Engineering Diffraction 102 : Understanding Polycrystalline Deformation

Don Brown

dbrown@lanl.gov

Why Perform Measurements of Internal Stress and Texture During Deformation

• Macroscopic flowcurve tells us about mechanical properties.

- Yield strength, hardening...
- Nothing about what is happening microscopically.

• The evolution of internal stresses and texture are signatures of the micromechanical deformation modes.

SMARTS is a 5 Million Dollar Bathroom Scale

• We measure the spacing between atoms very precisely: ~1 part in 10⁵.

Calculate lattice strains (elastic) from change in atomic spacing.

$$\varepsilon = \frac{d_{hkl} - d_0}{d}$$

• This is the elastic strain only !!! We cannot directly measure plastic strain.

• It is important to note that the lattice strain is necessarily proportional to the stress on the grain, not the macroscopic stress.

Los Alamos

• Two types of measurement:

- You know the stiffness tensor and want to determine unknown stress
- You control the stresses and you want to learn about the springs (bonds)

Reminder of the SMARTS Geometry

Diffraction Separates Response of Grain Orientations

• Grains with plane normals parallel to the diffraction vector defined by the instrument geometry diffract into a detector.

• Each grain orientation (hkl), or phase, contributes to a distinct peak, given by the interplanar spacing.

• We explicitly make the assumption that a family of grains can be used to represent the macroscopic stress field.

Los Alamos

Consider the case of a bi-metallic sample : Elastic loading in series

*(rubber band demo)

- Stress on each is the same, but strain varies.
- Lattice and macroscopic strain are equivalent.

Consider the case of a bi-metallic sample : Elastic loading in parallel

• We can only measure Applied Stress macroscopically.

Consider the case of a bi-metallic sample : plastic loading in parallel.

- Characteristic Y shape associated with plastic deformation.

- Deviatiation of lattice strain from linear is the "Intergranular Strain".

Lets Consider How a Composite Responds to Deformation

• Microstructure represents loading 2 constituents in parallel, total strains must be equal.

 $\mathcal{E}_T = \mathcal{E}_e + \mathcal{E}_p$

• In elastic regime, lattice strains are equivalent.

Once plasticity begins in one phase, the elastic lattice strains are no longer constrained to each other.
Los Alamos

Understand Anisotropy in Terms of a Composite

- This is how a composite is designed to work.
- With release of the macroscopic stress, there is a residual stress in each constituent.
 - The phases stresses are not representative of the macroscopic stress state.

Los Alamos

• However, a weighted average would be representative.

Polycrystalline Samples : "The Mother of All Composites".

Los Alamos

• Above yield point, elastic strains in (103) orientation saturate.

- Grains with (103) parallel to the load direction are yielding.
- Load is redistributed to the (110) orientations.
- With release of the macroscopic stress, there is a residual intergranular stress in each grain set.
 - The (hkl) stresses are not representative of the macroscopic stress state.
 - Moreover, the size of the intergranular stress changes with plastic strain

Lets Look at the Data in a Different Way.

Los Alamos

- There is an heterogeneous distribution of stresses.
- Grains with (110) parallel to applied stress support more of the load once plasticity begins.

What Can We Infer About Deformation Modes ?

slip

slip

slip

Plastic Deformation Mechanisms Have Distinct Diffraction Signatures

• Slip : little if any change in peak intensity, broadening proportional to dislocation density.

Plastic Deformation of Uranium

 Deviation of lattice strains from linearity indicates that plastic deformation has initiated.

Los Alamos

• Lack of change of peak intensity suggests it is slip dominated.

Plastic Deformation Mechanisms Have Distinct Diffraction Signatures

- Slip : little if any change in peak intensity, broadening proportional to dislocation density.
- Deformation twinning : large changes in single peak diffraction intensity.

Neutron Diffraction Indicates Twinning Reorientation During Deformation of U6Nb

•Deviation of lattice strains from linearity indicates that plastic deformation has initiated.

Los Alamos

• Significant change of peak intensity suggests it is twinning dominated,

TEM Provides Details of Deformation of U6Nb.

- As-Quenched
 - U6Nb Heavily Twinned.
 - (-130) Twin Boundaries
 - (021) Lath Boundaries.
 - Post 4% Tensile Strain.
 - Large Single Orientation Areas.
 - (-172) Fat Lenticular Twins.
 - (-130) Fine Lamellar Twins.
 - Growth and Assimilation of Preferred Variant.
- Nucleation of Deformation Twins.

Texture Development During Deformation of U6Nb Indicates Deformation Twinning

Compression

Tension

Plastic Deformation Mechanisms Have Distinct Diffraction Signatures

- Slip : little if any change in peak intensity, broadening proportional to dislocation density.
- Deformation twinning : large changes in single peak diffraction intensity.
- Phase transformation : appearance of new crystal symmetry.

New Peaks In U7Nb Indicate Stress Induced Phase Transformation.

Deformation Twinning is a Relaxation Mechanism for Parent Grains

• Deviation of lattice strains from linearity indicates that plastic deformation has initiated.

Los Alamos

Addition of new peaks suggests stress induced phase transformation.

Example 2 : Deformation of Hexagonal Metals

- Atypical deformation in hexagonal metals drives our interest
 - Example : Tension / compression asymmetry in magnesium
 - Qualitatively different mechanical response

Deformation of Low Symmetry Materials

- Face Center Cubic materials : Deform on {111}<110> slip system
 - 12 equivalent modes.
 - Can manipulate mechanical properties with texture.
 - e.g. strength, ductility, hardening...

• Hexagonal and lower symmetry materials often lack the necessary slip systems for arbitrary deformation by slip.

• Can manipulate deformation mechanisms by choice of crystallographic texture.

• e.g. slip, twinning, fracture...

Deformation Twinning in Magnesium

- Twin extends grain along the original (parent) c-axis.
 - Twinning is polar!!!
 - Called extension or tension twin.
- Active when crystal pull along c-axis, or compresses transverse to c-axis.

Los Alamos

• Source of the strength difference in tension vs. compression.

SMARTS Geometry Ideal For Study of Twinning in Mg

Evolution of Texture With Deformation

Extrusion Direction

Neutrons Measure Internal Stress Development in Twins

- Early non-linearity of the 10.1 reflection
 - Reflects basal slip in grains with (10.1) poles parallel to straining direction.
- Twins appear under tensile intergranular stress relative to aggregate.
- After arrival they rapidly accumulate strain.
 - Hard orientation.
- Parent grains relax when twinning.

Compression Completely Reorients Microstructure

Starting texture : optimized for twinning in compression, will not twin in tension

Texture after 5% deformation, almost exhausted ability to twin in compression, but now aligned optimally for twinning in tension.

Development of Diffraction Pattern With Reverse Loading : Tension First

Development of Diffraction Pattern With Reverse Loading : Comp First

Development of Flow Curve With Cycling

- Broke at ~470 cycles.
- Last recorded cycle has significantly more hardening.
- Hysteresis loop has closed some.

Flow Stress Increases With Cycling

Twinning is Reversible During Cyclic Deformation of Extruded Mg

- (100) grains fully recover throughout measurement.
- (110) and (210) grains do not recover fully on cycling.
- Max resolved shear stress on the (100) grains.

Development of Texture With Cycling

Strain Broadening Increases With Cycling

• Peak broadening may be due to defects or dislocations which hinder motion of twin boundaries at higher cycles.

•Peak broadening is not unique to any one grain orientation.

Los Alamos

- Diffraction is an effective technique to monitor texture and internal stresses in structural material
- White beam neutron diffraction may be used to monitor evolution of microstructure *in-situ* during deformation or processing.
- Especially sensitive to twinning (or detwinning) and phase transformation.
- Monitor internal stresses in multiple grain orientations
 - Determine residual stress in anisotropic metals
- Monitor texture in-situ during deformation.
- Watch deformation twinning in magnesium
 - May be reversed by subsequent tension : detwinning.
 - May be cycled several hundred times.

