		X-ray D	etectio	n	
		Brightness	Mean Free Path	Absorption Length	Spatial Resolution
		/cm ² /sr/eV	nm	nm	nm
	n	1014	10 ⁷	10 ⁸	106
ק נ	Y	10 ²⁶	10 ³	105	10 ¹
5 5	e-	10 ²⁹	10 ¹	10 ³	0.05
		ay scatte utron sca lectron n	ering (pr attering nicrosco intera	obe elect (probe nu opy (focus actions)	ronic states) Iclear states) s, Coulomb
				Lawrence Be	Peter Denes erkeley National Laboratory
CERKELEY LAB	P. Dene	es ጳ National School on Neutro	n and X-ray Scattering 🛠 Arg	onne August 2012	

P. Denes * National School on Neutron and X-ray Scattering * Argonne August 2012

MATERIAL	DENSITY	EMISSION MAXIMUM	DECAY	REFRACTIVE	CONVERSION	HYGRO-
	[g/cm"]	[nm]	CONSTANT (I)	INDEX (2)	EFFICIENCE (5)	scoric
Nal(Tl)	3.67	415	0.23 ms	1.85	100	yes
CsI(T1)	4.51	550	0.6/3.4 ms	1.79	45	no
CsI(Na)	4.51	420	0.63 ms	1.84	85	slightly
CsI (undoped)	4.51	315	16 ns	1.95	4 - 6	no
CaF2 (Eu)	3.18	435	0.84 ms	1.47	50	no
⁶ LiI (Eu)	4.08	470	1.4 ms	1.96	35	yes
⁶ Li - glass	2.6	390 - 430	60 ns	1.56	4 - 6	no
CsF	4.64	390	3 - 5 ns	1.48	5 - 7	yes
BaF2	4.88	315	0.63 ms	1.50	16	no
YAP (Ce)	5.55	350	27 ns	1.94	35 - 40	no
GSO (Ce)	6.71	440	30 - 60 ns	1.85	20 - 25	no
BGO	7.13	480	0.3 ms	2.15	15 - 20	no
CdWO ₄	7.90	470 / 540	20 / 5 ms	2.3	25 - 30	no
Plastics	1.03	375 - 600	1 - 3 ms	1.58	25 - 30	no

P. Denes * National School on Neutron and X-ray Scattering * Argonne August 2012

BERKELEY LAB

BERKELEY LAB

Energy Needed for Detection						
"Sensor"	$\eta = E per$ secondary quanta	Mechanism				
Gas	30 eV	e⁻/ion pairs				
Scintillator	10 – 1000 eV	optical excitation				
Semiconductor	1 – 5 eV	e⁻/hole pairs				
Superconductor	~meV	breakup of Cooper pairs				
Superconducting calorimeters	~meV	phonons				
	P. Denes 🕈 National School on Neutron and X-ray Scattering 🛠 Argo	nne August 2012 Stolen from H				

Not so Simple

- 1. Fluctuations in number of photons "absorbed"
- 2. Fluctuations in number of secondary particles created
- 3. (Fluctuations in number of tertiary particles created)
- 4. Electronic noise
- Energy resolution: 2, 3 and 4
- Quantum efficiency: 1 (but maybe 2, 3 and 4)

<u> </u>
BERKELEY LAB

P. Denes * National School on Neutron and X-ray Scattering * Argonne August 2012

Summary (2) Like parking spaces, "no lack of detectors, only lack of imagination" Microelectronics-enabled detector development in particle physics starting to spill over into synchrotron radiation research Semiconductor detectors! DAQ, computing and processing! Si excellent for E < 10 keV (and benefits from commercial)</p> processing) Other developments, e.g. involving avalanche multiplication, that there was no time to discuss For higher energies, have candidate materials (GaAs, Ge, CdTe, ...) but need R&D Future will be detectors designed for experiments (not experiments designed for detectors) σσσσσσά

Questions?

Grateful acknowledgements to:

Grateful acknowledgements to: ALS Experimental Systems Group ALS Scientific Support Group APS Beamline Technical Support Group Electronic Systems Group Integrated Circuit Design Group MicroSystems Laboratory National Center for Electron Microscopy Physics Division Engineering Division **Engineering Division**

