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Why Perform Measurements of Internal Stress and Texture During Deformation 

• The evolution of internal stresses and texture are signatures of the micro-

mechanical deformation modes. 
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Macroscopic Strain ()

• Macroscopic flowcurve tells us about mechanical properties. 

– Yield strength, hardening… 

– Nothing about what is happening microscopically. 



dhkl 

SMARTS is a 5 Million Dollar Bathroom Scale 

• We measure the spacing between atoms very precisely: ~1 part in 105. 

• Calculate lattice strains (elastic) from change in atomic spacing. 

 

• This is the elastic strain only !!! We cannot directly measure plastic strain. 

• It is important to note that the lattice strain is necessarily proportional to the stress on the 

grain, not the macroscopic stress. 

• Two types of measurement:  

• You know the stiffness tensor and want to determine unknown stress 

• You control the stresses and you want to learn about the springs (bonds) 
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 Reminder of the SMARTS Geometry 
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Diffraction Separates Response of Grain Orientations 

Polycrystalline Aggregate  Stainless Steel 

(002) 

(111) 

• Grains with plane normals parallel to the diffraction vector defined by the instrument 

geometry diffract into a detector. 

• Each grain orientation (hkl), or phase, contributes to a distinct peak, given by the 

interplanar spacing.  

• We explicitly make the assumption that a family of grains can be used to represent the 

macroscopic stress field.  

Q 



Consider the case of a bi-metallic sample : Elastic loading in series 

E=40GPa 

E=50GPa 

• Stress on each is the same, but strain varies. 

• Lattice and macroscopic strain are equivalent. 
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*(rubber band demo) 



Consider the case of a bi-metallic sample : Elastic loading in parallel 

E=40GPa 

E=50GPa 

• Stain on each is constant. 

• But Stress=Modulus*Strain 

•  Actual Stress on each “grain” varies. 

• We can only measure Applied Stress macroscopically. 
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Consider the case of a bi-metallic sample : plastic loading in parallel. 

• Plasticity : Macrocopic strain and lattice strain are no longer 

equivalent. 

• Once one component yields, the stress on that component is fixed 

while macroscopic strain increases (perfect plasticity). 

• Similarly, lattice strain is also fixed. 

• Again, we can only measure Applied Stress vs Lattice Strain. 

– Characteristic Y shape associated with plastic deformation. 

– Deviatiation of lattice strain from  linear is the “Intergranular 

Strain”. 
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Lets Consider How a Composite Responds to Deformation 
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Tungsten Fibers 
Kanthal Matrix 

• Microstructure represents loading 2 constituents in parallel, total strains must be 

equal. 

 

• In elastic regime, lattice strains are equivalent. 

• Once plasticity begins in one phase, the elastic lattice strains are no longer 

constrained to each other. 
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Understand Anisotropy in Terms of a Composite 

Tungsten Fibers 
Kanthal Matrix 

• In elastic region, the strains are the same. 

• Above yield point, elastic strains in Kanthal saturate. 

• It is yielding. 

• Load is redistributed to the Tungsten fiber. 

• This is how a composite is designed to work. 

• With release of the macroscopic stress, there is a residual stress in each constituent.  

• The phases stresses are not representative of the macroscopic stress state. 

• However, a weighted average would be representative.   



Polycrystalline Samples :  “The Mother of All Composites”. 

Polycrystalline Aggregate 
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• Above yield point, elastic strains in (103) orientation saturate. 

• Grains with (103) parallel to the load direction are yielding. 

• Load is redistributed to the (110) orientations. 

• With release of the macroscopic stress, there is a residual intergranular stress in each grain set.  

• The (hkl) stresses are not representative of the macroscopic stress state. 

• Moreover, the size of the intergranular stress changes with plastic strain 
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Lets Look at the Data in a Different Way. 

• There is an heterogeneous distribution of stresses. 

• Grains with (110) parallel to applied stress support more of the load once 

plasticity begins. 



What Can We Infer About Deformation Modes ? 

• Basal slip is activated first. 

• Pyramidal slip (or some mode that relaxes the c-axis) 

must activate. 
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• Slip : little if any change in peak intensity, broadening proportional to dislocation 

density. 

Plastic Deformation Mechanisms Have Distinct Diffraction Signatures 

SlipSlip
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Plastic Deformation of Uranium 
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• Deviation of lattice strains from linearity indicates that plastic deformation has 

initiated. 

• Lack of change of peak intensity suggests it is slip dominated. 



• Slip : little if any change in peak intensity, broadening proportional to dislocation 

density.  

• Deformation twinning :  large changes in single peak diffraction intensity. 

Plastic Deformation Mechanisms Have Distinct Diffraction Signatures 

SlipSlip

TwinningTwinning



Neutron Diffraction Indicates Twinning Reorientation During Deformation of U6Nb  



Deformation Twinning is a Relaxation Mechanism for Twinning Grains 
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•Deviation of lattice strains from linearity indicates that plastic deformation has 

initiated. 

• Significant change of peak intensity suggests it is twinning dominated. 



TEM Provides Details of Deformation of U6Nb. 

As-Quenched 

• As-Quenched  

– U6Nb Heavily Twinned. 

– (-130) Twin Boundaries 

– (021) Lath Boundaries. 

• Post 4% Tensile Strain. 

– Large Single Orientation Areas. 

– (-172) Fat Lenticular Twins. 

– (-130) Fine Lamellar Twins. 

• Growth and Assimilation of Preferred 

Variant. 

• Nucleation of Deformation Twins. 
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Texture Development During Deformation of U6Nb Indicates Deformation Twinning  

(111)

(-110)

(-130)
(130)

(110)

(010)

(-100) (100)

(-112)
(-111)

(001)

(112)

(-131) (131)

(111)

(-110)

(-130)
(130)

(110)

(010)

(-100) (100)

(-112)
(-111)

(001)

(112)

(-131) (131)

Compression Tension 



• Slip : little if any change in peak intensity, broadening proportional to dislocation 

density.  

• Deformation twinning :  large changes in single peak diffraction intensity. 

• Phase transformation : appearance of new crystal symmetry. 

Plastic Deformation Mechanisms Have Distinct Diffraction Signatures 

SlipSlip

TwinningTwinning

Phase TransformationPhase Transformation



New Peaks In U7Nb Indicate Stress Induced Phase Transformation. 



Deformation Twinning is a Relaxation Mechanism for Parent Grains 
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• Deviation of lattice strains from linearity indicates that plastic deformation 

has initiated. 

• Addition of new peaks suggests stress induced phase transformation. 
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In-Situ Neutron Diffraction Monitors Volume Fraction and Texture During Deformation 



Example 2 : Deformation of Hexagonal Metals 

Load Axis Into Page 

• Atypical deformation in hexagonal metals drives our interest 

– Example : Tension / compression asymmetry in magnesium 

– Qualitatively different mechanical response 
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Deformation of Low Symmetry Materials 

• Face Center Cubic materials : Deform on {111}<110> slip system 

• 12 equivalent modes. 

• Can manipulate mechanical properties with texture.  

• e.g. strength, ductility, hardening... 

• Hexagonal and lower symmetry materials often lack the necessary slip systems for 

arbitrary deformation by slip. 

• Can manipulate deformation mechanisms by choice of crystallographic 

texture. 

• e.g. slip, twinning, fracture… 



Deformation Twinning in Magnesium 

• Twinning on (10.2) plane 

– results in a : c switching 

• c/a < √3 

• Twin extends grain along the original (parent) c-axis. 

– Twinning is polar!!! 

– Called extension or tension twin. 

• Active when crystal pull along c-axis, or compresses transverse to c-axis. 

• Source of the strength difference in tension vs. compression. 

 



SMARTS Geometry Ideal For Study of Twinning in Mg 

Incident Neutron Beam 
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Evolution of Texture With Deformation 

Extrusion Direction 



Twin Volume Fraction Determined By Selectively Integrating the ODF 



Neutrons Measure Internal Stress Development in Twins 

• Early non-linearity of the 10.1 reflection 

– Reflects basal slip in grains with (10.1) poles parallel to straining 

direction. 

• Twins appear under tensile intergranular stress relative to aggregate. 

• After arrival they rapidly accumulate strain. 

– Hard orientation. 

• Parent grains relax when twinning. 

 



Compression Completely Reorients Microstructure 

Starting texture : optimized for twinning in 

compression, will not twin in tension 

Texture after 5% deformation, almost exhausted ability to twin in 

compression, but now aligned optimally for twinning in tension. 
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What Happens If We Reverse Deformation Direction ??? 
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Development of Diffraction Pattern With Reverse Loading : Tension First 
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What Happens If We Reverse Deformation 

Direction Many Times ??? 



Development of Diffraction Pattern With Reverse Loading : Comp First 
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Development of Flow Curve With Cycling 

• Broke at ~470 cycles. 

• Last recorded cycle has significantly more hardening. 

• Hysteresis loop has closed some. 
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Flow Stress Increases With Cycling 
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Twinning is Reversible During Cyclic Deformation of Extruded Mg 

Max Comp. (1%) 

• (100) grains fully recover throughout measurement.  

• (110) and (210) grains do not recover fully on cycling.  

• Max resolved shear stress on the (100) grains. 

 

28940 28960 28980 29000

(10.0)
(11.0)

(21.0)

N
o

rm
al

iz
ed

 P
ri

sm
 P

o
le

 I
n

te
n

si
ty

 (
A

.U
.)

Run Number

251101765131139521

cycle

1.0

0.9

0.8

1.0

0.9

0.8

1.0

0.9

0.8

Max Tens. (1%) 



Development of Texture With Cycling 
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Strain Broadening Increases With Cycling 
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• Peak broadening may be due to defects or dislocations which 

hinder motion of twin boundaries at higher cycles. 

•Peak broadening is not unique to any one grain orientation. 



Summary 

• Diffraction is an effective technique to monitor texture and internal stresses in 

structural material 

• White beam neutron diffraction may be used to monitor evolution of 

microstructure in-situ during deformation or processing. 

• Especially sensitive to twinning (or detwinning) and phase transformation. 

• Monitor internal stresses in multiple grain orientations 

• Determine residual stress in anisotropic metals 

• Monitor texture in-situ during deformation. 

• Watch deformation twinning in magnesium 

– May be reversed by subsequent tension : detwinning. 

– May be cycled several hundred times. 


