

MAGNETIC SPECTROSCOPY

Elke Arenholz, Advanced Light Source

- + X ray absorption, XA
- + X ray magnetic circular dichoism, XMCD
- + X ray magnetic linear dichroism, XMLD
- + X ray magnetic microscopy
- + Magnetization Dynamics

C. Boeglin et al., Nature 465, 458 (2011)

XA (arb. units)

E. Arenholz et al., Appl. Phys. Lett. 93, 162506 (2008)

ENERGY

Office of Science

ALS

BERKELEY LAB

 $I_{0} \qquad I_{t} = I_{0} e^{-\mu T}$ Sample

Experiment/Measurement:

Reduction in x ray flux transmitted through a sample.

X-ray absorption:

+ Electrons excited from core shells to unoccupied valence states through the absorption of a photon determined by energy and angular momentum conservation

Simplest model: One electron picture

- + Photon transfers its energy and momentum to core electron
- + Core electron excited into unoccupied electronic state.
- + However: Not directly excited electrons also influenced by electron excitation, i.e. hole in core shell

X-RAY ABSORPTION

Configuration model, e.g. L edge absorption :

- + Atom is excited from ground/initial state configuration, 2p⁶3dⁿ to exited/final state configuration, 2p⁵3dⁿ⁺¹
- + Omission of all full subshells (spherical symmetric)
- Takes into account correlation effects in the ground state as well as in the excited state
- + Leads to multiplet effects/structure

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

X-RAY ABSORPTION

XA provides

- + elemental specificity
- + sensitivity to valence shell properties,
 - i.e. valence state and lattice site symmetry

reere

SURFACE EFFECTS IN (Ga,Mn)As

+ As grown/before etch:

Advanced Light Source

An Office of Science User Facility

- Multiplet structure characteristic of MnO
- + After removal of the surface layer:
 - Multiplet structure is less pronounced
 - Spectrum shifted to 0.5 eV lower photon energy.
- + Comparison with calculated spectra:
 - localized Mn ground state for the untreated sample
 - hybridized ground state after etching.

SENSITIVITY TO SITE SYMMETRY: Ti⁴⁺ L_{3,2}

- + Electric dipole transitions: $d^0 \rightarrow 2p^5 3d^1$
- + Crystal field splitting 10*Dq* acting on 3*d* orbitals:

Octahedral symmetry:

e orbitals towards ligands \rightarrow higher energy t_2 orbitals between ligands \rightarrow lower energy

Tetragonal symmetry:

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

e orbitals $\rightarrow b_2 = d_{xy}$, $e = d_{yz}$, d_{yz} t_2 orbitals $\rightarrow b_1 = d_{x^2-y^2}$, $a_1 = d_{3z^2-r^2}$

X-RAY ABSORPTION – MEASUREMENTS

Electron yield:

- + Absorbed photons create core holes that are filled predominantly by Auger electron emission
- + Auger electrons create low-energy secondary electron cascade through inelastic scattering
- + Emitted electrons ∞ probability of Auger electron creating ∞ absorption probability

SAMPLING DEPTH OF ELECTRON YIELD

+ Electron sample depth: 2nm in Fe, Co, Ni

 \Rightarrow 60% of the electron yield originates form the topmost 2nm

+ X ray absorption length: 500nm before the absorption edge

20nm at the L_3 edge

PHOTON SOURCES AND MONOCHROMATORS

Advanced Light Source

- + Tunable photon source in the soft x ray range, 200-2000eV, i.e. undulator or bend magnet, at synchrotron.
- Beamlines/Monochromators provide photons with well defined characteristics:
 - tunable energy/wavelength
 - fixed polarization: (variable) linear, circular, elliptical, ...

BL6.3.1

ENDSTATIONS

- + Endstations provide well defined sample environments for the interaction with photons:
 - precisely defined experimental geometries
 - sample temperature
 - external magnetic and electric fields

ENDSTATIONS

11

Vector magnet at ALS BL4.0.2

Advanced Light Source An Office of Science User Facility Magnetic fields in arbitrary directions obtained through superposition of fields generated by 4 dipole pairs in octahedral configuration.

ENERGY

Office of Science

azimuthal rotation

BERKELEY LAB

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

3*d* shell

- Magnetic moments in Fe, Co, Ni are well described by the Stoner model: *d*-bands containing up and down spins shifted relative to each other by "exchange splitting"
- + Spin- up and spin-down bands filled according to Fermi statistics.
- Magnetic moment |m| determined the difference in number of electrons in majority and minority bands

$$|\mathbf{m}| = \mu_{\mathsf{B}}(\mathbf{n}_{\mathsf{e}}^{\mathsf{maj}} - \mathbf{n}_{\mathsf{e}}^{\mathsf{min}})$$

J. Stöhr, H.C. Siegmann, Magnetism (Springer) Photoelectrons excited from $2p_{3/2}$, $2p_{1/2}$ to 3d states

First step:

- + Excitation of electron from 2*p* states by absorption of circularly polarized x rays.
- + Note: Dipole operator does not act on the spin and
 - \Rightarrow No spin flips during excitation.
- + Conservation of angular momentum
 - \Rightarrow transfer of angular momentum (±ħ) from photon to electron
- + Spin-orbit coupling: Angular momentum of photon transferred

in part to electron spin

 \Rightarrow Excited photoelectrons are spin polarized

Second step:

+ Unequal spin-up and spin-down populations determines spin or orbital momentum of possible excitations

TWO-STEP MODEL OF XMCD

Magnitude of the dichroism effect depends on

- + degree of circular photon polarization, *P*_{circ}
- + angle θ between photon angular momentum, L_{ph} and magnetic moment, *m*
- + expectation value of 3d
 magnetic moment

 $I_{XMCD} \propto P_{circ} \langle m \rangle \cos \theta$

+ XMCD allows studying ferriand ferromagnets.

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

TWO-STEP MODEL OF XMCD

- + 2p_{3/2} and 2p_{1/2} have opposite spin orbit coupling (I+s, I −s)
 ⇒ Spin polarization and
 - XMCD have opposite sign at two edges
- Spin polarization opposite for x rays with opposite helicity,
 i.e. photon spin, ±ħ
 - ⇒ XMCD reverses sign with polarization
- Reversing the x ray polarization is equivalent to reversing magnetization/ spin direction

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

X RAY MAGNETIC CIRCULAR DICHROISM (XMCD)

+ XMCD provides magnetic information resolving elements Fe, Co, ...

ALS

Advanced Light Source

An Office of Science User Facility

valence states: Fe^{2+} , Fe^{3+} , ... lattice sites: octahedral, O_h , tetrahedral, T_d , ...

CHARACTERISTICS OF MAGNETIC BIONANOSPINELS

 Geobacter sulfurreducens bacteria form magnetite via extracellular reduction of amorphous Fe(III)-bearing minerals

V. Cocker *et al.*, Eur. J. Mineral. <u>19</u>, 707–716 (2007)

ALS

The Department of Geology and Geophysics, University of Wisconsin-Madison

Advanced Light Source

An Office of Science User Facility

Phys. Rev. B <u>67</u>, 214408 (2003)

CHARACTERISTICS OF MAGNETIC BIONANOSPINELS

Magnetite and Co ferrites produced from Co(II) containing Fe(III)-oxyhydroxides using metal-reducing bacterium (*Geobacter sulfurreducens*)

- + Up to 23at% Co²⁺ incorporated (compared to 1at% using magnetotactic bacteria)
- + Co²⁺ in Fe²⁺ O_h sites

ALS

+ 10fold increase in magnetic anisotropy

ENERGY

Office of Science

ALS

BERKELEY LAB

Advanced Light Source

An Office of Science User Facility

Co-DOPED TiO₂

- + Comparing XMCD spectra with model compounds
- and/or theoretical multiplet calculations allows
- \Rightarrow Identifying the contributions to the magnetic phase of a system.

J.-Y. Kim *et al*., Phys. Rev. Lett. <u>90</u>, 017401 (2003)

INDUCED MOMENTS AT Co/Cu INTERFACES

Co

Cu

Co

Cu

 The element-specificity makes XMCD measurements an ideal tool to determine induced moments at interfaces between magnetic and non-magnetic elements.

M. G. Samant *et al.*, Phys. Rev. Lett. 72, 1112 (1994)

ANTIFERROMAGNET/FERROMAGNETIC INTERFACES

- The weak Mn XMCD signal indicates uncompensated Mn at the Co/IrMn interface.
- The same sign of XMCD signal for Co and Mn and indicates parallel coupling.
- The nominal thickness of uncompensated interface moments is (0.5±0.1)ML for Co/Ir₂₀Mn₈₀.

ALS

MAGNETISM AT FERROMAGNET/SUPERCONDUCTOR INTERFACES

- + opposite sign of Cu and Mn XMCD
 - ⇔ antiparallel orientation of Cu and Mn moments

ENERGY

Office of Science

REPKELEY I AN

J. Chakhalian et al.. Nature Phys. 2, 244 (2006)

- + $La_{0.7}Sr_{0.3}MnO_3$: significant Mn $L_{3,2}$ XMCD at T = 10K ferromagnetic transition ~300 K
- + BiFeO₃: Weak Fe L_{3,2} XMCD
 - ⇔ net ferromagnetic polarization on Fe

i.e. presence of uncompensated induced magnetic moment in the BiFeO₃ layer close to $La_{0.7}Sr_{0.3}MnO_3$ interface.

- + opposite sign of Fe and Mn XMCD
 ⇔ antiparallel orientation of Fe and Mn moments
- Transition temperature of the magnetic phase in BiFeO3 significantly lower than La_{0.7}Sr_{0.3}MnO₃

P. Yu *et al.*, Phys. Rev. Lett. <u>105</u>, 027201 (2010)

ELEMENT-SPECIFIC MAGNETIZATION REVERSAL

 + Monitoring the field dependence of the XMCD signal
 ⇒ Detailed information on magnetization reversal in complex magnetic heterostructures

SUM RULES

 Theoretically derived sum rules correlate the XMCD spectra with the spin and orbital moment providing a unique tool for studying magnetic materials.

 $\mathbf{N}_{\mathrm{h}} = \langle \mathbf{I}_{\mathrm{L3}} + \mathbf{I}_{\mathrm{L2}} \rangle / \mathbf{C}$

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

ALS)

ALS

SUM RULES

+ Separation of spin and orbital moments requires very high quality data.

$$\frac{m_{orb}}{m_{spin}} = \frac{2q}{9p - 6q}$$

$$m_{orb} = -\frac{4q (10 - n_{3d})}{3r}$$

$$m_{spin} = -\frac{(6p - 4q)(10 - n_{3d})}{r}$$

C.T. Chen *et al.*, Phys. Rev. Lett. <u>75</u>, 152(1995)

ORBITAL MOMENT OF CO NANOPARTICLES

- + Strong variation of orbital and spin magnetic moment observable as change in L_3 and L_2 in the XMCD spectrum.
- + Co atoms and nanoparticles on Pt have enhanced orbital moments up to 1.1 μ_B

P. Gambardella *et al.*, Science <u>300</u>, 1130 (2003)

SUM RULES

ALS

Advanced Light Source

An Office of Science User Facility

photon energy

- + Spin and orbital moment only systems have distinct XMCD spectra:
 - $m_L = -2\mu_B \langle A + B \rangle / 3C = 0$ for A = -B
 - $m_s = \mu_B \langle -A + 2B \rangle / C = 0$ for A = 2B

- + Linear dichroism: difference in x-ray absorption for different polarization direction relative to crystalline and/or spin axis.
- + Linear dichroism is due to the anisotropic charge distribution about the absorbing atom caused by bonding and/or magnetic order.
- + "Search Light Effect":

X ray absorption of linear polarized x rays proportional to density of empty valence states in direction of electric field vector E.

BERKELEY LA

STRUCTURAL CHANGES IN PbZr_{0.2}Ti_{0.8}O₃

associated with tetragonal distortion ⇔ linear dichroism

+ Reversing the polarization changes XA \Leftrightarrow Change in tetragonal distortion

30

X-RAY MAGNETIC LINEAR DICHROISM

Isotropic *d* electron charge density \Rightarrow No polarization dependence

magnetically aligned Spin-orbit coupling distorts charge density ⇒ polarization dependence

+ $I_{XMLD} = I_{\parallel} - I_{\perp} \propto \langle m^2 \rangle$, $\langle m^2 \rangle =$ expectation value of the square of the atomic magnetic moment

- + XMLD allows investigating ferri- and ferromagnets as well as antiferromagnets.
- + XMLD spectral shape and angular dependence are determined by magnetic order

and lattice symmetry.

ALS

PLANAR DOMAIN WALL NEAR Co/NiO INTERFACES

ALS

Advanced Light Source

An Office of Science User Facility

A. Scholl *et al.*, Phys. Rev. Lett. <u>92</u>, 247201 (2004)

MAGNETIC COUPLING AT La_{0.7}Sr_{0.3}MnO₃/La_{0.7}Sr_{0.3}FeO₃ INTERFACES

Advanced Light Source An Office of Science User Facility

Advanced Light Source

An Office of Science User Facility

MAGNETIC MICROSCOPY

Magnetism

J. Stöhr, H.C. Siegmann, Magnetism (Springer)

ENERGY

Office of Science

MAGNETIC MICROSCOPY

10-50 nm spatial resolution

Magnetism (Springer)

ENERGY

Office of Science

IMAGING FERROMAGNETIC DOMAINS USING XMCD

+ Images taken with left and right circularly polarized x-rays at photon energies with XMCD, i.e. Co L_3 edge, provide magnetic contrast and domain images.

IMAGING ANTIFERROMAGNETIC DOMAINS USING XMLD

+ Images taken with linearly polarized x-rays at photon energies with XMLD,

37

i.e. Ni L_2 edge, provide magnetic contrast and domain images.

ALS)

MAGNETIC COUPLING AT Co/NiO INTERFACE

+ Taking into account the geometry dependence of the Ni XMLD signal \Rightarrow perpendicular coupling of Co and NiO moments at the interface.

probing in-plane

probing out-of-plane

OBSERVATION OF ANTIFERROMAGNETIC VORTICES

- + First direct observation of vortex state in antiferromagnetic CoO and NiO disks in Fe/CoO and Fe/NiO bilayers using XMCD and XMLD.
- + Two types of AFM vortices:

ALS

- conventional curling vortex as in ferromagnets
- divergent vortex, forbidden in ferromagnets
- thickness dependence of magnetic interface coupling

NiO $d_{NiO} = 3.0 \text{ nm}$

CoO $d_{COO} = 3.0 \text{ nm}$

divergent vortex

J. Wu et al., Nature Phys. 7, 303 (2011)

ULTRAFAST MAGNETISM

ENERGY

Office of Science

ALS

BERKELEY LAB

Advanced Light Source

An Office of Science User Facility

ALS TIME STRUCTURE

Synchrotron

Radiation

Femtosecond

Sychrotron Radiation

Bend-Magnet

Beamline

ULTRAFAST DYNAMICS OF SPIN AND ORBITAL MOMENTS

C. Boeglin, *et al.*, Nature <u>465</u>, 458 (2010)

- + Orbital (*L*) and spin (*S*) magnetic moments can change with total angular momentum is conserved.
- + Efficient transfer between *L* and S through spin–orbit interaction in solids
- + Transfer between *L* and S occurs on fs timescales.
- + Co_{0.5}Pt_{0.5} with perpendicular magnetic anisotropy
- + 60 fs optical laser pulses change magnetization
- Dynamics probed with XMCD using 120fs
 x-ray pulses
- Linear relation connects
 Co L₃ and L₂ XMCD
 with L_z and S_z using
 sum rules

ENERGY

Office of Science

BERKELEY LA

C. Boeglin, *et al.*, Nature <u>465</u>, 458 (2010)

- + Characteristic thermalization: Faster decrease of orbital moment
- + Theory:

Orbital magnetic moment strongly correlated with magnetocrystalline anisotropy

- + Reduction in orbital moment
 - ⇔ Reduction in magnetocrystalline anisotropy
- + Typically observed at elevated temperatures in static measurements as well
- + Further studies needed

MAGNETIC SPECTROSCOPY

- + X ray absorption
- + X ray magnetic circular dichoism, XMCD
- + X ray magnetic linear dichroism, XMLD
- + X ray magnetic microscopy
- + Magnetization Dynamics

C. Boeglin et al., Nature 465. 458 (2011)

E. Arenholz *et al.*, Appl. Phys. Lett. <u>93</u>, 162506 (2008)

ENERGY

Office of Science

ALS

BERKELEY LAB

ALS

J. Stöhr, H.C. Siegmann Magnetism– From Fundamentals to Nanoscale Dynamics Springer

D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications

