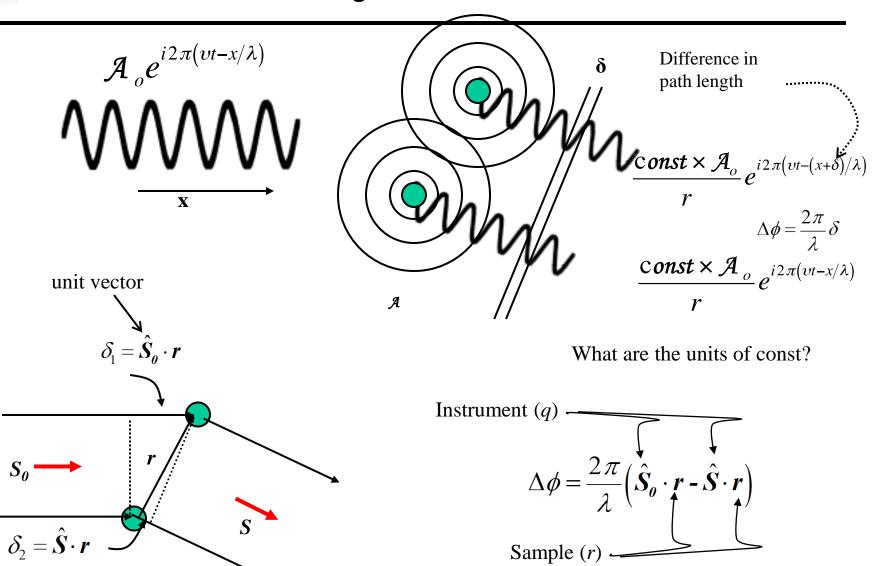
Scattering from 2 atoms



many atoms



Scattering from two atoms

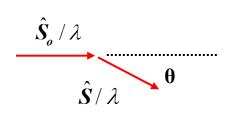


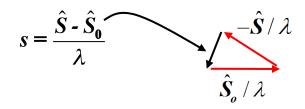
 $A(\mathbf{s}, \mathbf{r}) = (b\mathcal{A}_0) \times (1 + e^{-i2\pi \mathbf{s} \cdot \mathbf{r}})$ Two atoms

Scattering vectors s and q

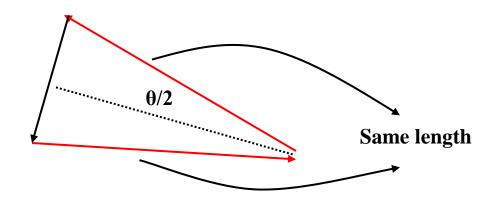
$$\Delta \phi = \frac{2\pi}{\lambda} (\hat{\mathbf{S}}_{\theta} \cdot \mathbf{r} - \hat{\mathbf{S}} \cdot \mathbf{r}) = -2\pi \mathbf{s} \cdot \mathbf{r}$$

$$\mathbf{s} = \frac{\hat{\mathbf{S}} - \hat{\mathbf{S}}_{\theta}}{\lambda} \quad \text{Called the scattering } \underline{\text{vector}}$$



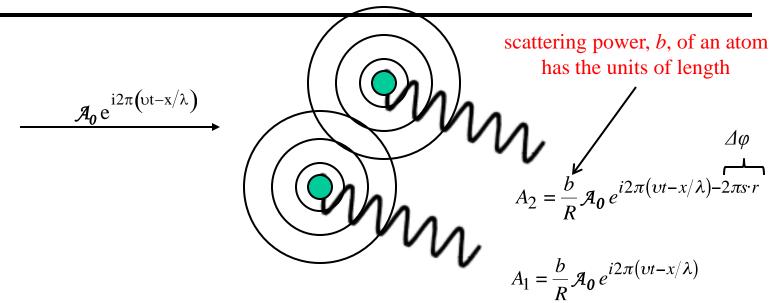


$$|\mathbf{s}| = s = \frac{|\hat{\mathbf{S}} - \hat{\mathbf{S}}_0|}{\lambda} = \frac{2\sin\theta/2}{\lambda}$$



SAXS
$$\begin{cases} q = 2 \pi s & \text{Also called the scattering } \frac{\text{vector}}{\text{vector}} \\ q = 2 \pi s = \frac{4 \pi}{\lambda} \sin \frac{\theta}{2} \end{cases}$$

Combine the two waves



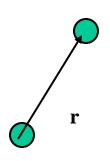
Total Scattered Wave

$$A = A_1 + A_2 = \frac{b}{R} \mathcal{A}_0 e^{i2\pi(vt - x/\lambda)} + \frac{b}{R} \mathcal{A}_0 e^{i2\pi(vt - x/\lambda) - i2\pi s \cdot r}$$

$$= \frac{b}{R} \mathcal{A}_0 \underbrace{e^{i2\pi(vt - x/\lambda)}}_{\text{drops out}} \left(1 + e^{-i2\pi s \cdot r}\right)$$

$$J = AA^* = (b\mathcal{A}_0)^2 (1 + e^{-i2\pi s \cdot r}) (1 + e^{i2\pi s \cdot r})$$

Adding up the Phases



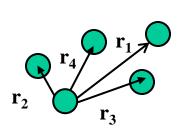
$$\mathcal{A}(\mathbf{s}, \mathbf{r}) = (b\mathcal{A}_0) \times (1 + e^{-i2\pi \mathbf{s} \cdot \mathbf{r}})$$
 Two atoms

x and t terms suppressed

$$\mathcal{A}(\mathbf{s},\mathbf{r}_{1...N}) = (b\mathcal{A}_0) \sum_{j=1}^{N} e^{-i2\pi\mathbf{s}\cdot\mathbf{r}_j}$$

Many atoms

 $\sum \rightarrow \int$



$$\mathcal{A}(\mathbf{s}, \mathbf{r}_{1...N}) = \mathcal{A}_0 \int_V bn(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}$$

$$= \mathcal{A}_0 \int_V \rho(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \qquad \rho(\mathbf{r}) = bn(\mathbf{r})$$

Amplitude is the Fourier transform of the SLD distribution (almost)

Atomic density distribution

 $n(\mathbf{r})$ = number of atoms in a volume element $d\mathbf{r} = dx \, dy \, dz$ around point \mathbf{r} .

$$\frac{atoms}{cm^3}$$

Scattering length density distribution

 $\rho(\mathbf{r})$ = scattering length in a volume element $d\mathbf{r} = dx \, dy \, dz$ around point \mathbf{r} .

$$\frac{atoms}{cm^3} \times \frac{cm}{atom} = cm^{-2}$$

Scattering Length Density (SLD) Distribution

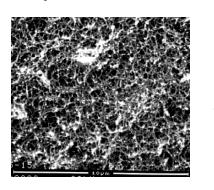
Fourier transform of the scattering length density distribution

$$\frac{\mathcal{A}(q)}{\mathcal{A}_0} = \int b(\mathbf{r}) n(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} = \int \rho(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}$$

$$\chi(\mathbf{r})$$

Can't be measured

 $\rho(\mathbf{r}) = \text{SLD distribution}$ = atomic density distribution x atomic scattering length, b.



 $\rho(r)$

$$I_{scatt}(\boldsymbol{q}) = \frac{J_{\Omega}(\boldsymbol{q})}{J_{0}} = \left| \mathcal{A}(\boldsymbol{q}) \right|^{2} = \left| \int \rho(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \right|^{2}$$

Can't be inverted

What we measure:

Square of the Fourier transform of the SLD distribution

Scattering from Spherical Particle(s)

$$\mathcal{A}_{1}(q) = \frac{A(q)}{A_{0}} = \int \rho(r)e^{-iq\cdot r}d\mathbf{r}$$

$$= \int_{0}^{\infty} \rho(r)4\pi r^{2} \frac{\sin qr}{qr}dr \quad \mathbf{B-50}$$

$$= \frac{\rho_{0}4\pi}{q} \int_{0}^{R} r\sin(qr)dr$$

$$= \rho_{0}4\pi R^{3} \frac{(\sin qR - qR\cos qR)}{(qR)^{3}}$$

$$v = \text{particle volume}$$

$$= \rho_{0} \frac{\sqrt{4\pi R^{3}}}{3} \frac{3(\sin qR - qR\cos qR)}{(qR)^{3}}$$

$$= \rho_{0}v \frac{3(\sin qR - qR\cos qR)}{(qR)^{3}}$$

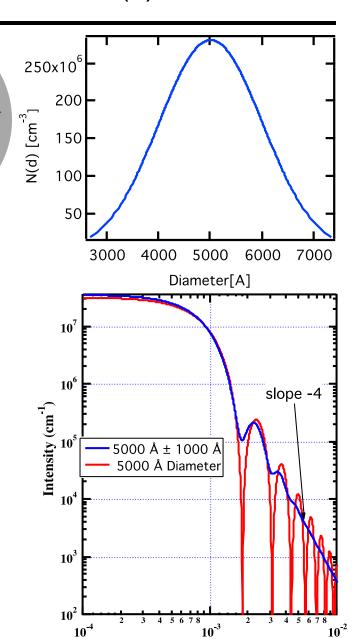
$$= \rho_{0}v \frac{3(\sin qR - qR\cos qR)}{(qR)^{3}}$$

$$I_{N}(q) = N\rho_{o}^{2}v^{2} \left[\frac{3(\sin qR - qR\cos qR)}{(qR)^{3}} \right]^{2} \quad \text{N particles}$$

$$I(q) \sim N(\rho - \rho_{o})^{2}v^{2}P(q) \leftarrow \quad \text{Form Factor}$$

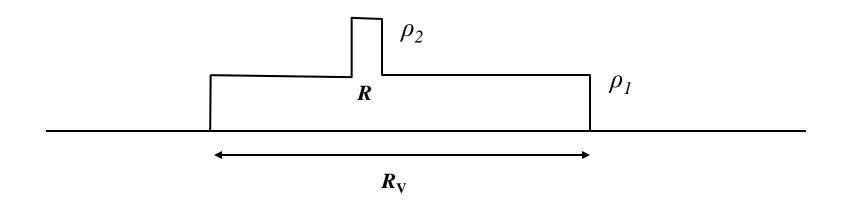
$$8/8/2012 \qquad \qquad \text{Form Factor}$$

solvent SLD



 $q\;(\mathring{A}^{\text{-}1})$

Particle in Dilute Solution



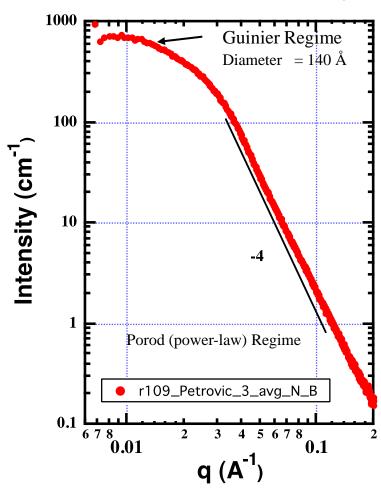
$$\mathcal{A}(q) = \frac{4\pi}{q} (\rho_2 - \rho_1) \int_0^R r \sin(qr) dr + \rho_1 \int_0^{R_V} r \sin(qr) dr$$

$$= \underbrace{(\rho_2 - \rho_1)}_{\text{contrast}} v \frac{3(\sin qR - qR \cos qR)}{(qR)^3} + \rho_1 V \underbrace{\frac{3(\sin qR_V - qR_V \cos qR_V)}{(qR_V)^3}}_{=0 \text{ unless } qR \le 1}$$

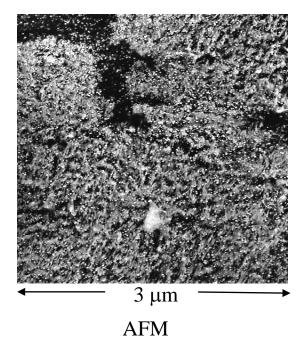
Small-Angle Scattering from Spheres

$$\sin\theta = \frac{\lambda}{2d} \xrightarrow{d >> \lambda} \theta$$

Large object scatter at small angles



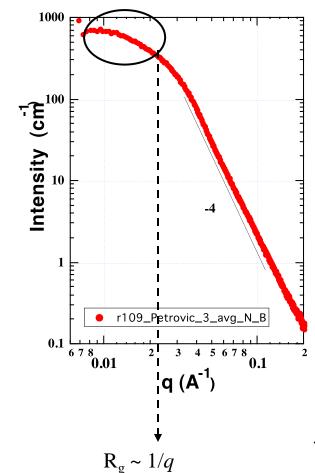
Silica in Polyurethane



Petrovic, Z. S. *et al*. Effect of silica nanoparticles on morphology of segmented polyurethanes. *Polymer* 45, 4285-4295, (2004)

Guinier Radius

Initial curvature is a measure of length



$$\mathcal{A}(q) = \frac{A(q)}{A_0} = \int \Delta \rho(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}$$

$$I(q) = |\mathcal{A}(q)|^2 = \Delta \rho^2 v^2 \left[1 - \frac{1}{3} q^2 R_g^2 + \cdots \right]$$

Derived in 5.2.4.

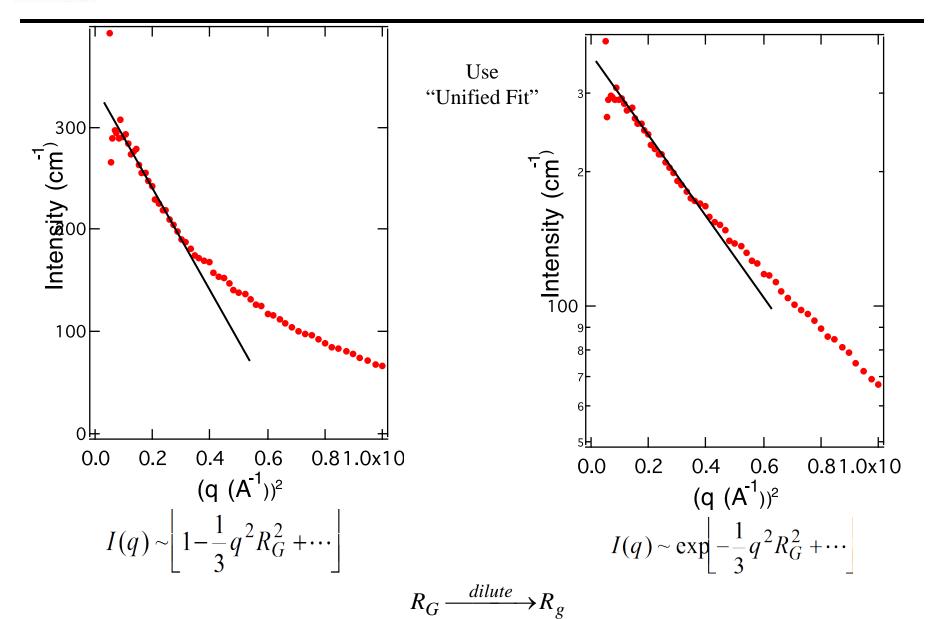
$$R_g^2 = \frac{1}{v} \int r^2 \sigma(\mathbf{r}) d\mathbf{r}$$
 for any shape

$$\sigma(r) = \left\{ \begin{array}{cc} 1 & r \le R \\ 0 & r > R \end{array} \right\} \text{sphere}$$

$$\mathcal{A}_{sphere}(q) = \Delta \rho 4 \pi R^{3} \frac{(\sin qR - qR \cos qR)}{(qR)^{3}} = C_{1} \left[1 - C_{2} (qR)^{2} + \cdots \right]$$

$$R_g = \sqrt{\frac{3}{5}}R$$

Guinier Fits

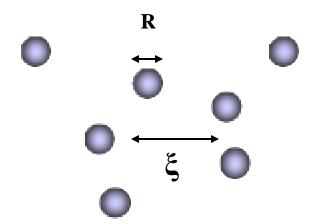


8/8/2012 NX School 21

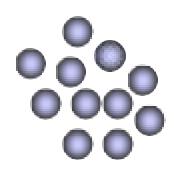
Guinier radius

Radius-of-Gyration

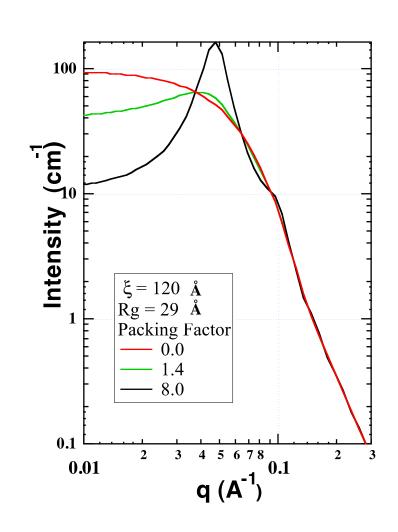
Dense packing: Correlated Particles



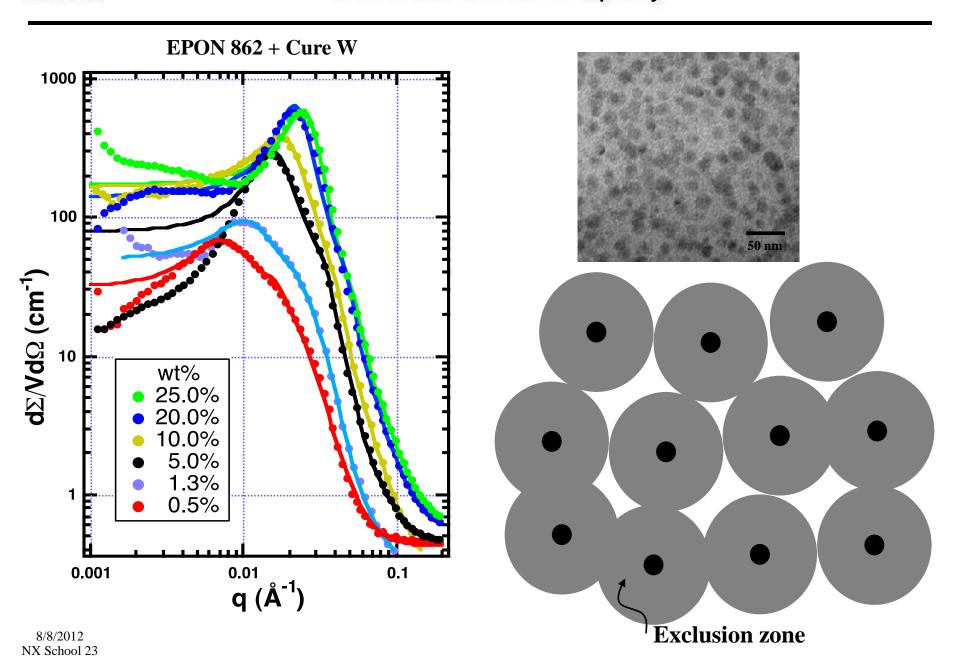
Packing Factor = $k = 8 \phi$



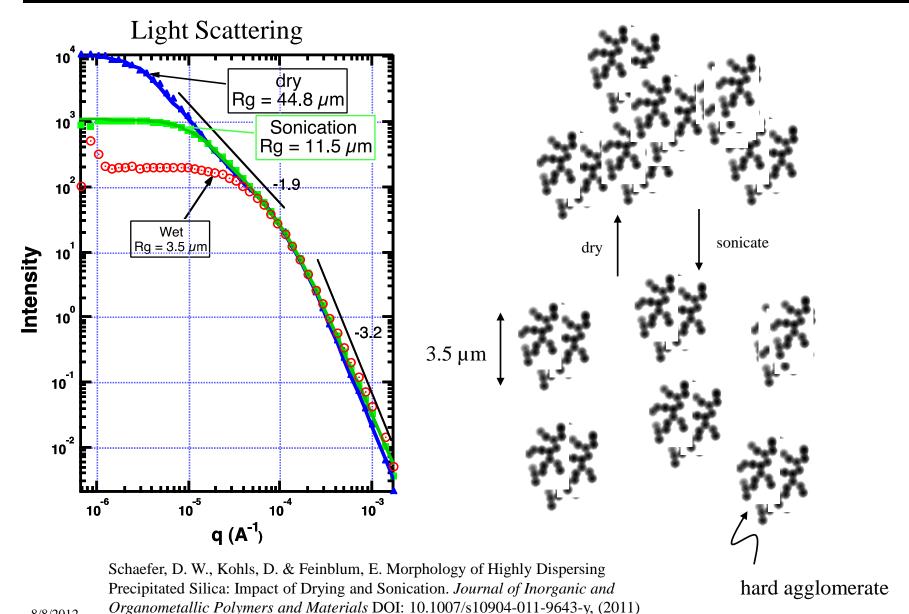
Packing Factor ≅ 6



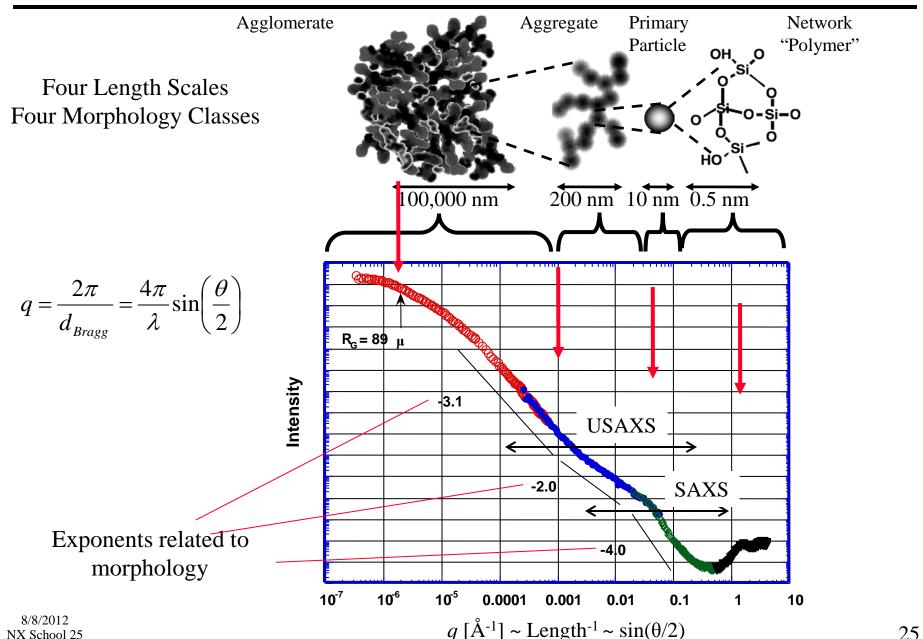
Colloidal Silica in Epoxy



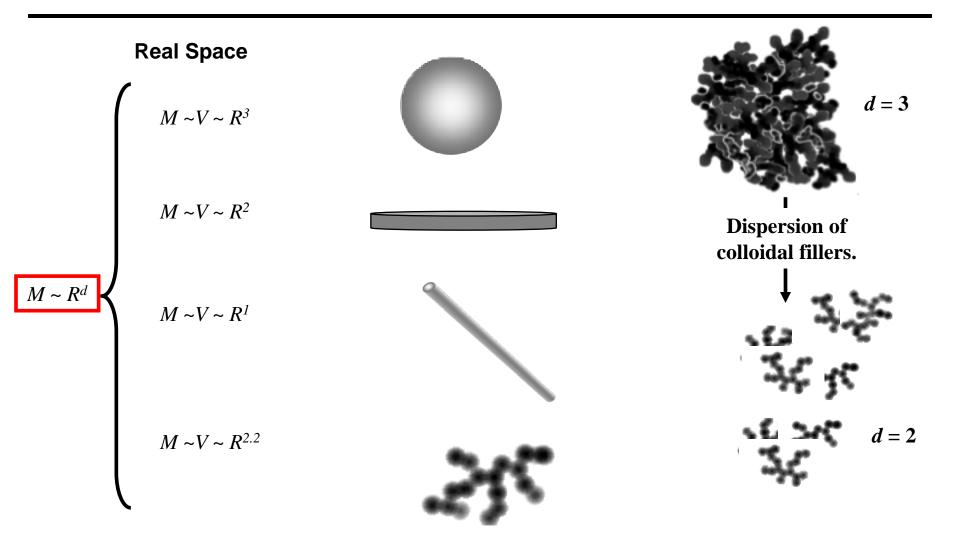
Using R_q: Agglomerate Dispersion



Hierarchical Structure from Scattering

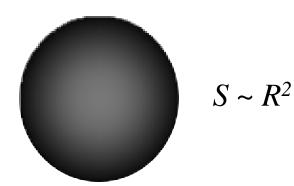


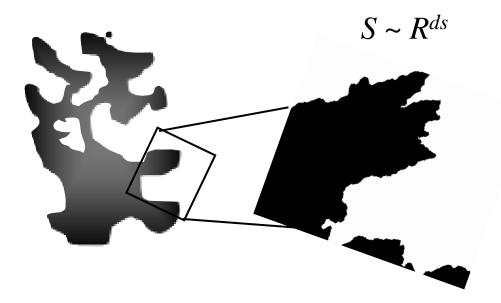
Fractal description of disordered objects



Surface Fractal Dimension

Sharp interface





fractal or self-affine surface

Scattering from Fractal Objects: Porod Slopes

d = Mass Fractal Dimension

 $M \sim v \sim R^3$ solid particle

 $M \sim v \sim Nv_u \sim R^d v_u$ mass fractal

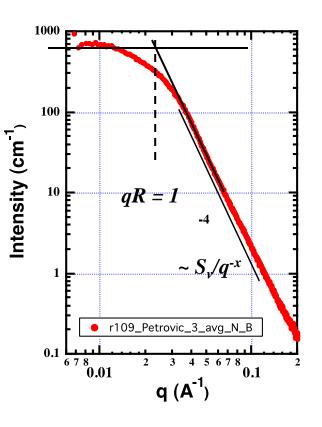
d_s = Surface Fractal Dimension

$$S = R^2$$

 $S = R^2$ solid particle $S \sim R^{d_S}$ surface fracta

$$S \sim R^{d_S}$$

surface fractal



Small q

$$I(q=0) \sim v^2 \sim (Nv_u)^2 \sim R^{2d}$$

Large q

$$I_P(qR >> 1) \approx \left(\frac{S_v}{q^x}\right) \sim \frac{R^{d_s}}{q^x} \sim \frac{R^{d_s+x}}{\left(qR\right)^x}$$

Match at
$$qR = 1$$

$$R^{d_S + x} \sim R^{2d}$$
$$x = 2d - d_S$$

$$I(q) \sim q^{-(2d - d_S)}$$

Porod Slope for Fractals

 $I(q)=q^{d_s-2d_m}$

Structure

Scaling Relation

Porod Slope= $d_s - 2d_m$

Smooth Surface

$$d_{\rm m} = 3$$

$$d_{\rm S}=2$$

 $qR \gg 1$

- 4

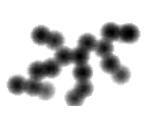
Rough Surface

$$d_{\rm m} = 3$$

$$2 < d_S \le 3$$

 $-3 \le \text{Slope} \le -4$

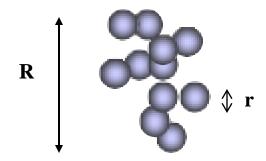
Mass Fractal

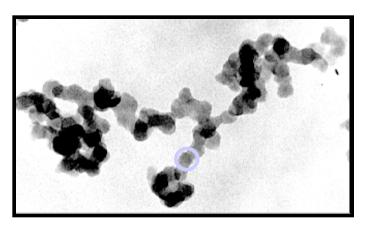


$$1 \le d_{\rm s} = d_{\rm m} \le 3$$

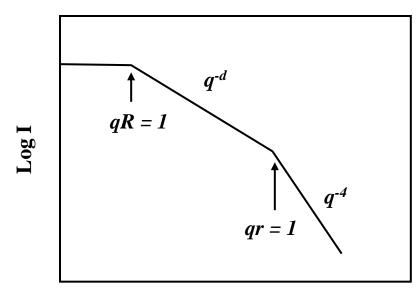
- 1 ≤ Slope ≤ - 3

Scattering from colloidal aggregates



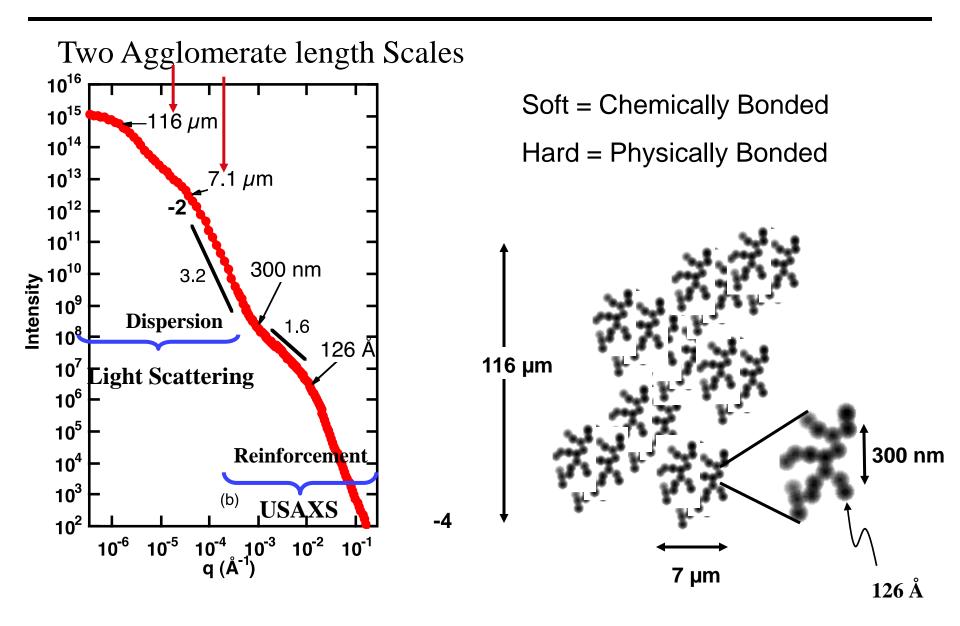


Precipitated Silica

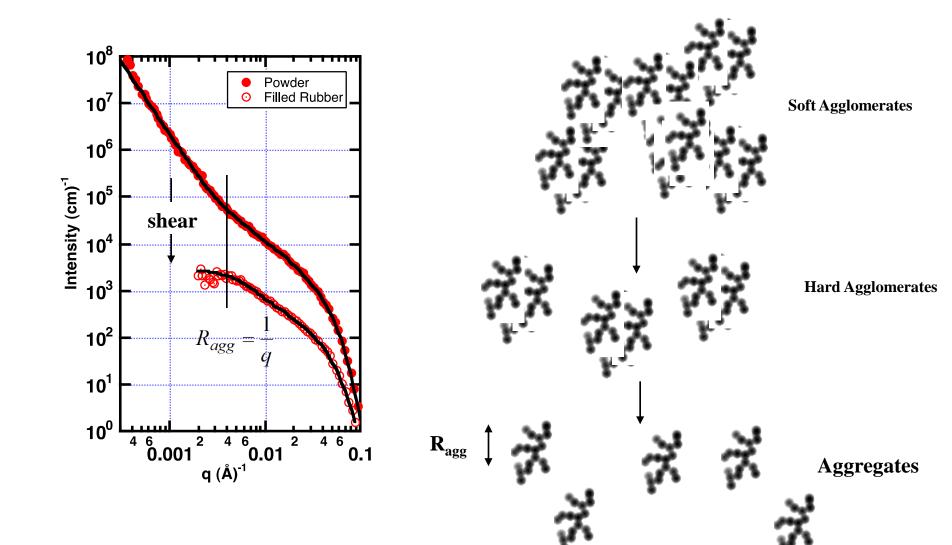


Log q

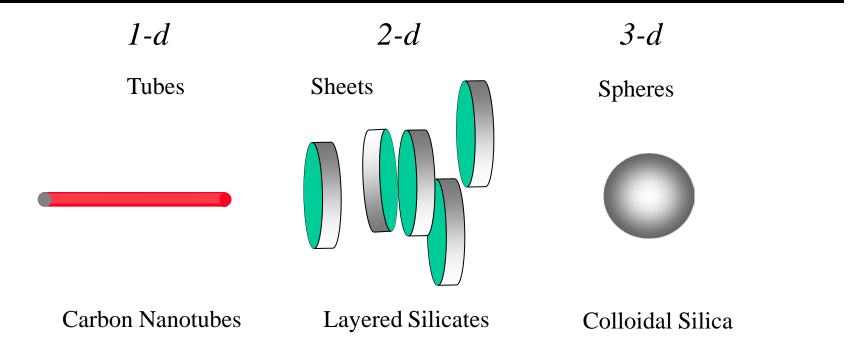
Morphology of Dimosil® Tire-Tread Silica



Aggregates are robust



Exploring the Nanoworld

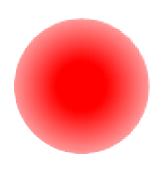


How valid are the cartoons? What are the implications of morphology for material properties?

Answers come from Small-Angle Scattering.

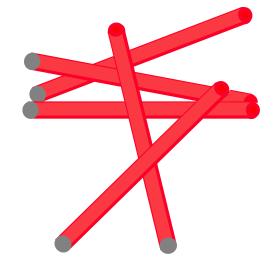
Schaefer, D.W. and R.S. Justice, *How nano are nanocomposites?* Macromolecules, 2007. 40(24): p. 8501-8517.

The Promise of Nanotube Reinforcement





$$E_{\delta} = \frac{E_{\text{composite}}}{E_{\text{matrix}}}$$



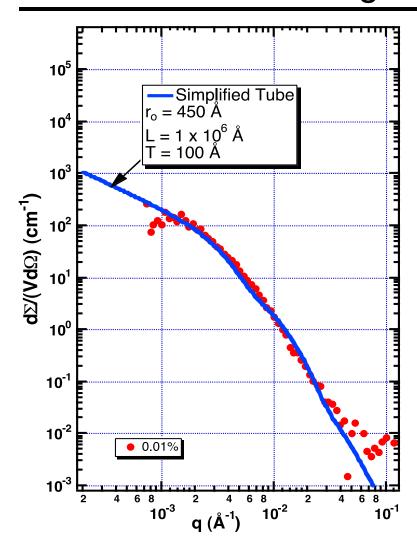
$$E_{\delta} = 1 + 2.5 \phi$$

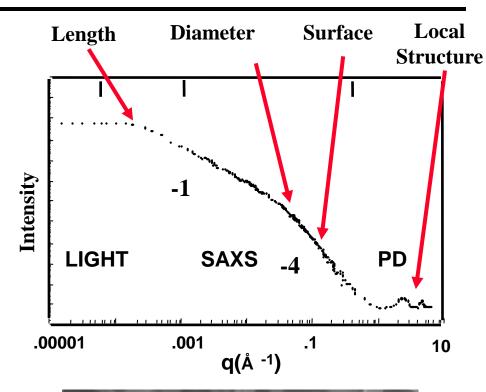
$$= 1 + 2\alpha\phi \cong 1 + 2000\phi$$

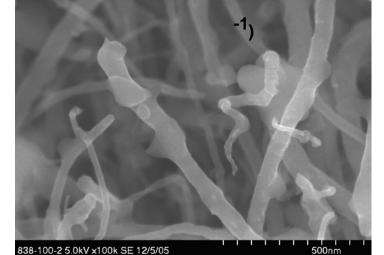
$$= 1 + 0.4\alpha\phi \cong 1 + 400\phi$$

$$\alpha$$
 = aspect ratio

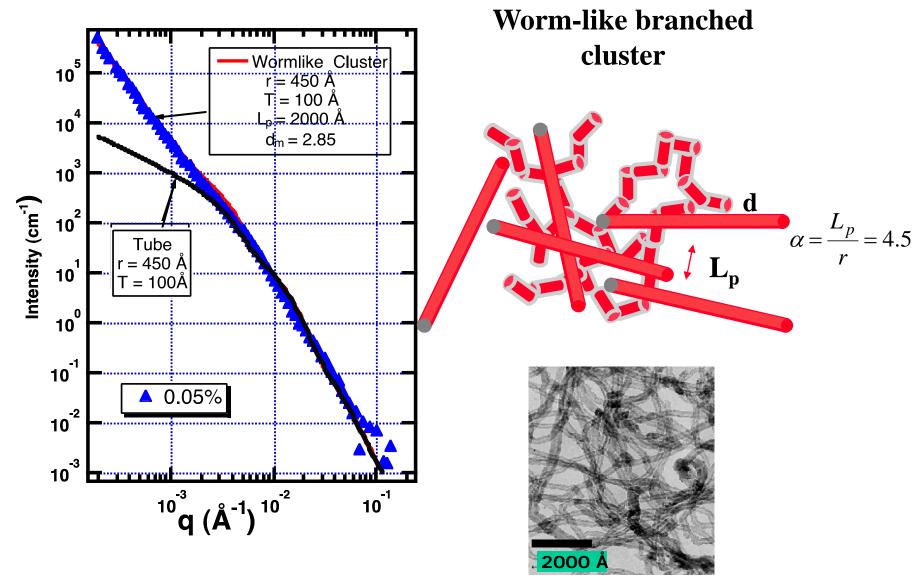
0.01% Loading CNTs in Bismaleimide Resin





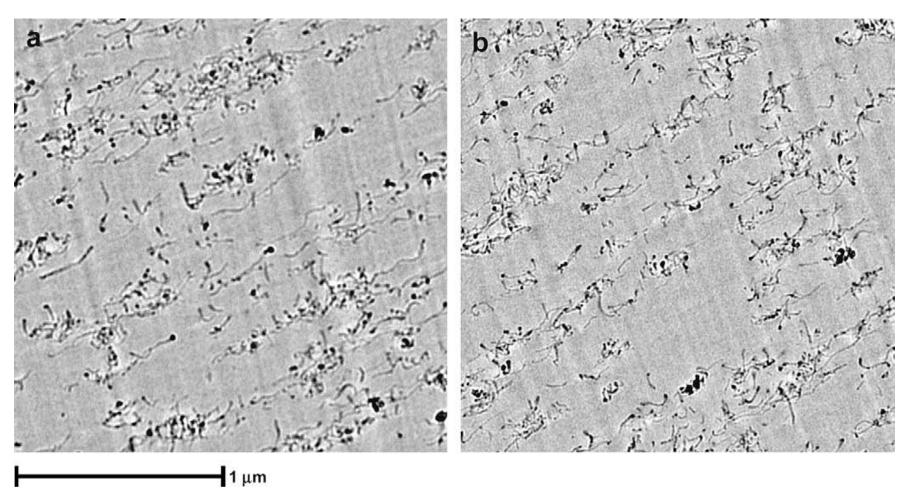


0.05% Carbon in Bismaleimide Resin



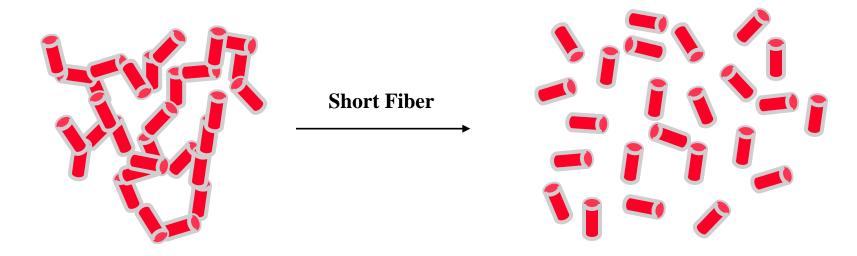
TEM of Nanocomposites

Hyperion MWNT in Polycarbonate



Pegel et al. Polymer (2009) vol. 50 (9) pp. 2123-2132

Morphology and Mechanical Properties



Halpin-Tsai, random, short, rigid fiber limit

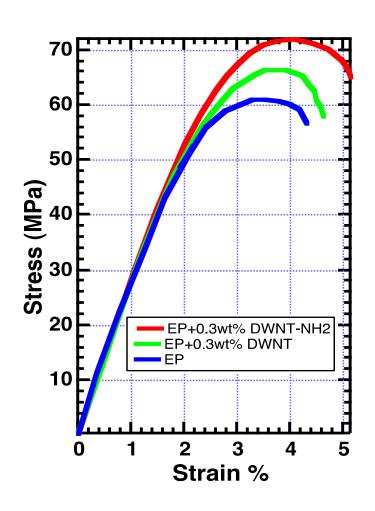
$$E_{\mathcal{S}} = \frac{E_{c}}{E_{m}} = 1 + 0.4\alpha\phi \qquad \alpha = 4.5$$

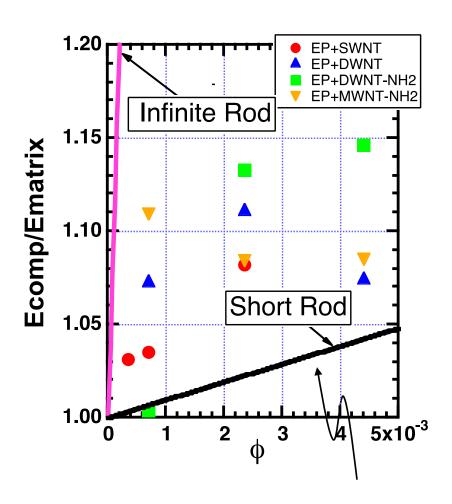
$$\approx 1 + 2\phi$$

No better than spheres

Schaefer, D.W. and R.S. Justice, How nano are nanocomposites? Macromolecules, 2007. 40(24): p. 8501-8517.

CNTs in Epoxy

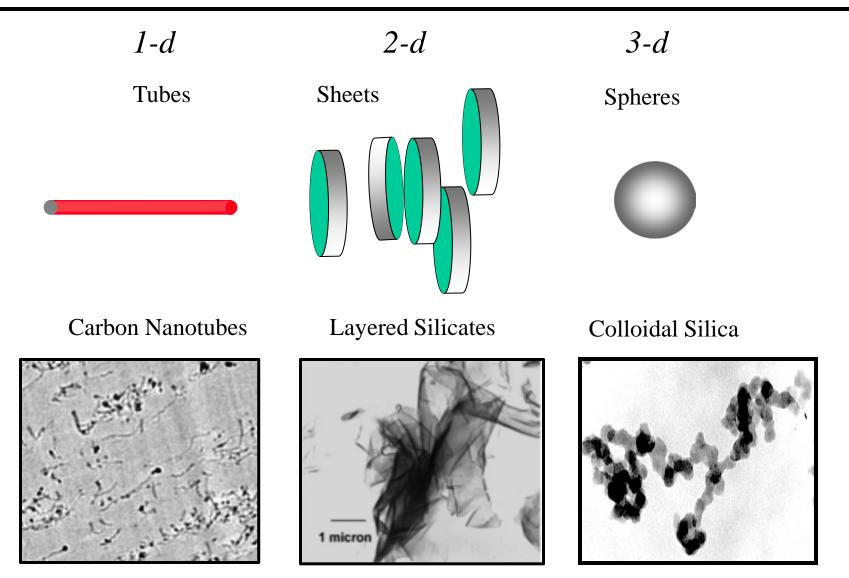




Assumes no connectivity $\alpha = 4.5$

Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Schulte, K. Comp. Sci. & Tech. 2005, 65, (15-16), 2300-2313.

Don't Believe the Cartoons



Schaefer, D.W. and R.S. Justice, *How nano are nanocomposites?* Macromolecules, 2007. 40(24): p. 8501-8517.

Conclusion

If you want to determine the morphology of a disordered material use small-angle scattering.

Extras

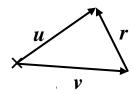
Correlation Functions

depends on absolute position of atoms

$$I(q) = \left\langle \left| \mathcal{A}(q) \right| \right\rangle^2 = \left\langle \left| \int \rho(r) e^{-iq \cdot r} dr \right|^2 \right\rangle$$
$$= \left\langle \left[\int \rho(u) e^{-iq \cdot u} du \right] \left[\int \rho(v) e^{iq \cdot v} dv \right] \right\rangle$$

r = u - v

Ensemble Average < >



new **r** is independent of origin

problem
$$= \int \left\langle \left[\int \rho(u)\rho(u+r)du \right] \right\rangle e^{-iq\cdot r} dr \quad \text{depends on relative position of atoms}$$

$$I(q) = \int \Gamma_{\Delta\rho}(r) e^{-iq \cdot r} dr \qquad \Gamma_{\Delta\rho}(r) = \left\langle \int_{\infty} \Delta\rho(u) \Delta\rho(u+r) du \right\rangle \qquad \Delta\rho = \rho - \left\langle \rho \right\rangle$$

 $-\Gamma_{\Lambda_0}(\mathbf{r})$ is the autocorrelation function of the fluctuation of scattering length density = Patterson function

Scattering cross section is the Fourier transform of the ensemble average of the correlation function of the fluctuation of scattering length density.

Not really a Fourier Transform

Problem!

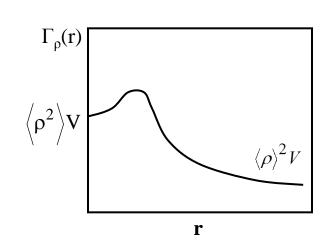
Must know sample geometry

$$I(q) = \int_{V} \Gamma_{\rho}(r) e^{-iq \cdot r} dr \neq \int_{-\infty}^{\infty} \Gamma_{\rho}(r) e^{-iq \cdot r} dr$$

$$\Gamma_{\rho}(0) = \left\langle \int \rho(\mathbf{v}) \, \rho(\mathbf{v}) d\mathbf{v} \right\rangle = \left\langle \rho^{2} \right\rangle V$$

$$\Gamma_{\rho}(\infty) = \left\langle \int \rho(\mathbf{v}) \, \rho(\mathbf{v} + \infty) d\mathbf{v} \right\rangle = \left\langle \rho \right\rangle \left\langle \rho \right\rangle V = \left\langle \rho \right\rangle^{2} V$$

$$I(\mathbf{q}) = \int_{-\infty}^{\infty} \Gamma_{\rho}(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} = \infty$$



Extending to infinite integrals

$$I(\mathbf{q}) = \int_{\mathbf{V}} \Gamma_{\rho}(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} = \int_{\mathbf{V}} \left[\Gamma_{\rho}(\mathbf{r}) - \left\langle \rho \right\rangle^{2} V + \left\langle \rho \right\rangle^{2} V \right] e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}$$

$$= \int_{-\infty}^{\infty} \left[\Gamma_{\rho}(\mathbf{r}) - \left\langle \rho \right\rangle^{2} V \right] e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} + \left\langle \rho \right\rangle^{2} V \iint_{-\infty}^{\infty} e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}$$

$$= \int_{-\infty}^{\infty} \Gamma_{\eta}(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \qquad q \neq 0$$

$$\cdot \qquad \qquad \eta(\mathbf{r}) = \rho(\mathbf{r}) - \left\langle \rho \right\rangle$$

page 29

 $e^{iqr} = \cos qr + i\sin qr$

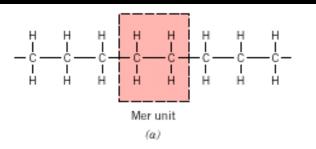
 Γ_{η} = Autocorrelation of the <u>fluctuation</u> of the scattering length density.

$$\delta(q) = \int e^{-iqx} dx$$

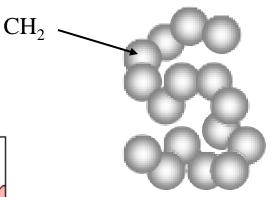
Scattering is determined by fluctuations of the density from the average

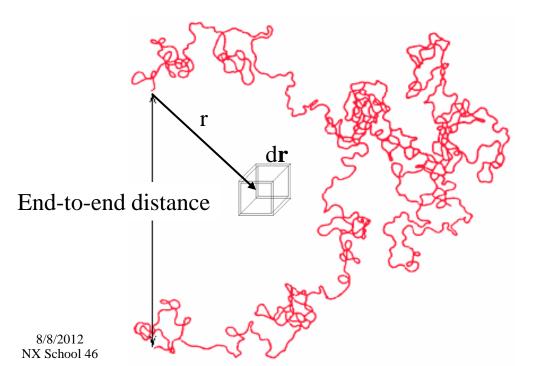
A dilute gas does not "diffract" (scatter coherently).

SAXS from Polymers



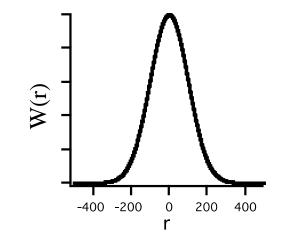




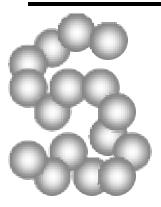


Gaussian probability distribution

$$w(N,r)d\mathbf{r} = \left(\frac{3}{2\pi N l^2}\right)^{3/2} \exp\left(\frac{3r^2}{2N l^2}\right) d\mathbf{r}$$



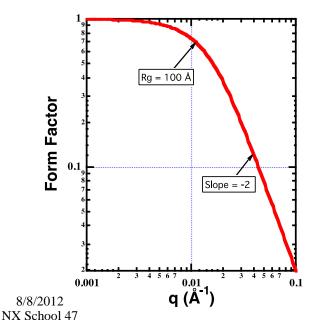
Scattering from Polymer Coils



N bonds of length l, N+1 beads of volume v_u scattering length of one bead = $\rho_0 v_u$

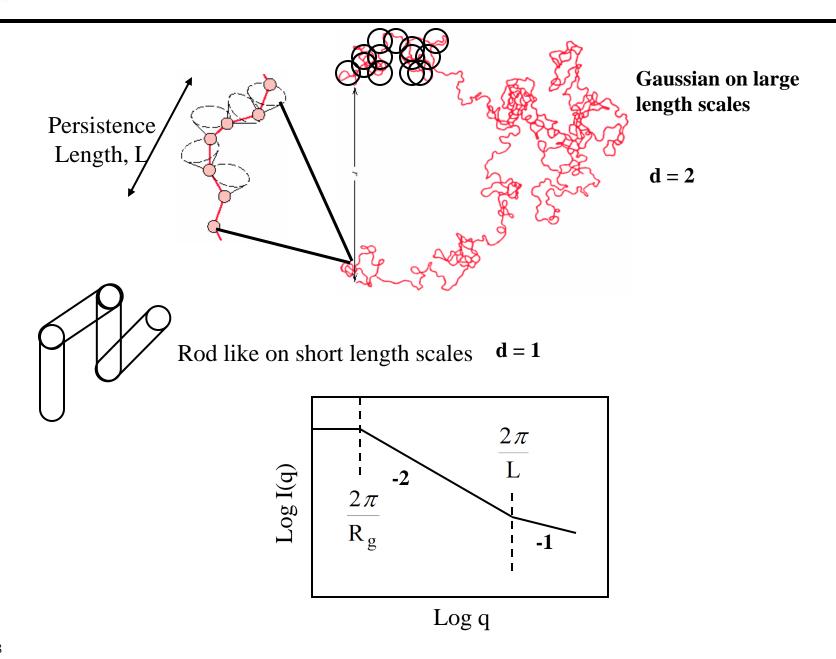
$$I(\mathbf{q}) = \left(\rho_o v_u\right)^2 \sum_{j=0}^{N+1} \sum_{k=0}^{N+1} e^{-i\mathbf{q} \cdot \mathbf{r}_{jk}} = \left(\rho_o v_u\right)^2 \int P(r) e^{-i\mathbf{q} \cdot \mathbf{r}} d\mathbf{r}$$

$$P(r) = 2\sum_{K=0}^{n} (N+1-K) \left(\frac{3}{2\pi K l^2}\right)^{3/2} \exp\left(\frac{3r^2}{2K l^2}\right) \qquad l = \text{bond length}$$
Number of e-e distribution for walks of K steps e-walk of K steps



$$I(q) = \left(\rho_{o} v_{u}\right)^{2} \underbrace{\frac{2(e^{-x} + x - 1)}{x^{2}}}_{\text{Debye form factor}}; \quad x = \frac{q^{2} N l^{2}}{6} = q^{2} \left\langle R_{g} \right\rangle^{2}$$

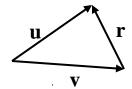
Worm-like Chain



Correlation Functions

$$\frac{d\sigma}{d\Omega} = I_{\text{scatt}}(\mathbf{q}) = \frac{J(\mathbf{q})}{J_0} = \left\langle \left| \mathcal{A}(\mathbf{q}) \right| \right\rangle^2 = \left\langle \left| \int \rho(\mathbf{r}) \, e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r} \right|^2 \right\rangle \quad \text{Ensemble Average} < >$$

$$I(\mathbf{q}) = \left\langle \left[\int \rho(\mathbf{u}) e^{-i\mathbf{q}\cdot\mathbf{u}} d\mathbf{u} \right] \left[\int \rho(\mathbf{v}) e^{i\mathbf{q}\cdot\mathbf{v}} d\mathbf{v} \right] \right\rangle$$



$$\mathbf{r} = \mathbf{u} - \mathbf{v}$$

$$\mathbf{I}(\mathbf{q}) = \int \left\langle \left[\int \rho(\mathbf{u}) \rho(\mathbf{u} + \mathbf{r}) d\mathbf{u} \right] \right\rangle e^{-i\mathbf{q} \cdot \mathbf{r}} d\mathbf{r}$$

new
$$\mathbf{r}$$
 is independent of origin

$$I(\mathbf{q}) = \int \Gamma_{\rho}(\mathbf{r}) e^{-i\mathbf{q}\cdot\mathbf{r}} d\mathbf{r}$$

$$\Gamma_{\rho}(\mathbf{r}) = \left\langle \int_{V_{\text{sample}}} \rho(\mathbf{u}) \rho(\mathbf{u} + \mathbf{r}) d\mathbf{u} \right\rangle$$

 $\Gamma_{\rho}(r)$ is the autocorrelation function of the scattering length density

Scattering Cross section is the Fourier Transform of the ensemble average of the correlation function of the scattering length density (Patterson Function)