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Introduction to  
Powder Diffraction 

Brian H. Toby 

Outline 

§  Where to go for more information 
§  Some background on crystallography 
§  Diffraction from single crystals 
§  Diffraction from powders 
§  Instruments for powder diffraction collection 
§  Materials effects in powder diffraction 
§  Crystallographic analysis of powder diffraction data 
§  (Total scattering/PDF analysis) 
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Where to go for more… 

There are many texts available. My favorites: 

X-Ray Structure Determination: A 
Practical Guide (2nd Ed.), G. H. Stout, & 
L. H. Jensen (Wiley, 1989, ~$150) [Focused 
on small-molecule single crystal techniques, dated, 
but very easy to read; very good explanations of 
fundamentals. 1st book for many in field.] 

Fundamentals of Crystallography (2nd Ed.), 
Carmelo Giacovazzo, et al. (Oxford, 2002, ~$90) 
[Modern & very comprehensive, quite reasonable price 
considering quality, size & scope.] 

APS Web lectures on powder diffraction crystallography: 
www.aps.anl.gov: look for Education/Schools/Powder Diffraction Crystallography 
(http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography) 
Intended to introduce Rietveld refinement techniques with GSAS & EXPGUI  
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The Lattice   

§  Crystals are constructed from repeated arrangements of atoms. 
§  Crystalline structure can be described as set of “identical boxes” stacked 

in 3D; the contents of each box is identical (exception: quasicrystals) 
–  A lattice is a mathematical concept where each lattice point 

describes an identical environment; lattice points are the corners of 
the “identical boxes.” 

Commonly used phrases 
such as “lattice compound” 
or “interstitials in the lattice” 
misuse the concept of a 
lattice. 
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The Unit Cell   

§  The unit cell describes at least one repeating unit that can be used to 
construct the structure 

§  There are 7 types of unit cells corresponding to the 7 crystal systems 

Triclinic   Orthorhombic    Hexagonal          Cubic  
  Monoclinic     Rhombic      Tetragonal 

(Image from http://pasadena.wr.usgs.gov/office/given/geo1/lecturenotes/SevenCrystalSystems.html) 
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Centering is used to increase symmetry 

§  The green (primitive) unit 
cell does not demonstrate 
two-fold symmetry that can 
be seen in the red 
(centered) cell 
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Lattice Types 

Centering causes lattice 
points to be placed inside 
units cells (body center, 
face centers) giving rise the 
14 Bravais lattices (1848) 

(Figure from http://www.chemsoc.org/exemplarchem/entries/2003/bristol_cook/latticetypes.htm) 

Have non-perpendicular 
axes: (non-orthogonal 
coordinate systems) {
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Symmetry 

(Images from http://members.tripod.com/~EppE/302rev2.htm) 

§  Types of symmetry elements in crystals 
–  Lattice translations (includes lattice centering) 
–  Mirror planes 
–  Proper/improper Rotation axes (includes center of symmetry) 
–  Screw Axes 
–  Glide Planes 

The construction of a crystal from the unit cell requires repeated translation 
of the “building block” in all three directions: lattice symmetry 

§  Additional symmetry is almost always present between the 
atoms in a unit cell. This means the unit cell (and thus the 
entire structure) can be built from just a section of the unit cell 
–  The minimal section representative of the entire structure 

is called the asymmetric unit 
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∆  There are only 230 unique ways to combine 
symmetry elements for a 3D lattice: 230 space 
groups 

∆  Space groups are tabulated in The International 
Tables of Crystallography, Volume A 

∆  I recommend Space Groups for Solid State 
Scientists by G. Burns and A. M. Glazer as a good 
place to learn about space groups and s.g. properties 

Space Groups 
§  Not all combinations of symmetry and lattice types are compatible 

–  Example: mirror plane perpendicular to a non-orthogonal pair of axes 
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Fractional coordinates 

§  Atom locations are measured in fractions of 
the unit cell edges 
–  Note atom is at x=0.45,y=0.25 

∆  This notation allows for simple description of 
symmetry operations: 
(x,y,z) --> (1+x, y, z) [translation on x] 
(x,y,z) --> (1/2+x, 1/2+y, 1/2+z) [centering] 
(x,y,z) --> (-x, -y, -z) [center of symmetry @ 

origin] 
In crystallographic notation x=0.45(3) means that there is a standard 
uncertainty of 0.03 on the value for x of 0.45 

Equivalently, there is a 95% chance that x is between 0.39 and 0.51 (±2σ) 
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Lattice planes 

§  General Indices: lattice planes are indexed by the inverse of where they 
cut each axis:  
–  Intercept of 0.5 → index=2 
–  Intercept of ∞ (|| to axis) → index=0 

§  Related concept: Miller indices  
–  used for crystal faces 
–  Contain no common factors 

§  Notation: [ ] defines a direction 
–  [100] is along a axis 
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Reciprocal Lattice 

§  To simplify math when working with non-orthogonal coordinate systems, 
we use a construct called the reciprocal lattice (indicated by star) where 
each reciprocal axis is perpendicular to two “real space” axes: 
–  a* • a = 1; a* • b = 0; a* • c = 0 
–  b* • a = 0; b* • b = 1; b* • c = 0 
–  c* • a = 0; c* • b = 0; c* • c = 1 

§  This means that if we have two vectors: 

  r = xa + yb + zc    and   d* = ha* + kb* + lc* 
 Then no cross-terms are needed for the dot product: 

  r  • d* = hx + ky + lz 
Use of the reciprocal lattice makes computation of the Fourier transform of 

the atomic positions straightforward. 

Historical note: the value of the reciprocal lattice for working with non-orthogonal 
coordinate  systems was first recognized by J. Willard Gibbs (1881) 
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Single Crystal Diffraction 
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Diffraction from single crystals 

§  Diffraction occurs when the reciprocal lattice planes of a crystal are 
aligned at an angle θ with respect to the beam and the wavelength of an 
incident beam satisfies: 

–  nλ = 2 d sinθ (or better, λ = 4 π sinθ / Q)   [Bragg’s Law] 

–  d = 1/|d*| = 1/|ha* + kb* + lc*| 
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Single Crystal Diffraction Intensities 

§  The Intensity of a diffracted beam, Ihkl is related to a imaginary number 
called the structure factor, Fhkl 
–  Ihkl ∝ |Fhkl|2 

§  The structure factor is determined by summing over all atoms in the 
crystal: 

–  Fhkl ∝ Σ fi exp[2πi(hxi + kyi + lzi)] exp(-UiQ2/2) 

Since adding 1 to xi,yi or zi does not change the above this can be 
simplified to sum over the atoms of one unit cell 

–  fi represents the scattering power of an atom  
–  Ui represents the average displacement of an atom from its ideal site 

Powder Diffraction 
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Diffraction from random polycrystalline material 

In a sufficiently large, randomly 
oriented polycrystalline sample 
(e.g. a powder), there are a 
large number of small 
crystallites.  

A beam impinging on the sample 
will find a representative number 
of crystallites in the right 
orientation for diffraction 

Diffraction occurs only at angles 
where Bragg’s Law is satisfied: 
   λ = 4 π sinθ / Q   
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Bragg cones in powder diffraction 

Beam 

Diffraction in all directions, thus 
powder diffraction occurs in 
cones 
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X-rays vs Neutrons (why not both?) 
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Coherent Atomic Scattering Power (diffraction) 

§  X-rays: The scattering power 
(form factor, f) of an atom 
depends on the number of 
electrons in the atom and Q  

 (Q∝sinθ/λ) 

§  Neutrons: The scattering power 
(scattering length, b) of an atom 
depends on the isotope and is 
independent of Q 
– A few isotopes scatter with 

opposite phase to most, for 
these we write f (b) as 
negative Q or sinθ/λ, Å-1 

Structure factors:     Fhkl = nΣ fi exp[2πi(hxi + kyi + lzi)] exp(-UiQ2/2) 
Diffraction Intensity: Ihkl ∝ |Fhkl|2 
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Comparison of Neutron and X-ray Atomic Scattering 
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Powder Diffraction Measurements 
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Measuring powder diffraction 

§  In the simplest experiment, a singe detector is moved over a range of 2θ 
angles. 
–  Sample irradiated with monochromatic radiation 
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Synchrotron powder diffraction 
§  With an area detector, a complete powder diffraction pattern can be 

collected in a fraction of a second. 
–  Fast 
–  Medium resolution 
–  High background 
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Highest resolution requires high collimation. Optimal is a crystal 
analyzer between the sample and detector: 11-BM Diffractometer 

beam 
Huber 480 rotation stage: 
high precision (~0.35arcsec)  
high accuracy (~1arcsec)  
slew or step scans 

12 analyzer array 
Si(111) crystals 
LaCl3 scintillator detectors 
2° apart in 2Θ.  

Mitsubishi robot 
custom “fingers” 

Sample X,Y,Z stage 
Sample spinner 
(1,000-10,000 rpm) 

Sample environment  
Cryostream (80-500 K) 
future environments .. 

26 

Complete pattern is 
measured in <1 hour 
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Neutron Powder 
Diffraction: 
Constant 
Wavelength 

BT-1 @ NIST 
§  32 Detectors with 5° 

spacing cover a 160° 
range  

§  Complete pattern is 
measured with a 5° 
scan (typically a 2-10 
hours) 

Neutron Powder Diffraction with Spallation Source 
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§  Spallation source provides a 
broad band of wavelengths in 
sharp pulses 
–  TOF detection allows 

measurement of intensity 
versus wavelength 

–  Each detector provides a full 
diffraction pattern 

–  Data collection times: 
•  Seconds to hours 

NPDF instrument at LANSCE (Los Alamos) 
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Materials Effects in Powder Diffraction 

29 

Materials effects on Powder Diffraction 

Peak broadening: 

§  Crystallite size: 
–  What happens when crystals become small? 

§  Residual Stress (Strain) 
–  What happens if matrix effects do not allow crystallites to equilibrate 

lattice parameters? 

30 
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a* 

b* 

Crystallite Size Broadening can 
produce Lorentzian peak shapes 
(common) or Gaussian peak shapes 
(uncommon) or a combination of both. 

Crystallite Size Broadening 

The Fourier transform (FT) from 
an infinite array of regularly 
spaced objects is an array of 
delta functions.  

The FT from a finite length array 
is broadened.  

The finite sizes of crystallites will  
broaden all orders of reflections 
equally in units of Q (∝ d*) 

– differing reciprocal space 
directions may have differing 
amounts of broadening, if 
crystallites dimensions are 
not isotropic on average 

Δd*=constant 

d
cot

d
d*d 2

ΘΔΘ
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Δ
=Δ

€ 

=
Δ2ΘcotΘsinΘ

λ

€ 

Δ2Θ =
λΔd

d2 cosΘ

GSAS fits crystallite broadening 
with two profile terms: 

•  LX -> Lorentzian  
•  GP -> Gaussian 

Relation between avg. size (p) and 
GSAS terms: 

K ≅ 1 (Scherrer constant, related to 
crystal shape) 

€ 

p =
18000Kλ
πLX

€ 

p =
18000Kλ
π GP

Crystallite Size Broadening 

See GSAS Manual, pp 158-167. 
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Microstrain Broadening 

When a material has residual 
stresses present, some crystallites 
are compressed. This must be 
balanced by other crystallites that are 
stretched (because ∑F=ma=0) 

This leads to a range of lattice 
constants. 

The spread between diffraction 
locations for the maximum and 
minimum lattice constant increases 
linearly with Q (∆Q/Q or ∆d/d = 
constant) 

ttancons
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Δ

=ΘΔ tan
d
d22
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18000

LY

€ 

S =100% π
18000

GU −GUI

Microstrain Broadening 

GSAS fits strain broadening with two 
profile terms: 

•  LY -> Lorentzian (most common) 
•  GU -> Gaussian  

(note that GU also has an instrumental 
contribution) 

Relation between strain (as percentage) and GSAS terms: 

where GUI accounts for the instrumental contribution 

See GSAS Manual, pp 158-167. 
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Where Strain Differs by Reflection Class:  
“Anisotropic peak broadening” 

Strain may be anisotropic 
–  think of a layered material where the layers can be pulled apart 

without much effort, but the layers themselves are quite 
“hard” (resistant to applied forces). 

–  Such a material will be “squishy” in the layer direction and rigid in the 
other two (more broadening in the squishy direction.) 

 Canonical anisotropic strain model: P. W. Stephens, Journal of Applied 
Crystallography 32, 281 (1999). 
–  Restricts strain components in terms of 1st & 2nd-order terms 

allowed by lattice symmetry 

36 

Anisotropic strain broadening terms 
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Anisotropic strain broadening terms 

Crystallographic Modeling 

38 
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Why did Crystallography Revolutionize Science? 

1.  Crystallography was the first scientific technique that provided direct 
information about molecular structure 
–  Early work was intuitive: structures assigned based on patterns and 

symmetry (some results predate X-rays!) 
2.  X-ray and neutron diffraction observations can be modeled very 

accurately directly when the molecular structure is known 
3.  Diffraction can provide a very large number of independent observations 

–  probability of finding an incorrect structure model that is both 
plausible and is in good agreement with the diffraction observations 
is very small (but not zero!) 

4.  Computer-assisted least-squares optimization allows structural models 
to be improved, limited only by the quality of the data 

5.  Statistical and brute-force techniques overcomes the incomplete nature 
of diffraction observations (direct methods vs. “the phase problem”). 

100+ years later, no other technique offers as much  
power for learning about molecular structure! 
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Fitting crystallographic data -- what is it all about? 

§  We perform an experiment: 
–  Get lots of intensity and position measurements in a diffraction 

measurement: what do they tell us? 
§  Obtain an unit cell that fits the diffraction positions (indexing) 
§  “Solve the structure”: determine an approximate model to match the 

intensities 
§  Add/modify the structure for completeness & chemical sense 
§  Optimize the structure (model) to obtain the best fit to the observed data 

–  This is usually done with Gauss-Newton least-squares fitting 
–  Parameters to be fit are structural and may account for other 

experimental effects 
§  Least Squares gives us a Hessian matrix; inverse is variance-covariance 

matrix which gives uncertainties in the parameters 
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Crystallography from powder diffraction: before Rietveld 

How did crystallographers use powder diffraction data? 

§  Avoided powder diffraction 
§  Manually integrate intensities 

–  discard peaks with overlapped reflections 
Or  
–  rewrote single-crystal software to refine using sums of overlapped 

reflections 

Simulation of powder diffraction data was commonly done 
§  Qualitative reasoning: similarities in patterns implied similar structures 
§  Visual comparison between computed and observed structure verifies 

approximate model 
§  Fits, where accurate (& precise) models were rarely obtained 

Error propagation was difficult to do correctly (but not impossible)  
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Hugo Rietveld’s technique 

§  Hugo Rietveld realized that if a pattern could be modeled, the fit between 
a computed pattern and observed data could be optimized. 

–  Similar to single-crystal diffraction, except that now “experiment 
dependent parameters” must now be fit as well. 

•  Background 
•  Peak broadening 
•  Lattice constants 

–  Must have approximate model to start 
–  Fewer data are available (usually)  
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hkl mult d-space Fobs phase
6,5,1 48 1.548 0.29 0
7,3,2 48 1.548 1.709 180
8,0,0 6 1.5236 29.45 0
7,4,1 48 1.5004 2.327 0
8,2,0 24 1.4781 3.703 0
6,5,3 48 1.4569 1.27 0
6,6,0 12 1.4365 0.242 180
8,2,2 24 1.4365 2.086 0
8,3,1 48 1.417 0.22 180
7,4,3 48 1.417 1.827 180

1)   Generate reflection list 

2)   Compute Fhkl from 
model 

Calculation of Powder Diffraction: Graphical Example 

3) Peak heights are 
generated from |Fhkl|
2*multiplicity 

4) Convolute peaks & add 
background 

5) Optimize model, peak 
widths, etc. to improve 
fit 

Fhkl phase D-space mult hkl 
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Hugo Rietveld in the Petten Reactor (~1987) 
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Single crystal fitting 

Data: yi = Fhkl (obs) 

Model: Y(xi,p) = Fhkl (calc) 

Parameters (p1, p2, p3… pm): 
atomic coordinates, 
displacement (T) factors 

yi = observed powder diffraction 
intensities 

Y(xi,p) = computed diffraction 
intensities from (Fhkl (calc), 
background model, profile 
convolution, preferred 
orientation correction… 

+ lattice parameters  
+ “experimental” parameters for 

peak shapes, background… 

Powder data fitting 

Minimize equation Σ wi[yi - Y(xi,p)]2 where 
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Hugo Rietveld’s other breakthrough 

§  Based on intensities from the model, estimates for Fhkl can be made, 
even when reflections are completely overlapped: 

1 
Location 1: 
20% to A 
40% to B 
40% to C 

2 

Location 2: 
100% to C 

measured 

simulated 
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Rietveld Applications 

§  Crystallographic structure determination 

§  Quantify amounts of crystalline phases 

–  (Amorphous content too, with neutrons) 

§  Engineering properties 

–  Residual stress 

–  Preferred orientation 

§  Lattice constant determination 
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What sort of data are needed for Rietveld Analysis? 

§  Must be possible to fit peak shapes 
§  Q range and resolution demands dictated by structural complexity 
§  Data from lab instruments should be used with caution for structure 

determination 
§  Neutron data are usually necessary for occupancy determination 
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Disadvantage of Rietveld:  
Many non-structural parameters need to be fit 

§  Background 
–  fixed 
–  functions 

§  Peak shape 
–  “fundamental parameters” 
–  functions 

§  Lattice constants 
–  zero correction 
–  flat plate terms 

§  Scaling 
–  Phase fractions 

§  Structural parameters 
–  atom positions 
–  occupancies 
–  displacement parameters 

§  Preferential Orientation 
§  Absorption 

Powder diffraction offers fewer observations and worse 
peak-to-background than single crystal diffraction 

50 

Limitations of Rietveld 

§  Rietveld can only discern parameters that have effects on the 
powder diffraction pattern 
–  Cannot separate some effects ever 

• Absolute configuration 
• Magnetic moment directions unless they break symmetry 

§  If two parameters have approximately the same effect on the 
powder diffraction pattern, they correlate and they cannot be 
differentiated (e.g. occupancies & displacement parameters) 
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The physics that determine peak profiles  

Common factors 
§  Instrumental Resolution 
§ Axial Divergence (Low Angle 

Asymmetry) 
§ Sample placement/transparency 
§ Crystallite Broadening* 
§ Strain Broadening* 

* Note that these effects can vary for 
different classes of reflections 
(anisotropic peak broadening) 

Less common factors 
§  Stacking faults* 
§  Modulated Structures* 
§  Coherence differing by atom type* 
§  Compositional inhomogeneity! 

* Hard to model 
! Sometimes impossible to model 

Results of these factors are convoluted to produce the observed peak 
shape. 
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Approaches to Profile Models 

Three different approaches to reproducing peak shapes have been used: 
§  Empirical functions 

Functions are chosen simply because they are computationally simple 
and fit peaks well. The parameters cannot be interpreted because 
they have no relationship to the underlying physics of diffraction. 

§  Physically-based parameters 
Functions are based on the physical phenomena. Parameters are 

usually found empirically, but often have a physical meaning. 
§  “Fundamental Parameters” 

Functions and where possible parameter values are determined from 
diffraction physics. The only adjustable parameters are those related 
to sample properties. 
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Lorentz (Cauchy) and Gaussian Broadening Functions 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Γ

Δ−

Γ
=ΓΔ 2

2

2
)(2ln4exp2ln4),(

GG
G

TTG
π

2
21

12),(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
+

=Δ

L

L
L

T
TL

γ

πγ
γ

Most instrument & sample broadening contributions are Lorentzian or 
Gaussian 

Normalized Gaussian 

Normalized Lorentzian 

Note that peak widths vary so 
ΓG and γL are both functions of 
Q 
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Voigt vs. Pseudo-Voigt 

A Gaussian convoluted with a Lorentzian function is a Voigt function, 
however the Voigt is slow to compute and the derivatives are messy. Few 
Rietveld programs implement a Voigt. 

The “pseudo-Voigt” is the weighted sum of a Gaussian & Lorentzian 
function – approximation is normally pretty good 

Fractions of each function depend on the relative widths of each [see mixing 
factor (η) in GSAS manual, η=0 is Gaussian, η=1 is Lorentzian] 
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Lorentzian 
§  X is crystallite broadening 
§  Y is strain broadening 

N.B. no instrumental broadening term 

Θ
+

+Θ+Θ=Γ

2

22
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VUg

Θ+
Θ

= tan
cos

YX
γ

CW: Variation of FWHM with Q 

Gaussian 
§  U, V & W are Cagliotti terms, derived 

as instrument response function for 
CW neutron diffraction. Incomplete for 
x-rays. 

§  P is a crystallite broadening 
contribution 
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Axial Divergence (Low Angle Asymmetry) 

Work of Finger, Cox & Jephcoat, based on derivations by van Laar & Yelon 

FCJ: 
Convolute 
profile with 
this curve 
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F-C-J: Example 

§  The Finger-Cox-Jephcoat correctly models the effective shift of the peak 
due to axial divergence. 

Note: the “competition,” 
the split Pearson VII 
(empirical), does not  
model this effect at all! 
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Sample Displacement & Transparency 

In Bragg-Brentano geometry, samples are ideally placed exactly at 
rotation axis and all diffraction occurs from sample surface (highly 
absorbing sample). Neither is commonly true.  

§  Peak centers are shifted by  
–  Sample Displacement (SHFT), Ss 
–  Sample transparency (TRNS), Ts 

These corrections correlate very highly with the zero correction for 2θ, 
ZERO. Do not refine this too.  

Parallel-Beam instruments (neutron or synchrotron) are very tolerant of 
displacement and transparency. Never refine SHFT or TRNS, but do 
refine ZERO (correction to 2θ).  
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36000
sRSntdisplaceme π−

=
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R is diffractometer radius 


