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Buried Interface Structure
to understand the growth and function of materials



Step-Edge Barrier

Nucleation

Terrace diffusion

Edge
diffusion

Crystal growth from a vapor



Zuo & WendelkenCu/Cu(001)

Morphology → atomic scale mechanisms



Interplay between two regimes of Length Scales

• Interatomic distances
→Structure, physics, chemistry → Mechanisms

• “Mesoscale” – Nanoscale 
→ Morphology → Mechanisms



Unique Advantages of X-ray Scattering:

• Atomic-scale structure at a buried interface
• Morphological structure at buried interfaces
• Subsurface phenomena

Strains and defects near a surface
• Accurate statistics of distributions

(eg. Island size distributions)

Neutrons:  low intensity- limited to reflectivity
• Soft Matter and Bio materials;  H2O & D2O
• Magnetic materials



J. Phys.: Condens. Matter 20 (2008) 323202

Example: 
Rotation of graphene planes affect electronic properties

Graphene made from SiC



Crystalline morphology
Vacancy clusters

Interface roughness
Nucleation/growth/coarsening at interfaces

Nanoclusters Atomic interfacial structure

Morphology → atomic scale mechanisms



Objective

• An introduction to surface scattering techniques
Build a conceptual framework

• Reciprocal Space is a large place:   where do we look?



Scattering of X-rays and Neutrons:
Helmholtz Equation
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One language for both x-rays and neutrons

Scattering length density:    brr N
monoatomic
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Wavevector Transfer:
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Probing Length Scale



Regimes of Scattering
(Consider specular reflection)

1. Grazing angle reflectivity:   strong scattering d>>interatomic distances
Exact solution required.  Neglect atomic positions:  homogeneous medium

2. Bragg region:   strong scattering;  d~interatomic distances = a
Exact solution required. Atomic positions needed.  Similar to e- band theory.

3. Everywhere else:  weak scattering
Born approximation →simplification.  Atomic positions required.
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Surface information → “3” 3D: surface info is
everywhere except  

at Bragg points



Grazing Angles: Refraction and Total Reflection
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d>>a:  consider homogenous medium

Use average refractive index:
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Only kz component is affected by the surface.
kx is unchanged.

k
z

k
x

k
x

k
x

k
z

k’z

Snell’s Law:
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Critical Angle for
Total Reflection:

 2c

Wavevector transfer:
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Total Reflection

c  
Evanescent wave
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Beam does not transmit below

ccc

Critical Angle for Total External Reflection:
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Exact Result for
A Single Interface

Frenel Reflectivity for a Single Interface

Critical angle for
Total External Reflection

refl powerR
inc power





Transmission Amplitude

H. Dosch, PRB 35, 2137 (1987)



H. Dosch, PRB 35, 2137 (1987)

Penetration Length
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Calculation of reflectivity
Q Reflectivity, R, can be calculated, exacty, 

by matching boundary conditions at 
the interfaces.  

Multi-slice method:
Numerical simulations

Include an interfacial transition

L.G. Parratt, Phys Rev 95, 359 (1954)



M-layer
http://www.ncnr.nist.gov/reflpak/



• Thin film interfaces
Light elements
Isotopic substitutions
Polymers

Soft Matter: Neutron Reflectivity

D. J. McGillivray and M. Lösche
D. J. Vanderah and J. J. Kasianowicz
G. Valincius

lipid

Biophysical Journal Volume 95 November 2008 4845–4861



• Magnetic thin films
Spin-polarized neutrons

S. Park,  M. R. Fitzsimmons, X. Y. Dong, 
B. D. Schultz, and C. J. Palmstrøm, Phys Rev B 70 104406 (2004)

Magnetic Films: Neutron Reflectivity

FeCo/GaAs



Vortices in Thin-Film Superconductors
Studied by Spin-Polarized Neutron Reflectivity (SPNR)

YBCO 600 nm Superconducting Film

Vo
rt

ex
 D

en
si

ty

H

Field parallel 
to film surface

S-W. Han, J.F. Ankner, H.Kaiser, P.F.Miceli, 
E.Paraoanu, L.H.Greene, PRB 59, 14692 (1999) 



Regimes of Scattering
(Consider specular reflection)

1. Grazing angle reflectivity:   strong scattering d>>interatomic distances
Exact solution required.  Neglect atomic positions:  homogeneous medium

2. Bragg region:   strong scattering;  d~interatomic distances = a
Exact solution required. Atomic positions needed.  Similar to e- band theory.

3. Everywhere else:  weak scattering
Born approximation →simplification.  Atomic positions required.
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Surface information → “3”
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Differential Scattering Cross Section 
Weak Scattering 

“Born Approximation” or “Kinematic Approximation”
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Reflectivity:

P is the polarization factor (x-ray case)
S(Q) is the structure factor
A(Q) is the scattering amplitude
f(Q) is the atomic form factor

is the scattering length densityb
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 Qfrb e for x-rays or tabulated for neutrons

Sum over all atomic positions

Born Approximation: 
simple sum over atomic positions
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Single Interface
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Born Approximation works if the
reflectivity is not too large.

Born approx.

Exact

Specular Reflection



Grazing Incidence Effects

3D Scattering

if kkQ
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are near grazing:
• refraction of both beams

internal wavevector transfer:

• transmission of both beams:
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General Case: non-specular scattering
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H. Dosch, B.W. Batterman and D. C. Wack, PRL 56, 1144 (1986)
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Perpendicular to Surface:  internal Q’ and external Q are different

zQ

Parallel to Surface: internal Q’ and external Q are same

Q




H. Dosch, PRB 35, 2137 (1987)

Penetration Length

ci 

zQ


Im
1



H. Dosch, PRB 35, 2137 (1987)

Fe3Al

Distorted Wave 
Born Approximation

• refraction
• transmission

is the structure factor using
the internal wavevector transfer
 QS 




H. You, J. Appl. Cryst. 32, 614-623 (1999)

A Six-Circle Diffractometer

• Extra Angles give flexibility
• Constraints are needed
• Common working modes:
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Detector angles



UHV Growth and Analysis Chamber 
At Sector 6 at Advanced Photon Source

• UHV 10-10 Torr
• Evaporation/deposition
• Ion Sputtering
• LEED
• Auger
• Low Temp: 55K
• High Temp: 1500 C
• Load Lock/sample transfer



M. Schlossman et. al., Rev. Sci. Inst. 68, 4372 (1997)

Liquid Surface Diffractometer



David Vaknin, Ames Lab



The Effect of a 
Crystalline Boundary



What is a crystal truncation rod?
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First consider:
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Real space

Reciprocal space
Bragg points

• Large crystals; rough and irregular boundaries
• Boundaries neglected

G


is a reciprocal lattice vector





Large crystal
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Real space

Now consider a crystal with one atomically flat boundary…
z





• Large crystal; flat boundary
• Neglect boundary at z

0z
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Reflected wave vanishes
Crystal Truncation Rod Factor

pR
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Very small attenuation
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By neglecting the lateral boundaries:
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CTR Narrow reflection in-plane
Intensity falls slowly

pG


= an in-plane reciprocal lattice vector

irrN = the number of irradiated atoms at the surface
cs = area per surface atom



Qz

Qp

Crystal Truncation Rods

Crystal Surface

Reciprocal Space

Specular rod
(Qp=0)

Real Space



Atomically smooth

Elliott et. al. PRB 54, 17938 (1996)

Rough, 3Å
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Crystal Truncation Rod Scattering for
Specular Reflection from the Ag(111) Surface

)111(G


geometry CTR

CTRgeometry



Qz

Qp

Tilted Rods

Step ordering
Step bunching

Qz

sn̂ sn̂
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Miscut Surfaces

(typically semiconductors)
(e.g. noble metals)

L
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Specular

Diffuse
∆Qp

∆Qp

Angular Width of Specular Decreases with Qz

L~9000Å
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Can determine terrace size, L



Elliott et. al. PRB 54, 17938 (1996)

Specular Reflection from the Ag(111) Surface
Correct Crystal Truncation Rod Scattering for Terrace Size



The Effect of a 
Rough Surface 



Atomically smooth

Elliott et. al. PRB 54, 17938 (1996)

Rough, 3Å

Sharper interface (real space) gives “broader” scattering
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Bragg Position:

Anti-Bragg Positions2
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mcQz 
Anti-Bragg Position: 

For a smooth surface

(m odd)

Special location along CTR: anti-Bragg

1 atomic layer

out of phase
0I 



In situ vapor deposition in UHV

Synchrotron
X-ray Beam

evaporator



Nucleation and Growth

Specular Anti-Bragg Intensity

multilayer

Step flow

Specular and Diffuse

Layer-by-layer

0.5 ML

1.0 ML

1.5 ML

2.5 ML

2.0 ML

0 ML

Elliott et. al. PRB 54, 17938 (1996) Adv. X-ray Anal. 43, 169 (2000)
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Diffuse Scattering Qz

Qp

scan
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• Neglect lateral boundaries

Caused by lateral structure

CTR factor
FT of average phase difference

due to lateral height-differences

Qp dependence
=ST(Qp)



Transverse Lineshape
pR

Uncorrelated heights

Far regions of surface
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Uncorrelated Roughness @ Large Distance Gives Bragg:
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Short-Range Correlations Give Diffuse Scattering:



Qp

Bragg

Diffuse

Qz

Qp

scan

Two Component Line Shape:  Bragg + Diffuse

     p
Diffuse
Tp

Bragg
TpT QSQSQS




• Bragg due to laterally uncorrelated disorder at long distances
• Diffuse due to short-range correlations



Layer-by-layer growth

0.5 ML

1.0 ML

1.5 ML

2.5 ML

2.0 ML

0 ML xQ

3 ML

D

D
2

xQ

• Specular Bragg Rod: intensity changes with roughness
• Strong inter-island correlations seen in the diffuse

Adv. X-ray Anal. 43, 169 (2000)



Attenuation of the Bragg Rod and Surface Roughness

222 zz QhiQ ee 
If height fluctuations are Gaussian:  σ is rms roughness

But crystal heights are discrete for a rough crystal:
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• Binomial distribution (limits to a Gaussian for large roughness)
• Preserves translational symmetry in the roughness

h

Physica B 221, 65 (1996)



No roughness
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• Sharper interface (real space) gives broader scattering

(continuous)
(discrete roughness)

• Gaussian roughness does not give translational symmetry

z

Real space



Transversely-integrated scattering shows no effect of roughness:
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∆Qp
1/∆Qp

∆Qp

Bragg is narrow: 
it samples laterally uncorrelated roughness at long distances

1/∆QpBragg

Diffuse

Qp

real spacereciprocal space

(for 1 interface)



In practice, at every Qz the diffuse must be subtracted from
the total intensity to get the Bragg rod intensity: 

Qp

Bragg

Diffuse

Bragg rod intensity

Itotal

Idiffuse



What do we expect from a 
Thin Film?

1st let’s recall Young’s slit interference…



N-Slit Interference and Diffraction Gratings

Principle maxima

d sin  = m

Recall…



Principle maxima
d sin  = m

(N-2 subsidiary maxima)Double Slit
(no subsidiary maxima)

1 subsidiary maximum

2 subsidiary maximum

N large:
• Weak subsidiary maxima
• Sharp principle maxima

width ~ 1/N

Principle maxima always in 
the same place for N slits:
But they narrow: width ~1/N



 

“5-slit” interference of x-rays from 5 layers of atoms

Miceli et al., Appl. Phys. Lett. 62, 2060 (1992)



Real Space
Qz

Qx

Reciprocal Space
Thin Films

substrate

Specular rods overlap

Non-specular rods:
No overlap (incommensurate)



Qz=2πL/c

Si

Sensitive to Ag-Si distance

0.3 ML Ag
in 7x7 wetting layer

Specular Reflectivity:  0.3ML Ag/Si(111)7x7

Ag/Si(111)7x7

Yiyao Chen et al.



0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

p2 p3 p4 p5

T=300K

Mainly 3-layer islands

Θ =0.9ML
2ML above wetting layer

Wetting layer

3-layer islands

Specular Reflectivity:  0.9ML Ag/Si(111)7x7

Qz=2πL/c

Ag/Si(111)7x7
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Si Si
?

FCC Ag islands on
a Ag 7x7 wetting layer?

Ag7x7 wetting layer

FCC Ag islands all the way 
to the substrate?

Specular reflectivity cannot easily 
distinguish between these two cases:

Reflectivity = 3 layers
FCC CTR  = 2 layers

Reflectivity = 3 layers
FCC CTR  = 3 layers



Ag truncation rodSpecular Reflectivity

Only probes FCC AgProbes Si substrate, Ag 
wetting layer and Ag island

Ag (1 1) rodSpecular Reflectivity

Specular reflectivity and rod give same thickness:
Island is FCC Ag all the way to the substrate

Islands remove the wetting layer!

Yiyao Chen et al.



Quantum-Size-Effects:  
Pb Nanocyrstals on Si(111)7x7

Discoveries: 
• anomalously (104) fast kinetics
• Non-classical coarsening
• Unusual behavior:

fast growth => most stable 
structures

Si(111) substrate

Disordered
Pb wetting layer

Quantum Mechanics Influences Nanocrystal Growth

C. A. Jeffrey et al., PRL 96, 106105 (2006)

Height Selection:  “Magic” crystal heights



physchem.ox.ac.uk 
F. K. Schulte, Surf. Sci. 55, 427 (1976)
P. J. Feibelman, PRB 27, 1991 (1983)

Si

Pb

Electrons in a “box”

metal

insulator

Electrons are confined to the metal

Electrons will Exhibit Discrete 
Quantum Mechanical Energies



Coarsening

Rain Drops On 
Your Winshield

laist.com 
greeneurope.org 



X-Rays Incident

Qx

In
te

ns
ity



Transverse Scan: In-plane Info.

CCD Image

L

Surface Chamber 
Advanced Photon Source

Pb Source

Pb(111)
L
 2



Mean island separation, <L>:

2
1
L

n 
Island Density:

Experiment:
• Deposit Pb (1.2 to 2 ml) at 208K
• Measure the island density vs time

(flux off)
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High Initial Density

Low Initial Density
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Long time: independent 
of initial conditions

      tntn 0

Relaxation time depends
only on the initial density



…does not conform to the classical picture!

1.2 ML of Pb at 208K
at various flux rates

• Island densities do not approach each
other at long times:  

QSE  Non-Oswald
Breakdown of Classical Coarsening

• Time constant ~ 1/Flux
Strong flux dependence! 
Unexpected!
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C. A. Jeffrey et al., PRL 96, 106105 (2006)

• Anomalously fast relaxation
~1000x faster than expected!
allows equilibrium!



0.01 1 100

Reciprocal Space is Superb for Obtaining 
Good Statistics of Distributions

Equivalent ML Time = t*F

0.03 ml/min
0.14
0.28
0.56
1.5

Flux



Summary
Materials research problems require 

information on a broad range of length 
scales, from atomic to mesoscale

 Scattering from surfaces involves many 
different types of measurements:
 Reflectivity, Rods, Grazing Incidence 

Diffraction, Diffuse Scattering

Unique ability of x-rays:  surface and 
subsurface structure simultaneously 


