Neutron Spin Echo: The Instrumentation and the Science

Oak Ridge 2010

Michael Ohl

Scattering Experiment

$$\underline{\mathbf{Q}} = \underline{\mathbf{k}}_{i} - \underline{\mathbf{k}}_{f}$$

energy transfer $\Delta \mathbf{E} = \mathbf{E}_{i} - \mathbf{E}_{f} = \hbar \boldsymbol{\omega}$ $= \frac{1}{2} \frac{\hbar^{2}}{[m^{2} (\lambda_{i}^{2} - \lambda_{f}^{2})]}$ $= \frac{1}{2} \mathbf{m} (\mathbf{v}_{i}^{2} - \mathbf{v}_{f}^{2})$

M(λ ,T) = 2 a2 $\lambda^{(-5)} \exp(-a/\lambda^{(2)})$ is the normalized Maxwellian spectrum, i.e. its integral over wavelength λ between 0 and ∞ equals 1. λ is measured in units of Å,T is the effective spectral temperature in K, and

a = 949 / T.

....in mesoscopia....

 $\Delta v/v < 10^{-4}$

Need to detect Δv smaller than 10^{-4} v

NO intensity !

Spin-echo trick:

use precessing neutron spin as watch

Neutrons in magnetic fields: Precession

- The neutron will experience a torque from a magnetic field perpendicular to its spin direction:
 - Precesses with the Larmor frequency $\omega_L = \gamma B.$
 - Only the strength of the field determines the precession rate.

NSE spectrometer: elastic

NSE spectrometer: (quasielastic scattering)

NSE spectrometer: technical aspects

TOF operation, echo evaluation and "ramped" flippers

Phase calculation

NSE what do we measure ?

Principle of NSE : Summary

Neutron spin Echo at the SNS

Note that for the SNS - NSE:

 $J\cong 1T$ acting along 1.2m

 \cong **150000 Precessions**

for 200m/s (λ=2.0nm).

Accuracy: $0.1*2\pi$

Neutron spin Echo how to get the dynamic range

Homogeneity of the field integral 10⁻³ without Fresnel coils & 10⁻⁶ with Fresnel coils required

- Ratio between τ_{min} / τ_{max} maybe of about the 500 for the "big echo mode"
- Ratio between τ_{min} / τ_{max} maybe of about the 10 for the "small echo mode"

-Wavelength band from 0.3 < λ /nm < 2.0 => 300

e.g. NSE @ SNS domain ... 1ps to 1μ s

- ARCS Fermi Chopper
- SEQUOIA Fermi Chopper
- HYSPEC
- Cold Neutron Chopper Spectrometer
- Backscattering
- Neutron Spin Echo
- Cold triple Axis
- Thermal Triple Axis

adapted from "Neutron Scattering Instrumentation for a High-Powered Spallation Source" R. Hjelm, et al.,

Corrections of Field Integral

Bl – or rather $\int |\mathbf{B}| dl$ – is not constant for all neutron paths!

 \Rightarrow correction coils:

Corrections of Field Integral

Useful criterion: Average relative spread (ARS)

$$\delta = \sqrt{\sum_{i} (J_i - J_0)^2} / J_0 < 10^{-6} \text{ Simulation } \delta = 8 \times 10^{-7} \text{ OK!}$$

Corrections of Field Integral

Requirements to magnetic environment

Phasenstability better 10⁰!

Means with $\lambda = 15$ Å (300m/s)

 $\Delta \phi = 360^{\circ} \times 3000 \text{ Hz/Gauss} \times 3 \text{m} / 300 \text{m/s} = 10800^{\circ} / \text{Gauss}$

→ △B < 10/10800 G ~ 1 mG !

Magnetic stray field sources

Parameterization of SNS delivered magnets !!! More than 1mG ?

Sensitivity - two criteria: phase shift and homogeneity (15T magnet)

Already at distances < 19m the instrument will be disturbed !

Motivation to build a magnetic enclosure comprising the whole secondary spectrometer

High permeability magnetic field without shielding chamber

The magnetic shielding enclosure

Shielding capabilities of the enclosure

Comparison: The NSE @ SNS domain ... 1ps to 1μ s

Motivation

Citations per year

Citations in Each Year

What science is relevant for the NSE

Soft and Complex Condensed Matter

Polymers melts and molecular rheology Microemulsions and worm-like micelles Complex fluids Rubbers and molecular networks Gels and polyelectrolytes Polymeric electrolytes

> Biophysics Protein dynamics Membranes

Relaxations and the Glass Transition Role of primary and secondary relaxations Displacement patterns in space and temporal evolution Science relevance: part 2

Nanostructured materials

Nanoparticles Diffusion in suspension of nanoparticles Ferro-fluids and magneto-fluids Electrorheological fluids

> Transport in porous media Diffusion or migration in gels or granular media

science case: after some instrumental changes

Magnetism Spin glasses Superparamagnetic fluctuations in magnetic nanoparticles Low frequency excitations Flux line motions in superconductors

NSE = SANS (t=0ns) + Dynamics

E.g.: Bicontinuous microemulsion (water and oil)

NSE = SANS + Dynamics

...needed at lower Q

Reptation model (Edwards/deGennes)

Confinement in a tube seen by NSE

coherent scattering, labeled chain

melt of long chain linear polyethylene

Rouse: mechanical rel. motivated, bead and spring model with friction De Gennes: reptation

Segment displacement <r²(t)> from incoherent scattering

Neutrons & Soft Matter

Unique role:

 Suitability of length and time scales accessed, especially SANS and NSE

Selectivity varying contrast:
 Decipher complex structures

..and...use dynamics to discriminate flexible from rigid structures

Next step: labelling !

See how different sections of a molecule move !

A first step into selective labelling......

.....CLF explicitly shown !

M. Zamponi et al.

e.g. applications in biology ?!

K. Hinsen et al. J. Mol. Liq. 98-99,383(2002)

The mer system

- Regulation MerR, MerD
- Uptake & Transport MerC, MerT, MerP MerE, MerF, MerH
- Demethylation
 MerB
- Reduction
 MerA

The mer system : what it does !

- Hg^{2+} handoff: $T \rightarrow N \rightarrow A$?
- N-terminal domain (N) hypothesized to protect cell, shuttle Hg²⁺ from T and A
- A previously solved; no N or full-length N-A structure
 - Crystalize N-A and Hg²⁺ handoff intermediate: handling mechanism
 - $N \rightarrow A$ model for $T \rightarrow N$

Full-length MerA

- Model of full-length MerA with linkers
 - NMR structure of momomeric NmerA
 - Crystal structure of dimeric core (PDB: 1ZK7)

Glass Methods

- Inelastic/Quasielastic Neutron Scattering
 - → combined information dynamics/structure
 - → isotopic labelling allows access to specific information on chemical groups/components

- Light Scattering
 - \rightarrow large spectroscopic range (ps...s)
 - → large scale structure information
- Rheology
 - → macroscopic mechanical properties
- Calorimetry
 - \rightarrow identification of glass transition
- Computer Simulation
 - \rightarrow access to individual particle motion

- Dielectric
 Spectroscopy
 - → large spectroscopic range (ns...s)

Time-temperature shift factors τ_n from macroscopic viscosity are applied

e.g. relaxation phenomena in polyisoprene

NSE: The Q - dependence (T<343K)

Kohlrausch-Williams-Watts $S(Q,\tau)/S(Q)=Aexp[-(\tau/\tau_o)^{\beta}]$

Shift factor α_T and Q -dependence

For T > 320K two time scales dominate the Q - dependence

 τ strongly Q dependent ... limited to Q < 1.9A⁻¹...

Intermediate scale collective dynamics

How do secondary relaxations couple to stress relaxations?

NSE Experiments at *low and high* Q for various polymers

Acitvation Energy JG – process (τ_0 =10⁻¹³s/ 220K): Δ E= 3698K*k_b Mech. relaxation* (τ_0 =10⁻¹³s): Δ E= 3883K*k_b

* K. Schmieder and K. Wolf, Kolloid Zeitschrift 134, 149 (1953)

Typical experiment

- sample size 3x3cm², sample cells are Hellma Quartz or Aluminum cells
- transmission of about 60% for small angles and typical soft matter (polymers)
- 10^5n/(cm^2*s) on sample
- each tau and Q setting costs of about 30min to 6h (depending on sample)
- resolution measurement, graphite, elastic scatterer
- sometimes buffer like D2O
- typical experiment time 7 to 14days
- temperature from 10K to 600K

Summary

-NSE is the only neutron scattering method measuring the slow dynamics of materials

- The technique bases on encoding and decoding tiny velocity changes of the neutrons in the sample into neutron spin precession

- It is the highest energy resolution neutron scattering method and measures S(Q,T) instead of S(Q,w)

- With the invention of the technique in early 1970 a growing interest can be reported

Special thanks to ... for preparation:

A. Johs (ORNL) T. Kozielewski (FZJ) M. Monkenbusch (FZJ) M. Sharp (ESSS) A. Summers (Uni- Georgia) M. Zamponi (FZJ) R. Zorn (FZJ)

...