

... for a brighter future

Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

 $G_r(r) = 1 + \frac{1}{2r^2 e^r} \int QS(Q) \sin(Qr) dQ$ THEN A MIRACLE OCCURS

"I think you have to be a bit more explicit here in step two"

Pair Distribution Function Analysis

Chris Benmore X-ray Science Division, Argonne National Lab.

Pioneers in the history of PDF

X-ray determination of the Structure of Glass Warren BE. J. Am. Ceram. Soc. 17 (1934) 249.

The partial structure factors of liquid Cu-Sn Enderby JE, North DM and Egelstaff PA. Phil. Mag. 14 (1966) 961.

FIG. 1.—Vacuum camera with monochromator for making X-ray diffraction patterns of glass.

Bertram Warren

John Enderby

Peter Egelstaff

Types of Disorder

Order within Disorder

A formation of skydivers illustrates order on an intermediate length scale.

P.S. Salmon Nature Materials 1, 87-88 (2002)

"Each diver has a simple set of rules for bonding to the next, but there is sufficient flexibility for different patterns of ordering to be created on the scale of a few body lengths." Faber-Ziman formalism – element specific

S_{Number-Concentration}(Q)

PDF in context with other common methods

Simulation

Experiment

Neutrons/X-ray PDF	Good AVERAGE overview of structure Short range order (SRD) Medium range order (MRD) Neutron Diffraction Isotope Substitution	Inverse Methods: Reverse Monte Carlo (RMC) Empirical Potential	Perfect fits to PDF data No predictive power Many constraints essential !
Crystallography	Long Range Order (LRO)	Structure Refinement (EPSR)	
EXAFS, XANES	SRO, Element Specific, Small concs.	Classical Molecular Dynamics	Essential physics, trends Fit to PDF sometimes poor
Anomalous x-ray	SRO, MRO. Element specific, Difficult to do accurately	<i>Ab initio</i> simulations Density Functional	Accurate predictions Box size limit ?
Vibrational Spectroscopy	Inelastic N and X, Raman and Infrared. SRO, MRO. Need good structural model.	Theory (DFT)	
NMR	Isotope Specific. Speciation $Q_{n.}$		

.....

Monochromatic PDF versus time-of-flight PDF

Chapter 12: Structure of glasses and melts in "Neutron Scattering in Earth Sciences". Reviews in Mineralogy and Geochemistry. 63 (2006) 375-311.

$S(\Omega,\omega)$ cuts along a liquid structure factor

Neutron and X-ray differential cross sections

Neutron

X-ray

Neutron and X-ray Static Structure Factors

Neutron and X-ray differential cross sections

Outline of time-of-flight neutron analysis procedure

Neutron diffraction corrections

Ideal neutron PDF experiment designed so that attenuation and multiple scattering effects are ~10%

How do the corrections effect the measured data ?

Time-of-Flight Neutron Total Scattering Data Analysis implemented in the software suite ISAW. Nucl. Instrum. Methods. A 562 (2006) 422-432.

Proton recoil and Vanadium normalization

Interpreting Structure Factors

Tetrahedral glasses r₁=first peak position in real space

FSDP – First Sharp Diffraction Peak : Intermediate Range Order

SSDP –Second Sharp Diffraction Peak : Extended Range Order

Phys. Rev. B. 72 (2005) 132201.

Weighted Partial Structure Factors

The Miracle step

Truncate at a positive node to minimize Fourier artifacts

A question of resolution – the effect of Qmax

J. Non-Cryst. Sol 111 (1989) 123.

Flaw of Averages

PDF measures the AVERAGE structure i.e. coordination number

Naturally occurring nuclides for NDIS

Identified by feasibility of Neutron Diffraction Isotopic Substitution experiment

First order difference $\Delta b > 1 \text{ fm}$ Feasible using NOMAD at SNS Other

J. Enderby. World Scientific p16. ISBN 981-02-1463-4.

Partial Structure Factors for glassy SiO₂

Phys. Rev. B. 78 (2008) 144204 .

Partial Pair Distribution Functions of vitreous Silica

H/D substitution : Partial Structure Factors for water

Solving the Nanoproblem

Nature 440 (2006) 655.

High energy x-ray beamlines at APS

Nanoscale Ordered MAterials Diffractometer

Courtesy of Joerg Neuefeind

Online in 2011

	D4c (ILL)	GEM (ISIS)	DRACULA (ILL Project)	NOMAD Project
Time averaged flux (10 ⁸ n/cm ²)	0.4	~0.02	~1	~1.7 (1.4MW)
Detector coverage (strad)	0.11	4.0	1.5	~10
Product (10 ⁶)	4.4	8	150	1700

Anomalous neutron diffraction - new possibilities at SNS

¹ H																	² He
Ľ	$\stackrel{_4}{\operatorname{Be}}$											5 B	ĉ	Ň	ð	۴	Ne
Na	¹² Mg											AI	14 Si	15 P	16 S	17 Cl	Ar
19 K	Ca ²⁰	Sc 21	²² Ti	23 V	Cr	²⁵ Mn	Fe ²⁶	27 Co	28 Ni	Cu 29	³⁰ Zn	Ga 31	Ge	33 As	Se	³⁵ Br	36 Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	42 Mo	43 Tc	Ru 44	⁴⁵ Rh	Pd ⁴⁶	Åg	48 Cd	49 In	Sn	Sb 51	Te ⁵²	53 	Xe
$\overset{55}{\text{Cs}}$	Ba 56	La 57	72 Hf	73 Ta	74 W	Re 75	76 Os	77 Tr	78 Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	Pb	83 Bi	⁸⁴ Po	At 85	86 Rn
B7 Fr	⁸⁸ Ra	89 Ac	 104 Rf	¹⁰⁵ Ha	106	107	108	109	110	111	112	113	114	115	116	117	118

	Če	Pr Pr	$\overset{60}{\text{Nd}}$	Pm	Sm Sm	63	Gd Gd	$\overset{65}{\text{Tb}}$	66 Dy	H0		Tm	70 Yb	
**	⁹⁰ Th	Pa	92 U	93 Np	94 Pu	⁹⁵ Åm	⁹⁶ Cm	97 Bk	98 Cf	⁹⁹ Es	100 Fm	Md	102 No	103 Lr

Anomalous Neutron Diffraction of Disordered Materials R Sinclair. World Scientific p107. ISBN 981-02-1463-4.

Reverse Monte Carlo Modeling of Neutron and X-ray data

Best (essential ?) to use more than one structure factor plus chemical constraints

Empirical Potential Structure Refinement

Quantum isotope effects in water

Molecular dynamics Simulations

0.04

Tetrahedral oxygen triclusters in Yttria-Alumina glasses

J. Phys.: Condens. Matter 21 (2009) 205102.

160

180

Specialized Sample Environments : Levitator

Tmax =300°C. Supercool liquids several hundered degrees.

Phys. Rev. Lett., 98 (2007) 057802.

Specialized Sample Environments : High Pressure

HDA

Phys. Rev. Lett., 97 (2006) 115503. Science 297 (2002) 1320.

Time Resolved Measurements : Chemical Reactions

Courtesy of Eugene Bychkov

Last slide

Chris's PDF guidelines Real space peak position = bond length Peak area α coordination number Model disagrees with data = it's wrong! No peaks = no atoms

