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Why Perform Measurements of Internal Stress and Texture During Deformation
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* Macroscopic flowcurve tells us about mechanical properties.
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— Nothing about what is happening microscopically.

* The evolution of internal stresses and texture are signatures of the micro-

mechanical deformation modes.
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SMARTS is a 5 Million Dollar Bathroom Scale
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* We measure the spacing between atoms very precisely: ~1 part in 103,

* Calculate lattice strains (elastic) from change in atomic spacing.
d hkl d 0
d

+ This is the elastic strain only !!! We cannot directly measure plastic strain.

E =

e It is important to note that the lattice strain is necessarily proportional to the stress on the
grain, not the macroscopic stress.

* Two types of measurement:
* You know the stiffness tensor and want to determine unknown stress

* You control the stresses and you want to learn about the springs (bonds)
» Los Alamos



Reminder of the SMARTS Geometry

Incident Neutron Beam
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Diffraction Separates Response of Grain Orientations
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* Grains with plane normals parallel to the diffraction vector defined by the instrument
geometry diffract into a detector.

« Each grain orientation (hkl), or phase, contributes to a distinct peak, given by the
interplanar spacing.

* We explicitly make the assumption that a family of grains can be used to represent the
macroscopic stress field.
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Consider the case of a bi-metallic sample : Elastic loading in series

*(rubber band demo)

Applied
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Macroscopic or Lattice Strain

e Stress on each is the same, but strain varies.
 Lattice and macroscopic strain are equivalent.

» Los Alamos



Consider the case of a bi-metallic sample : Elastic loading in parallel
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* .. Actual Stress on each “grain” varies.

* We can only measure Applied Stress macroscopically.
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Consider the case of a bi-metallic sample : plastic loading in parallel.
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* Plasticity : Macrocopic strain and lattice strain are no longer =

equivalent. %,
« Once one component yields, the stress on that component is fixed 2 10 l
while macroscopic strain increases (perfect plasticity). %
* Similarly, lattice strain is also fixed. 50 1

« Again, we can only measure Applied Stress vs Lattice Strain.
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— Characteristic Y shape associated with plastic deformation.

attice Strain

— Deviatiation of lattice strain from linear is the “Intergranular

Strain”. > Los Alamos



Lets Consider How a Composite Responds to Deformation

Kanthal Matrix

Tungsten Fibers

Incident Neutron Beam
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* Microstructure represents loading 2 constituents in parallel, total strains must be
equal.

Er=&,1¢€,
* In elastic regime, lattice strains are equivalent.

* Once plasticity begins in one phase, the elastic lattice strains are no lof¥er
constrained to each other. s Los Alamos



Understand Anisotropy in Terms of a Composite

Kanthal with 10% Tungsten fibers
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* In elastic region, the strains are the same.

* Above yield point, elastic strains in Kanthal saturate.
u 1
* It is yielding. -0.1 0 0.1 02 0.3 0.4

* Load is redistributed to the Tungsten fiber. Lattice strain [%0]

* This is how a composite is designed to work.
* With release of the macroscopic stress, there is a residual stress in each constituent.
* The phases stresses are not representative of the macroscopic stress state.

* However, a weighted average would be representative.

» Los Alamos




Polycrystalline Samples : “The Mother of All Composites™.
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* Above yield point, elastic strains in (103) orientation saturate.
* Grains with (103) parallel to the load direction are yielding.
* Load is redistributed to the (110) orientations.

* With release of the macroscopic stress, there is a residual intergranular stress in each grain set.
* The (hkl) stresses are not representative of the macroscopic stress state.

* Moreover, the size of the intergranular stress changes with plastic strain

» Los Alamos



Lets Look at the Data in a Different Way.
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* There is an heterogeneous distribution of stresses.

* Grains with (110) parallel to applied stress support more of the load once

plasticity begins.
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What Can We Infer About Deformation Modes ?
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Basal slip is activated first.

Pyramidal slip (or some mode that relaxes the c-axis)
1ust activate.

(ooon)112¢  (1010)11:  (uz2)u23)

Basal Prismat Pyramidal
slip slip slip
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lastic Deformation Mechanisms Have Distinct Diffraction Signatures

Wil

—

* Slip : little if any change in peak intensity, broadening proportional to dislocation
density.
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Plastic Deformation of Uranium
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* Deviation of lattice strains from linearity indicates that plastic deformation has
initiated.

» Lack of change of peak intensity suggests it is slip dominated.

> Los Alamos



lastic Deformation Mechanisms Have Distinct Diffraction Signatures

Slip

TW:nning

—

* Slip : little if any change in peak intensity, broadening proportional to dislocation
density.

* Deformation twinning : large changes in single peak diffraction intensity.

> Los Alamos



Neutron Diffraction Indicates Twinning Reorientation During Deformation of U6Nb

Applied Load —10.0000
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Deformation Twinning is a Relaxation Mechanism for Twinning Grains
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*Deviation of lattice strains from linearity indicates that plastic deformation has
initiated.

« Significant change of peak intensity suggests it is twinning dominated.

> Los Alamos



TEM Provides Details of Deformation of U6NDb.

. As-Quenched 4_% Tensile Strain
* As-Quenched '
— U6NDb Heavily Twinned.

— (-130) Twin Boundaries

1 pm

—(021) Lath Boundaries.

7 * Post 4% Tensile Strain.

— Large Single Orientation Areas.
— (-172) Fat Lenticular Twins.

— (-130) Fine Lamellar Twins. 0.32 pm

» Growth and Assimilation of Preferred g
' Variant.

e Nucleation of Deformation Twins.

» Los Alamos



Texture Development During Deformation of U6NDb Indicates Deformation Twinning
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Compression Tension
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lastic Deformation Mechanisms Have Distinct Diffraction Signatures

Slip

TW:nning

Phase Transformation

Iy

« Slip : little if any change in peak intensity, broadening proportional to dislocation
density.

—

* Deformation twinning : large changes in single peak diffraction intensity.

* Phase transformation : appearance of new crystal symmetry.
» Los Alamos



| New Peaks In U7NDb Indicate Stress Induced Phase Transformation.
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Deformation Twinning is a Relaxation Mechanism for Parent Grains
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* Deviation of lattice strains from linearity indicates that plastic deformation
has initiated.

» Addition of new peaks suggests stress induced phase transformation.
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In-Situ Neutron Diffraction Monitors Volume Fraction and Texture During Deformation
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Example 2 : Deformation of Hexagonal Metals
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 Atypical deformation in hexagonal metals drives our interest
— Example : Tension / compression asymmetry in magnesium

— Qualitatively different mechanical response

» Los Alamos



Deformation of Low Symmetry Materials

* Face Center Cubic materials : Deform on {111}<110> slip system
* 12 equivalent modes. %

|/

* Can manipulate mechanical properties with texture. j , %

* e.g. strength, ductility, hardening...

* Hexagonal and lower symmetry materials often lack the necessary slip systems for
arbitrary deformation by slip.

* Can manipulate deformation mechanisms by choice of crystallographic
texture.

* e.g. slip, twinning, fracture...

(ooo1y1120)  (0Tof1120)  (122fu23)  for2)ieny (0T1)10T2)
Basal Prismatic Pyramidal Tensile Compressive
slip slip slip twin twin
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Deformation Twinning in Magnesium

<To11>
\\
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® ° ° | l >
Twinning on (10.2) plane 850
— results in a : ¢ switching \L
* c/a <3

* Twin extends grain along the original (parent) c-axis.
— Twinning is polar!!!
— Called extension or tension twin.
* Active when crystal pull along c-axis, or compresses transverse to c-axis.

* Source of the strength difference in tension vs. compression. £
» Los Alamos



SMARTS Geometry Ideal For Study of Twinning in Mg

Compression of Extruded Magnesium, Longitudinal
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Evolution of Texture With Deformation
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Twin Volume Fraction Determined By Selectively Integrating the ODF
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Neutrons Measure Internal Stress Development in Twins

Macroscopic stress-strain curves

Measured, Longitudinal
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Early non-linearity of the 10.1 reflection

— Reflects basal slip in grains with (10.1) poles parallel to straining
direction.

Twins appear under tensile intergranular stress relative to aggregate.
After arrival they rapidly accumulate strain.
— Hard orientation.
Parent grains relax when twinning.
> Los Alamos



Compression Completely Reorients Microstructure

Starting texture : optimized for twinning in
compression, will not twin in tension

I| |I I| |I I|
\
\ TR { I

What Happens If We Reverse Deformation Direction ???
\

Texture after 5% deformation, almost exhausted ability to twin in
compression, but now aligned optimally for twinning in tension.

» Los Alamos



Development of Diffraction Pattern With Reverse Loading : Tension First
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Development of Diffraction Pattern With Reverse Loading : Comp First
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Development of Flow Curve With Cycling
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* Broke at ~470 cycles.
e Last recorded cycle has significantly more hardening.

» Hysteresis loop has closed some.
» Los Alamos



Flow Stress Increases With Cycling
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winning is Reversible During Cyclic Deformation of Extruded Mg
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* (100) grains fully recover throughout measurement.

* (110) and (210) grains do not recover fully on cycling.

« Max resolved shear stress on the (100) grains.
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Development of Texture With Cycling
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Strain Broadening Increases With Cycling
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* Peak broadening may be due to defects or dislocations which
hinder motion of twin boundaries at higher cycles.

*Peak broadening is not unique to any one grain orientation.
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Summary

 Diffraction is an effective technique to monitor texture and internal stresses in
structural material

* White beam neutron diffraction may be used to monitor evolution of
microstructure in-situ during deformation or processing.

 Especially sensitive to twinning (or detwinning) and phase transformation.
* Monitor internal stresses in multiple grain orientations
* Determine residual stress in anisotropic metals
* Monitor texture in-situ during deformation.
* Watch deformation twinning in magnesium
— May be reversed by subsequent tension : detwinning.

— May be cycled several hundred times.

+ Los Alamos



