

Introduction to Time-Resolved X-ray Scattering

Opportunities to Resolve Structural Dynamics at the Atomic Scale

David M. Tiede Solar Energy Converson Group Chemical Sciences and Engineering Division Argonne National Laboratory, ANL

13th National School on Neutron & X-ray Scattering Advanced Photon Source June 21, 2011

Source: www.electricstuff.co.uk

Source: www.electricstuff.co.uk

Philip Anfinrud (NIH): MbCO SCIENCE (2003) Volume: 300: 1944-1947

Source:

Schotte, Lim, Jackson, Smirnov, Soman, Olson, Phillips, Wulff, and Anfinrud, Science 2003, 300, (5627), 1944-1947.

Philip Anfinrud (NIH): MbCO SCIENCE Volume: 300: 1944-1947

Source:

Schotte, Lim, Jackson, Smirnov, Soman, Olson, Phillips, Wulff, and Anfinrud, Science 2003, 300, (5627), 1944-1947.

Anfinrud's Structural dynamics associated with MbCO photo-deligation

Source:

Schotte, Lim, Jackson, Smirnov, Soman, Olson, Phillips, Wulff, and Anfinrud, Science 2003, 300, (5627), 1944-1947.

Dynamic movies by TR crystallography

Pioneers include: Keith Moffat (U of Chicago), Philip Anfinrud (NIH), Philip Coppens (SUNY Buffalo), , etc.,

Crystallographic approaches tend to have:

- restricted applicability
- questions about influence of crystal packing forces on dynamics
- Interest and need for *in-situ* time-resolved measurements
 - X-ray spectroscopy
 - X-ray scattering

Opportunities to use Solution Scattering for Dynamics Measurements:

Molecular Dynamics Simulation - DNA 5 ps Steps

- WAXS Resolves Individual Time-Jumps (5 ps)
- Implies Time-resolved Opportunity:
 - Synchronized-Ensemble

Zuo, Cui, Mertz, Zhang, Lewis, Tiede, PNAS. (2006)103: 3534

Presentation Outline:

Introduction to time-resolved dynamics

Discussion that follows:

- General Approach,
- Issues for Time-Resolved X-ray (Scattering) Measurements
 - Choosing your light source
- Examples from "pink" beam line sources
- Examples from a monochromatic beam line source
- Examples from FEL
- Concluding remarks

Examples of dynamics spanning ultra-fast time scale:

Examples:

Examples:

Transition state crossingSolar-driven interfacial electron transferHydrogen storage reactionsImage: CoordinateImage: Coordinate

Time-resolved X-ray measurements

Two General Approaches:

Stroboscopic

http://people.rit.edu/andpph/text-digital-stroboscopy.html

- Temporal structure of **probe** pulse (X-ray) determines time resolution

Fast Detector: rapid gating, streaking

Combination of the two

- Gating or streaking of the <u>detector</u> output determines time resolution

Time-resolved X-ray measurements

Measurements Ultimately:

- Detected X-ray Photon Limited
 - Flux (incident x-ray photons/sec) x time frame (sec) = incident photons per frame
 - Scattering experiments typically need 10¹² 10¹⁴ incident x-ray photons

Hence, for TR X-ray Spectroscopy, Scattering

- Need:
 - Bright light sources (3rd, 4th generation: synchrotron, XFEL)
 - Repetitive, cumulative, synchronized measurements
 - Pump-probe approaches (pulsed laser, or, pulsed E/H field)

Advanced X-ray light sources: inherently pulsed beams

- Synchrotron Storage Rings
 - Pulse Width:** > 10⁻¹² (ps)
 - Intensity, X-ray photons per pulse**
 - Repletion Rate**

Source: EPSIM 3D/JF Santarelli, Synchrotron Soleil

Free Electron Lasers (XFEL)

- Pulse Width:** $\sim 10^{-15}$ (fs)
- Intensity, X-ray photons per pulse:**
- Repletion Rate**

** Depends on light source, mode of operation, etc., ...

Source: http://lcls.slac.stanford.edu/images/slac_site.jpg

APS Operating Modes: 3 Available

24-Bunch Mode ("Standard")

Critical Parameters For Pump-Probe Experiments:

How Many Photons per Pulse?

- Determines flux for single snapshot

How Often Do You Get Them?

- Flux for cw experiment

How Many of Them Can You Use?

- Flux for pump-probe experiment

	-	Photons / bunch ^a	X-ray Repetition Rate	Laser Repetition Rate	Total X-ray Flux [photons/s]		Beamline with X-ay capability		
	Source				Mono- chromatic	Poly- chromatic	XAFS	WAXS	GIXAFS / GIWAXS
XFEL	LCLS	3 x 10 ¹⁰	120 Hz	120 Hz	4 x 10 ¹²	1 x 10 ¹⁴	XPP	XPP	?
6-8 GeV high energy	APS	1 x 10 ⁷	6.5 MHz	1 kHz 10 kHz 271 kHz ^b	1 x 10 ¹⁰ 1 x 10 ¹¹ 2 x 10 ¹² b	5 x 10 ¹¹ 5 x 10 ¹² b 1 x 10 ¹⁴ b	11-IDD	9-ID/ 11-IDD	11-IDD
rings	ESRF	1 x 10 ^{7 c}	1 kHz ^d	1 kHz	1 x 10 ¹⁰	5 x 10 ¹¹		ID09	
2-3 GeV storage rings	ALS	1 x 10 ⁴	420 MHz	4 kHz	4 x 10 ⁷		U6.0.1		
	SLS	3 x 10 ³	414 MHz	1 kHz (?)	3 x 10 ⁶ (?)		MicroXAS		
	NSLS II	2 x 10 ³	414 MHz	10 kHz (?)	2 x 10 ⁷ (?)		?	?	?
	^a estimate @10 keV monochromatic beam. ^b MTX upgrade. ^c 16-bunch special operating mode. ^d Storage ring 5.7 MHz , beamline uses 1 kHz X-ray chopper. ? = Could not be verified or unknown.								

representative

	Photons / X-ray		Laser Total X-	Total X-ray Flu	ıx [photons/s]	Beamline with X-ay capability			
	Source	bunch ^a	Repetition	Repetition Rate	Mono- chromatic	Poly- chromatic	XAFS	WAXS	GIXAFS / GIWAXS
XFEL	LCLS	3 x 10 ¹⁰	120 Hz	120 Hz	4 x 10 ¹²	1 x 10 ¹⁴	XPP	XPP	?
6-8 GeV high energy	APS	1 x 10 ⁷	6.5 MHz	1 kHz 10 kHz 271 kHz ^b	1 x 10 ¹⁰ 1 x 10 ¹¹ 2 x 10 ¹² ^b	5 x 10 ¹¹ 5 x 10 ¹² b 1 x 10 ¹⁴ b	11-IDD	9-ID/ 11-IDD	11-IDD
rings	ESRF	1 x 10 ^{7 c}	1 kHz ^d	1 kHz	1 x 10 ¹⁰	5 x 10 ¹¹		ID09	
2-3 GeV storage rings	ALS	1 x 10 ⁴	420 MHz	4 kHz	4 x 10 ⁷		U6.0.1		
	SLS	3 x 10 ³	414 MHz	1 kHz (?)	3 x 10 ⁶ (?)		MicroXAS		
	NSLS II	2 x 10 ³	414 MHz	10 kHz (?)	2 x 10 ⁷ (?)		?	?	?

^aestimate @10 keV monochromatic beam. ^bMTX upgrade. ^c16-bunch special operating mode. ^d Storage ring 5.7 MHz , beamline uses 1 kHz X-ray chopper. ? = Could not be verified or unknown.

Per pulse basis, LCLS: >10³ (6-8 GeV) >10⁶ (2-3 GeV) fold better than synchrotrons

How Many Photons per Pulse?

		Photons /	X-ray Repetition Rate	Laser ition Repetition Rate	Total X-ray Flux [photons/s]		Beamline with X-ay capability		
	Source	bunch ^a			Mono- chromatic	Poly- chromatic	XAFS	WAXS	GIXAFS / GIWAXS
XFEL	LCLS	3 x 10 ¹⁰	120 Hz	120 Hz	4 x 10 ¹²	1 x 10 ¹⁴	XPP	XPP	?
6-8 GeV high energy storage	APS	1 x 10 ⁷	6.5 MHz	1 kHz 10 kHz 271 kHz ^b	1 x 10 ¹⁰ 1 x 10 ¹¹ 2 x 10 ¹² b	5 x 10 ¹¹ 5 x 10 ¹² b 1 x 10 ¹⁴ b	11-IDD	9-ID/ 11-IDD	11-IDD
rings	ESRF	1 x 10 ^{7 c}	1 kHz ^d	1 kHz	1 x 10 ¹⁰	5 x 10 ¹¹		ID09	
2-3 GeV	ALS	1 x 10⁴	420 MHz	4 kHz	4 x 10 ⁷		U6.0.1		
storage rings	SLS	3 x 10 ³	414 MHz	1 kHz (?)	3 x 10 ⁶ (?)		MicroXAS		
	NSLS II	2 x 10 ³	414 MHz	10 kHz (?)	2 x 10 ⁷ (?)		?	?	?
	^a estimate @10 keV monochromatic beam. ^b MTX upgrade. ^c 16-bunch special operating mode. ^d Storage ring 5.7 MHz , beamline uses 1 kHz X-ray chopper. ? = Could not be verified or unknown.								
				How Often D	o You Get The	m?- cw flux			
		Но	w Many Pho	Scattering measurements typically ~ 10 ¹² to 10 ¹⁴ photons					

		Photons /	X-ray	Laser	Total X-ray Flux [photons/s]		Beamline	capability	
	Source	bunch ^a	Repetition	Repetition Rate	Mono- chromatic	Poly- chromatic	XAFS	WAXS	GIXAFS / GIWAXS
XFEL	LCLS	3 x 10 ¹⁰	120 Hz	120 Hz	4 x 10 ¹²	1 x 10 ¹⁴	XPP	XPP	?
6-8 GeV high energy storage	APS	1 x 10 ⁷	6.5 MHz	1 kHz 10 kHz 271 kHz ^b	1 x 10 ¹⁰ 1 x 10 ¹¹ 2 x 10 ¹²	5 x 10 ¹¹ 5 x 10 ¹² b 1 x 10 ¹⁴ b	11-IDD	9-ID/ 11-IDD	11-IDD
rings	ESRF	1 x 10 ^{7 c}	1 kHz ^d	1 kHz	1 x 10 ¹⁰	5 x 10 ¹¹		ID09	
2-3 GeV	ALS	1 x 10 ⁴	420 MHz	4 kHz	4 x 10 ⁷		U6.0.1		
storage rings	SLS	3 x 10 ³	414 MHz	1 kHz (?)	3 x 10 ⁶ (?)		MicroXAS		
ge	NSLS II	2 x 10 ³	414 MHz	10 kHz (?)	2 x 10 ⁷ (?)		?	?	?
	^a estimate @10 keV monochromatic beam. MHz , beamline uses 1 kHz X-ray chopper. ? Compared to LCLS, 6-8 GeV synchrotrons can catch-up by increase: 1) rep rate; 2) poly-chromaticity How Many Can You Use?- Pump-probe flux How Often Do You Get Them?- cw flux								
_	How Many Photons per Pulse?								
						typically	$\sim 10^{12}$ to 1	0 ¹⁴ photo	ns 21

	Photons / X-ray		X-ray	Laser	Total X-ray Flux [photons/s]		Beamline	Beamline with X-ay capability		
	Source	bunch ^a	Repetition	Repetition	Mono- chromatic	Poly- chromatic	XAFS	WAXS	GIXAFS / GIWAXS	
XFEL	LCLS	3 x 10 ¹⁰	120 Hz	120 Hz	4 x 10 ¹²	1 x 10 ¹⁴	XPP	XPP	?	
6-8 GeV high energy storage rings	APS	1 x 10 ⁷	6.5 MHz	1 kHz 10 kHz 271 kHz ^b	1 x 10 ¹⁰ 1 x 10 ¹¹ 2 x 10 ¹² b	5 x 10 ¹¹ 5 x 10 ¹² b 1 x 10 ¹⁴ b	11-IDD	9-ID/ 11-IDD	11-IDD	
	ESRF	1 x 10 ^{7 c}	1 kHz ^d	1 kHz	1 x 10 ¹⁰	5 x 10 ¹¹		ID09		
2-3 GeV storage rings	ALS	1 x 10 ⁴	420 MHz	4 kHz	4 x 10 ⁷		U6.0.1			
	SLS	3 x 10 ³	414 MHz	1 kHz (?)	3 x 10 ⁶ (?)		MicroXAS			
	NSLS II	2 x 10 ³	414 MHz	10 kHz (?)	2 x 10 ⁷ (?)		?	?	?	

- High Energy 6-8 GeV synchrotrons offer opportunities for state-of-the-art time-resolved Xray studies
- Among the 6-8 GeV synchrotrons, APS standard operating modes well-suited for electronic or mechanical gating critical for pump-probe studies.
- 2-3 GeV storage rings do not compete with high-energy storage rings as forefront light sources for pump-probe experiments

Time Domains and Light Sources:

Time domain:

- Within accessible time-range, 6-8 GeV synchrotrons have advantages compared to XFELs
 - higher beam stability
 - 5 keV to 100 keV tunable X-ray energy range
 - Easier user access
- APS well-positioned for time-resolved X-ray studies
 - Only high energy storage ring in western hemisphere
 - Fills critical resources for time-resolved X-ray capabilities

Presentation Outline:

Introduction to time-resolved dynamics

Discussion that follows:

- General Approach and Issues for Time-Resolved X-ray (Scattering) Measurements
 - Choosing your light source

Examples from:

- "pink" beam line sources
- monochromatic beam line source
- XFEL

Concluding remarks

Beamline Diagram for BioCARS APS ID-14

Source: Graber et. al. J. (2011) J. Synchrotron Rad. 18: online

Beamline Diagram for BioCARS APS ID-14

Source: Graber et. al. J. (2011) J. Synchrotron Rad. 18: online

Example Pump-probe Pink Beam Experiment

CHEMPHYSCHEM

ChemPhysChem 2009, 10, 1958-1980

Experimental TRXL Set-up at ID09 ESRF

Kim, Lee, Wulff, Kong, Ihee (2009) ChemPhysChem 10: 1958-1980

Figure 5.

C)

Kong, Lee, Plech, Wulff, Ihee, Koch, Angew. Chem. (2008) 120: 5632–5635; Angew. Chem. Int. Ed. (2008) 47: 5550–5553.

Δ

Time-resolved applications in macromolecular photochemistry:

Example: Photo-deligation in CO-Mb

Figure source:

Figure 1 in Choa, Dashdorj, Schotte, Graber, Henning, and Anfinrud, (2010) PNAS 10: 7281-7286

Time-resolved approach has applications in macromolecular photochemistry:

Example: Photo-deligation in CO-Mb (APS-BioCARS)

Figure source:

Figure 4 *in* Choa, Dashdorj, Schotte, Graber, Henning, and Anfinrud, (2010) PNAS 10: 7281-7286 Also:

Kim, Oang, Kim, Lee, Kim and Ihee (2011) Chem. Commun. 47: 289–291

Time-Resolved X-ray Scattering:

Permitting Dynamics Resolution of Solution-State Processes

Polychromatic "pink" beamlines:

- ID09 European Synchrotron Radiation Facility (ESRF)
- ID-14 BioCARS APS

Monochromatic/multi-chromatic beamlines

11-IDD APS

Combined Pump-Probe X-ray Scattering: Enables Multi-Scale Structure Characterization

TR X-ray Spectroscopy

TR X-ray Scattering

11-IDD (MTX) Beamline Approach/Capabilities:

Pump-probe, Stroboscopic X-ray Spectroscopy and Scattering

- i) Combined time-resolved X-ray spectroscopy (XANES, XAFS, XES) scattering (WAXS)
 - Enables resolution across multiple length scales (0.01 Å to 100 nm)

ii) Tunable monochromatic and polychromatic band-pass X-rays

- Enables opportunities for combined spectroscopy/scattering
- High-resolution PDF analysis
- Anomalous X-ray scattering
- High-flux measurements (multilayer)

iii) Grazing incidence scattering (GISAXS) and fluorescence (GIXFS)

- Interfacial processes
- Heterogeneous catalysis

iv) Both laser light and pulsed electric field excitation capabilities

- Broadens range of energy-converting processes, enables initiation by:
 - Light
 - Interfacial electron transfer
 - E-Fields

 0.3 hr. – 2 hr. data acquisition/time point

Illustrate with a Scientific Case Example: Engineering excited-state structure dynamics for photon energy conversion

Metal-to-ligand-charge-transfer, MLCT, complexes

 Broadly investigated for applications in solar energy conversion, alternative lighting, and photocatalysis

Cu(I) diimide coordination complexes of particular interest

Cu(I)[dimethylphenanthroline]2

$$[Cu^{I}(dmp)_{2}]^{+} \xrightarrow{hv} [Cu^{II}(dmp^{-})(dmp)]^{+}$$

3d¹⁰ 3d⁹

- Abundant 1st row transition metal
- Jahn-Teller distortion drives an excited-state change in coordination number and geometry.
- Opportunities for reaction control by:
 - Structurally gated electron transfer
 - Ligand controlled dynamics

Pioneering example on11-ID-D: Excited-State Pump-Probe X-ray Spectroscopy: Lin

Lin Chen

Science 2001, 292, 262-264.

$$[Cu^{I}(dmp)_{2}]^{+} \xrightarrow{hv} [Cu^{II}(dmp^{-})(dmp)]^{+}$$

3d¹⁰ 3d⁹

LITR-XANES Spectra of [Cu'(dmp)₂]*, t = 200 ps

Annu. Rev. Phys. Chem 2005, 56, 221

Angew. Chem. Int. Ed. 2004, 43, 2886

Pump-probe X-ray spectroscopy track changes in excited-state:

- Oxidation state,
- Coordination geometry,
- Coordination number

Pump-Probe X-ray Spectroscopy Determined Cu^IDMP₂ Excited-State Dynamics Scheme

- TR-XS show excited-state reaction path, kinetics,
 - energies determined by coordination geometry
- Implies converse: ligand geometry control of excitedstate chemistry
 - Biological principle: entatic control

New Opportunities:

- See excited state structure
- Design molecules for excitedstate photochemistry
- Can go beyond 1st coordination shell: X-ray scattering

3. Lockard, J. V.; Kabehie, S.; Zink, J. I.; Smolentsev, G.; Soldatov, A.; Chen, L. X., Influence of Ligand Substitution on Excited State Structural Dynamics in Cu(I) Bisphenanthroline Complexes. J. Phys. Chem. B 2010, 114, (45), 14521-14527.

Lin Chen

^{1.} Chen, L. X.; Shaw, G. B.; Novozhilova, I.; Liu, T.; Jennings, G.; Attenkofer, K.; Meyer, G. J.; Coppens, P., MLCT state structure and dynamics of a copper(I) diimine complex characterized by pump-probe X-ray and laser spectroscopies and DFT calculations. J. Am. Chem. Soc 2003, 125, 7022-7034.

^{2.} Shaw, G. B.; Grant, C. D.; Shirota, H.; Castner, E. W.; Meyer, G. J.; Chen, L. X., Ultrafast structural rearrangements in the MLCT excited state for copper(I) bis-phenanthrolines in solution. J. Am. Chem. Soc 2007, 129, (7), 2147-2160.

First Pump-Probe Scattering on 11-ID-D using Monochromatic X-rays :

Cu(I) diimide excited-state reaction dynamics

 Demonstration feasibility to do pump-probe TR-scattering experiment using monochromatic X-rays at synchrotron light-source
Dilute (6 mM) 1st row transition metal complex

Comparison of model and TR experiment

- MLCT: Cu(II) Ground: Cu(I)
- Instantaneous change small angle consistent with change in coordination in MLCT
- Small angle change tracks changes Cu(II) lifetime
- Non-emissive energy transfer between the molecular excited states and the solvent cause heating effects to grow in at longer times.
- Transient difference pattern differs from ground state models: implies new structures
- Demonstrates opportunity to do combined TR spectroscopy/scattering....., both using monochromatic X-rays
- Opportunity to extend to anomalous TR scattering
- Opportunity to achieve 10- to 50-fold improved intensity with multilayer monochromator (MTX upgrade)

Pump-probe X-ray Scattering with XFEL:

First Publications:

Stanford Linac Coherent Light Source (LCLS)

Femtosecond nanocrystallography at LCLS: Photosystem I crystals

HN Chapman et al. Nature 470, 73-77 (2011) doi:10.1038/nature09750

nature

47

LETTER

Femtosecond X-ray protein nanocrystallography

Henry N. Chapman^{1,2}, Petra Fromme³, Anton Barty¹, Thomas A. White¹, Richard A. Kirian⁴, Andrew Aquila¹, Mark S. Hunter³, Joachim Schulz¹, Daniel P. DePonte¹, Uwe Weierstall⁴, R. Bruce Doak⁴, Filipe R. N. C. Maia⁵, Andrew V. Martin¹, Ilme Schlichting^{6,7}, Lukas Lomb⁷, Nicola Coppola¹, Robert L. Shoeman7, Sascha W. Epp^{6,8}, Robert Hartmann⁹, Daniel Rolles^{6,7}, Artem Rudenko^{6,8}, Lutz Foucar^{6,7}, Nils Kimmel¹⁰, Georg Weidenspointner^{11,10}, Peter Holl⁹, Mengning Liang¹, Miriam Barthelmess¹², Carl Caleman¹, Se'bastien Boutet¹³, Michael J. Bogan¹⁴, Jacek Krzywinski13, Christoph Bostedt¹³, Sas^{*}a Bajt¹², Lars Gumprecht¹, Benedikt Rudek^{6,8}, Benjamin Erk^{6,8}, Carlo Schmidt^{6,8}, Andre Ho mke^{6,8}, Christian Reich⁹, Daniel Pietschner¹⁰, Lothar Stru⁻der^{6,10}, Gu⁻nter Hauser¹⁰, Hubert Gorke¹⁵, Joachim Ullrich^{6,8}, Sven Herrmann¹⁰, Gerhard Schaller¹⁰, Florian Schopper¹⁰, Heike Soltau⁹, Kai-Uwe Ku["]hnel⁸, Marc Messerschmidt¹³, John D. Bozek¹³, Stefan P. Hau-Riege¹⁶, Matthias Frank¹⁶, Christina Y. Hampton¹⁴, Raymond G. Sierra¹⁴, Dmitri Starodub¹⁴, Garth J.Williams¹³, Janos Hajdu⁵, Nicusor Timneanu⁵, M. Marvin Seibert⁵, Jakob Andreasson⁵, Andrea Rocker⁵, Olof Jo[°]nsson⁵, Martin Svenda⁵, Stephan Stern¹, Karol Nass², Robert Andritschke¹⁰, Claus-Dieter Schro⁻ter⁸, Faton Krasnigi^{6,7}, Mario Bott⁷, Kevin E. Schmidt⁴, XiaoyuWang⁴, Ingo Grotjohann³, James M. Holton¹⁷, Thomas R. M. Barends⁷, Richard Neutze¹⁸, Stefano Marchesini¹⁷, Raimund Fromme³, Sebastian Schorb¹⁹, Daniela Rupp¹⁹, Marcus Adolph¹⁹, Tais Gorkhover¹⁹, Inger Andersson²⁰, Helmut Hirsemann¹², Guillaume Potdevin¹2, Heinz Graafsma¹², Bjo["]rn Nilsson¹² & John C. H. Spence⁴

HN Chapman et al. Nature 470, 73-77 (2011)

nature

Femtosecond nanocrystallography at LCLS: Photosystem I

100 fs, 8.5 Å resolution electron density map cw, 8.5 Å resolution, 100K electron density map

HN Chapman et al. Nature 470, 73-77 (2011) doi:10.1038/nature09750

nature

Single LCLS X-ray Pulse, Single Particle Imaging-Obtaining structure without crystals: Mimivirus

MM Seibert et al. Nature 470, 78-81 (2011) doi:10.1038/nature09748

LETTER

nature 470, 78-81 (2011)

Single mimivirus particles intercepted and imaged with an X-ray laser

M. Marvin Seibert^{1*}, Tomas Ekeberg^{1*}, Filipe R. N. C. Maia^{1*}, Martin Svenda1, Jakob Andreasson¹, Olof Jo nsson¹, Dus ko Odic¹, Bianca Iwan¹, Andrea Rocker¹, Daniel Westphal¹, Max Hantke¹, Daniel P. DePonte², Anton Barty², Joachim Schulz², Lars Gumprecht², Nicola Coppola², Andrew Aquila², Mengning Liang², Thomas A. White², Andrew Martin², Carl Caleman^{1,2}, Stephan Stern^{2,3}, Chantal Abergel⁴, Virginie Seltzer⁴, Jean-Michel Claverie⁴, Christoph Bostedt⁵, John D. Bozek⁵, Se bastien Boutet⁵, A. Alan Miahnahri⁵, Marc Messerschmidt⁵, Jacek Krzywinski⁵, Garth Williams⁵, Keith O. Hodgson⁶, Michael J. Bogan⁶, Christina Y. Hampton⁶, Raymond G. Sierra⁶, Dmitri Starodub⁶, Inger Andersson⁷, Sas^{*}a Bajt⁸, Miriam Barthelmess⁸, John C. H. Spence⁹, Petra Fromme¹⁰, Uwe Weierstall⁹, Richard Kirian⁹, Mark Hunter¹⁰, R. Bruce Doak⁹, Stefano Marchesini¹¹, Stefan P. Hau-Riege¹², Matthias Frank¹², Robert L. Shoeman¹³, Lukas Lomb¹³, Sascha W. Epp^{14,15}, Robert Hartmann¹⁶, Daniel Rolles^{13,14}, Artem Rudenko^{14,15}, Carlo Schmidt^{14,15}, Lutz Foucar^{13,14}, Nils Kimmel^{17,18}, Peter Holl¹⁶, Benedikt Rudek^{14,15}, Benjamin Erk^{14,15}, Andre' Ho["]mke^{14,15}, Christian Reich¹⁶, Daniel Pietschner^{17,18}, Georg Weidenspointner^{17,18}, Lothar Stru["]der^{14,17,18,19}, Gu["]nter Hauser^{17,18}, Hubert Gorke²⁰, Joachim Ullrich^{14,15}, Ilme Schlichting^{13,14}, Sven Herrmann^{17,18}, Gerhard Schaller^{17,18}, Florian Schopper^{17,18}, Heike Soltau¹⁶, Kai-Uwe Ku["]hnel¹⁵, Robert Andritschke^{17,18}, Claus-Dieter Schro⁻⁻ter¹⁵, Faton Krasnigi^{13,14}, Mario Bott¹³, Sebastian Schorb²¹, Daniela Rupp²¹, Marcus Adolph²¹, Tais Gorkhover²¹, Helmut Hirsemann⁸, Guillaume Potdevin⁸, Heinz Graafsma⁸, Bjo["]rn Nilsson⁸, Henry N. Chapman^{2,3} & Janos Hajdu¹

Single-shot, coherent diffraction patterns on single virus particles

- 70 fs, 1.8 keV pulse
- 8 x 10¹¹ photons per pulse
- Single particle, single x-ray pulse exposure s
- Structure reconstruction yielded 32-nm resolution
- No measurable damage
- Reconstruction indicates inhomogeneous arrangement of dense material inside the virion.

nature

MM Seibert et al. Nature 470, 78-81 (2011)

XFELs offer new type of X-ray measurement:

- Detection avoiding convolution with damage
- Extreme peak intensity, coherence, ultra-short pulses
- Single particle detection limit

53

Concluding Remarks

Combined Advances in:

- X-ray light sources
 - Pulsed, brilliant, coherent
- Detectors
 - Fast gating, direct X-ray detection, efficient, large area pixel arrays
- Pulsed excitation sources
 - High repetition rate, high intensity, compact

Create new, frontier opportunities to resolve ultrafast dynamics associated with critical physical, chemical, biological phenomena at the atomic level

Thanks,

Questions, comments?

Contacts 11-IDD: Naran Dashdorj: Xiaoyi Zhang: Klaus Attenkofer:

dashdorj@anl.gov xyzhang@anl.gov attenkofer@anl.gov

David Tiede:

tiede@anl.gov

