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1. Introduction
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Interactions of molecules with photons

Photons induce transitions 
to generate energetic 
species, the excited states 
that then proceed to many 
different processes.

By capturing the optical 
signatures of transient 
species, one can follow the 
reaction kinetics and 
mechanisms and identify 
the final products.
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2. The principle of “pump-
probe” transient spectroscopy
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Pump - probe concept

Pump Probe

t

t<0 t=0 t>0

Probe

• At one delay time, many pump-probe cycles are collected for sufficient S/N level in the data;
• Changing the delay time step-by-step to cover the entire kinetics trace;
• Time resolution determined by the laser pulse duration (~50-100 fs);
• Time window determined by the optical delay length (i.e. 1-6 ns).

Pump (on/off)

Probe
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Pump excitation light sources
• Direct Ti-Sapphire laser output - 800 nm
• Harmonic generation - SHG 400 nm and THG 267 nm
• Optical parametric amplification - 250-12000 nm

Laser probe light sources
• White light continuum generation

– Advantage: Easy to use and All wavelengths are generated at once
– Disadvantage: Somewhat limited spectral range 330-1000 nm

• Optical parametric amplification
– Advantage: Broad spectral range 250-12000 nm
– Disadvantage: Requires more sophisticated equipment; Only 

narrow spectrum range can be used – need to scan wavelength.



The capability of optical transient absorption 
method

• Direct observation of a 
transient by monitoring a 
characteristic spectral 
signature

• Observation of the 
electronic and vibrational 
energy redistribution

• Probing broad spectral and 
temporal range in 
automated mode

• Observation of stimulated 
emission



Three main components of an ultrafast laser system

• Oscillator
• Regenerative Amplifier
• Tunable Parametric Amplifier



Chirped Pulse Amplification
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Transient absorption setup

• Excitation source
• Probe source
• Optical delay
• Detector



3. Basic considerations and calculations in X-ray 
transient absorption (XTA) spectroscopy



Mills et al., Science 
(1984)223, 812.

A pioneering study from the second generation synchrotron source
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Ann. Rev. Phys. Chem. 56, 221-254 (2005)
Angew. Chem. Int. Ed. 43, 2886-2905 (2004).  



X-ray Absorption Spectroscopy (XAS)
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• Element specific;
• Precise local structure (0.02Å);
• No crystalline sample required (solution);
• Sensitive to oxidation state and coordination number & geometry.
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X-ray Absorption Spectroscopy (XAS)
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X-ray

X-ray and laser photon absorption cross sections



Laser

X-ray and laser photon absorption cross sections



Laser+
X-ray

X-ray and laser photon absorption cross sections
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Time

X-ray Pulse Train 3.68 μs

Laser Pulse Train 1 ms

Time

A factor of 1,700 or more reduction of the x-ray photon flux!
•Long data acquisition hours
•Low signal/noise ratio

Solutions: Higher x-ray flux, higher repetition rate of laser.

16mA 84mA

(271kHz)

(1kHz)

X-ray and laser pulse repetition rates
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Extracting excited state (or transient state) spectrum from XTA

P, laser pulse energy (J);
k, rate const., (s-1);
t, time, s;
ε (λ), absorption coeff. at laser wavelength λ (M-1cm-1);
l, thickness (cm);
C, concentration (M);
N, total number of molecules illuminated by the laser.
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Extracting excited state (or transient state) spectrum from XTA

B.  via optical transient absorption (e.g. two state system)



Extracting excited state (or transient state) spectrum from XTA

C.  via calculation (one example by Grigory Smolentsev et al.) 

Smolentsev, G.; Soldatov, A. Journal of Synchrotron Radiation 2006, 13, 19-29.
Smolentsev, G.; Soldatov, A. V. Computational Materials Science 2007, 39, 569-574.



4. Basic experimental setup



X-ray

Laser flowing 
solution 

Ge Detector

APD

It

If

APS

Amp
array

SCA
array

Scaler 1
(GS spec)

Scaler 2
(ES spec)

To computer

RF/4 Delay/QS

Gate

CCD

X-ray scattering

X-ray chopper
I0

X-ray fluorescence

Experimental Setup for X-ray Transient 
Absorption/Scattering at 11-ID-D, APS

Ann. Rev. Phys. Chem. 56, 221-254 (2005)
Angew. Chemie. 43, 2886-2905 (2004).  



XTA ― Recent Developments

 Compact and integrated sample/detector chamber 
for air sensitive samples to ensure large solid 
detection angle, elastic scattering removal for 
dilute solution samples;

 In-situ curve fitting for data acquisition
 Current mode detection with fast digitizer/signal 

averaging allows large dynamic range;
 Fast detector system allow bunch to bunch 

resolution for all x-ray bunches in the pulse chain.

Klaus Attenkofer
Guy Jennings
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5. XTA study examples



Metalloporphyrins are important building blocks for solar 
energy conversion and life

Excited states of metalloporphyrins are:
electron donors or acceptors, 
light harvesting pigments, 
photocatalysis,
functional site analogs of heme proteins, 
photovoltaic materials.

Mg-Porphyrin

Chlorophyll a 

Zn-Phthalocyanine

(J. S. Lindsey)

Moore et al.
NN

NN
M

Myoglobin

Photosynthetic 
bacterial 
reaction center 
protein

++++

----
Photosynthetic 
bacterial light 
harvesting protein
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IEnT

~200 ps

<300fs
IVR+VC<20psQ

• (π,π*)→(d,d,) conversion mechanism;
• Correlated structural change and 

energy transfer;
• MO energy levels;
• Role of the solvent and ligation;
• Transient oxidation state of Ni.
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2) Wider bandwidth for 1s→3dx2-y2 transition in the S1 state than T1 state;  
3) The d-d splitting evolves faster than one can currently resolve.

How fast is the intra-molecular electron shift and its correlation with 
nuclear geometry change?  
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Conformation dependence of 3d energy levels

G. Smolentsev

Why does the 1s→3dx2-y2 transition band so broad (i.e. > 1.4 eV)?
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Geometric changes in the excited state NiTMP
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Science (1984)
223, 812.
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Mb-Fe(III)Met → MbFe(II)deoxy → MbFe(II)CO ↔ MbFe(II)*
Na2S2O4  CO                               hv

Direct electronic 
configuration change of 
Fe(II) center from LS to HS;

Time evolution from 0 – 1 
ms are captured in a single 
experiment.

Fast structural dynamics can 
be investigated with fs x-ray 
pulses with caution of x-ray 
damage.
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Time

154 ns

Preliminary results for photodissociation of CO from heme in myoglobin

Anfinrud et al..
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The metal-to-ligand-charge-transfer (MLCT) states

MLCT transitions are often origins for transition metal complexes to 
be used in solar energy conversion initiated by electron density shifts 
between the metal and the ligands.  Examples are DSSC, 
photocatalysis, etc.



Structural Dynamics of the MLCT state of Cu(I) complexes
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XTA identified that the MLCT state is Cu(II) species and the exciplexes
between the solute and solvent molecules can be formed in both toluene 
(non-coordinating) and acetonitrile (coordinating solvent) with different 
average bond distances of Cu-N.

JACS 129, 2147 (2007),
125, 7022 (2003), 124, 
10861 (2002).  



• Two major structural factors for controlling the excited state properties: 
dihedral angle between two ligand planes, and space for the ligation.

• The structural dependent XANES provide the dynamics for flattening and 
ligation on 100-fs time scale.  Proposal submitted to LCLS for coming 
experiments with < 100 fs time resolution.
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XANES spectra of RuN3 on TiO2 at Ru K-edge
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The edge energy shifts up 
with higher oxidation state.

 Edge shift

fES* = 0.3
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Transition States at Hybrid interface: RuN3 anchored to TiO2
nanoparticles

[RuII(bpy)2 (NCS)2]+2 TiO2 + hv → [RuIII(bpy)2 (NCS)2]+3 TiO2-e 

Preliminary analysis shows that 
Ru-N on NCS ligands are 
preferentially lengthened by 
0.05 Å while the Ru-N distances 
on bpy ligands are not changed.  
Structural changes from 100 ps
to longer delays are observed. 



6. Future studies



2D Transient optical spectroscopy



Hochstrasser R M PNAS 2007;104:14190-14196

©2007 by National Academy of Sciences

2D Transient optical spectroscopy



New frontiers in x-ray nonlinear spectroscopy

Coherent ultrafast core-hole correlation spectroscopy; x-ray analogues of 
multidimensional NMR, Igor V. Schweigert and Shaul Mukamel
Department of Chemistry, University of California, Irvine, California 92697-2025



New frontiers in x-ray nonlinear spectroscopy

Hot Cold

Sample

Observation of charge 
carrier dynamics in 
molecular crystals, 
conducting polymer 
films and solutions on 
nm length scale and fs
time scale.

Need to explore

nm



Coherent Control of Chemical Reactions

• Coherent Control attempts to control a chemical 
reaction with light, usually a cleverly shaped ultrashort 
laser pulse.

• Using shaped pulses and an iterative approach.

Wave-
function

Potential



Coherent control: Using shaped 
ultrashort pulses to control the reaction
Can an ultrashort pulse cause a molecule to vibrate in such a 
way as to break the bond of our choice?



to POLLIWOG apparatus

input 
pulse

Molecules are not isotropic, so pulse 
polarization shaping is important.



Coherent polarization control of a 
complex molecule in the gas phase

Gerber and coworkers
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Future Studies: Transient XAS-WAXS combo

XTA probes 
inner sphere 
structural 
changes, metal 
oxidation state 
change due to 
photoinduced
electron 
transfer,
Coordination 
geometry 
change due to 
dissociation and 
ligation, and 
electronic 
structure 
change due to 
metal to ligand
charge 
transfer.

XT-WAXS probes 
outer sphere 
structural 
changes, 
molecular shape 
changes, 
interactions with 
solvent, e.g. 
cage effect, and 
pair density 
distribution 
functions.



Thank you


