Magnetic Neutron Scattering

Bruce D. Gaulin

- Magnetism and Neutron Scattering A Killer Application
- Magnetism in Solids
- Bottom lines on magnetic neutron scattering
- Examples

Magnetic Neutron Scattering directly probes the electrons in solids

Killer Application: Most powerful probe of magnetism in solids!

H ¹ 1/2 99.98 2.792	2 98 99 For every element the most abundant magnetic isotope is shown. After Varian Associates NME Table 4th ed. 1984															He ³ 1/2 10 ⁻⁶ -2.127						
LI' 3/2 92.57 3.256	Be' 3/2 100. -1.177		B ¹¹ C ¹³ N ¹⁴ O ¹⁷ F ¹⁹ 3/2 1/2 1 5/2 1/2 81.17 1.108 99.64 0.04 100. 2.688 0.702 0.404 -1.893 2.627															Ne ²¹ 3/2 0.257 -0.662				
Na ²³ 3/2 100. 2.216	Mg ²⁵ 5/2 10.05 0.855	d-electrons: 10 levels to fill Al ²⁷ \$l ²⁹ p ³¹ \$ ³³ Cl ³⁵ A 5/2 1/2 1/2 3/2 3/2 3/2 100. 4.70 100. 0.74 75.4 3.639 0.565 1.131 0.643 0.821															Ar					
K ³⁹ 3/2 93.08 0.391	Ca⁴³ 7/2 0.13 -1.315	Sc⁴⁵ 7/2 100. 4.749	Tř 5/2 7.7 0.7	17 V 2 7 75 - 787 5	/ ⁵¹ //2 - 100, .1 39	Cr⁵³ 3/2 9.54 0.474	Mn⁵ 5/2 100. 3.46	5 Fe 1/2 2.2 1 0.0	⁵⁷ C 2 7, 245 10 990 4.	o ⁵¹ 1 /2 3 00. 1 639 0	/2 .25 .746	Cu ⁴³ 3/2 69.09 2.221	Zn⁴ 5/2 4.13 0.83	17 Ga 2 3/ 2 60 74 2.0	41 2 9 0.2 7 011 0	20 ⁷³)/2 7.61).877	As⁷⁵ 3/2 100. 1.43	5 1/ 7.5 0.5	77 2 50 533	Br ⁷⁹ 3/2 50.57 2.099	Kr ⁸³ 9/2 11.55 -0.967	
Rb ²⁵ 5/2 72.8 1.348	Sr²⁷ 9/2 7.02 1.089	γ** 1/2 100. 0.137	Zr ⁴ 5/: 11 1.2	1 9 2 9 23 1 96 6	46^{*3})/2 (0). (144	Mo⁴⁵ 5/2 15.78 0.910	Tc	Ru 5/3 16 -0.	1 ⁰¹ 1 2 1, .98 10 69 0.	n ¹⁰¹ P /2 5 00. 2 088 -	d ¹⁰⁵ /2 2.23 0.57	Ag ¹⁰⁷ 1/2 51.35 0.113	Cd ¹ 1/2 12.1 -0.5	¹¹¹ In 2 9/ 86 95 82 5.1	115 8 2 1 .84 8 507 -	in¹¹⁹ 1/2 1.68 1.841	Sb ¹²¹ 5/2 57.25 3.342	1 Te 1/ 5 7.0 2 -0	125 2 03 882	¹²⁷ 5/2 100. 2.794	Xe ^{12*} 1/2 26.24 -0.773	
Cs¹³³ 7/2 100. 2.564	Ba ¹³⁷ 3/2 11.32 0.931	La ^{13*} 7/2 99.9 2.761	Hf 7/: 18. 0.6	1 ⁷⁷ 7 2 7 .39 1 11 2	a ¹⁸¹ /2 00. .340	W183 1/2 14.28 0.115	Re¹⁸ 5/2 62.9 3.17	7 Os 3/2 3 16. 5 0.6	187 1 1 2 3/ .1 61 551 0.	(2 1 (2 1 (.5 3 (17 0	+195 /2 3.7 .600	Au ¹⁹⁷ 3/2 100. 0.144	Hg ¹ 1/2 16.1 0.49	The 1/ 96 70 98	105 p 2 1 .48 2 512 0	5367 21.11 0.584	Bi^{20*} 9/2 100. 4.039	~	ľ	At	Rn	
Fr	Ra	Ac		Ce ¹⁴¹ 7/2	Pr 5/2 10	141 N 2 7/ 0. 12	(143) (2 1.20	Pre	Sm ¹⁴⁷ 7/2 15.07	Eu ¹⁵¹ 5/2 52.23	Gd ¹ 3/2 15.6	57 Th 3/ 4 10	15* 2 0.	Dy ¹⁶³ 5/2 24.97	Ho¹⁴ 7/2 100.	⁵ Er ¹ 7/2 22.	•7 1 2 1 82 1	m ¹⁴⁴ /2 00.	Yb ¹ 5/2 16.0	173 Lu 2 7, 06 97	175 /2 /40	4 f
				0.16 Th	3.9 Pa	12 -1 U	.25	Np	-0.68 Pu	1.521 Am	-0.34 Cm	: 1.: 84	52 1	-0.53 Cf	3.31 Es	0.4 Fm	8 - N	0.20 Id	-0.6 No	77 2. Li	9	5 f

 $\mathbf{t}_{2\mathbf{g}}$ orbitals

 $3d^5$: Mn^{2+}

\mathbf{t}_{2g} orbitals

3d⁹ : Cu²⁺

 \mathbf{t}_{2g} orbitals

Superexchange Interactions in Magnetic Insulators

 $H = \Sigma_{i,j} J_{ij} S_i S_j$

RKKY exchange in Itinerant Magnets (eg. Rare Earth Metals)

 $T = 0.9 T_{C}$

 $T = 1.1 T_{C}$

Magnetic Neutron Scattering

Neutrons carry no charge; carry s=1/2 magnetic moment

Only couple to electrons in solids via magnetic interactions

How do we understand what occurs when a beam of mono-energetic neutrons falls incident on a magnetic material?

Calculate a "cross section":

What fraction of the neutrons scatter off the sample with a particular:

- a) Change in momentum: $\mathbf{\kappa} = \mathbf{k} \mathbf{k}'$
- b) Change in energy: $\hbar\omega = \hbar^2 k^2/2m \hbar^2 k^2/2m$
- Fermi's Golden Rule 1st Order Perturbation Theory

 $d^2\sigma/d\Omega dE'$: **k**, σ , $\lambda \rightarrow k'$, σ' , λ'

 $= \mathbf{k}'/\mathbf{k} (\mathbf{m}/2\pi \,\hbar^2)^2 |\langle \mathbf{k}' \sigma \,\hat{} \lambda' | V_{\mathbf{M}} | \mathbf{k} \sigma \lambda \rangle|^2 \,\delta (\mathbf{E}_{\lambda} - \mathbf{E}_{\lambda}' + \hbar\omega)$

kinematic

interaction matrix element

energy conservation

Understanding this means understanding:

V_M: The potential between the neutron and all the unpaired electrons in the material

 $V_{\mathbf{M}} = \textbf{-} \boldsymbol{\mu}_{n} \boldsymbol{B}$

Magnetic Field from spin ¹/₂ of Electron: B_S

Magnetic Field from Orbital Motion of Electrons: B_L The evaluation of $|\langle \mathbf{k} \sigma \lambda \rangle | \mathbf{V}_{\mathrm{M}} | \mathbf{k} \sigma \lambda \rangle |^{2}$ is somewhat complicated, and I will simply jump to the result:

$$d^{2}\sigma/d\Omega \ dE' = (\gamma \ r_{0})^{2} \ k'/k \ \Sigma_{\alpha \beta} \ (\delta_{\alpha \beta} - \kappa_{\alpha} \ \kappa_{\beta})$$

× $\Sigma \Sigma_{\text{All magnetic atoms at d and d}}$ F_d .*(κ) $F_d(\kappa)$

- × $\Sigma_{\lambda\lambda'} p_{\lambda} < \lambda \mid \exp(-i\kappa \mathbf{R}_{d'}) S^{\alpha}_{d'} \mid \lambda' > < \lambda' \mid \exp(i\kappa \mathbf{R}_{d}) S^{\beta}_{d} \mid \lambda >$
- × $\delta (E_{\lambda} E_{\lambda}' + \hbar\omega)$

With $\kappa = \mathbf{k} - \mathbf{k}'$

This expression can be useful in itself, and explicitly shows the salient features of magnetic neutron scattering

We often use the properties of $\delta (E_{\lambda} - E_{\lambda} + \hbar\omega)$ to obtain $d^2\sigma/d\Omega dE'$ in terms of *spin correlation functions*:

 $d^2\sigma/d\Omega dE' = (\gamma r_0)^2/(2\pi\hbar) k'/k N\{1/2 g F_d(\kappa)\}^2$

×
$$\Sigma_{\alpha\beta}$$
 ($\delta_{\alpha\beta} - \kappa_{\alpha}\kappa_{\beta}$) $\Sigma_{1} \exp(i\kappa \cdot l)$

- × $\int \langle \exp(-i\kappa \cdot \mathbf{u}_0) \exp(i\kappa \cdot \mathbf{u}_1(t)) \rangle$
- × $\langle S_0^{\alpha}(0) S_1^{\beta}(t) \rangle \exp(-i\omega t) dt$

Fourier tranform: S(κ, ω)

Bottom Lines:

- Comparable in strength to nuclear scattering
- $\{1/2 \ g \ F(\kappa)\}^2$: goes like the magnetic form factor squared
- $\Sigma_{\alpha \beta} (\delta_{\alpha \beta} \kappa_{\alpha} \kappa_{\beta})$: sensitive only to those components of spin $\perp \kappa$
- **Dipole selection rules, goes like:** $< \lambda^{'} | S^{\beta}_{d} | \lambda > ;$

where $S^{\beta}=S^x$, S^y (S⁺, S⁻) or S^z

Diffraction type experiments:

Add up spin correlations with phase set by $\kappa = k - k'$

 $\Sigma_1 \exp(i\kappa \cdot \mathbf{l}) < S_0^{\alpha}(0) S_1^{\beta}(t) > \text{ with } t=0$

FIG. 13. Comparison of the experimental ¹⁴⁰Gd form factor at 96 K as measured by Moon *et al.*⁴⁷ with nonrelativistic Hartree-Fock and relativistic Dirac-Fock calculations by Freeman and Desclaux.³⁶

Magnetic form factor, $F(\kappa)$, is the Fourier transform of the spatial distribution of magnetic electrons –

usually falls off monotonically with κ as $\pi/(1 \text{ A}) \sim 3 \text{ A}^{-1}$

OBLATE

PROLATE

Three types of scattering experiments are typically performed:

Elastic scattering
Energy-integrated scattering
Inelastic scattering

Elastic Scattering

 $\hbar\omega = (\hbar k)^2/2m - (\hbar k^2)^2/2m = 0$ measures time-independent magnetic structure

 $d\sigma/d\Omega = (\gamma r_0)^2 \{ 1/2 \text{ g } F(\mathbf{\kappa}) \}^2 \quad \exp(-2W)$ $\times \sum_{\alpha \beta} (\delta_{\alpha \beta} - \kappa_{\alpha} \kappa_{\beta}) \sum_{l} \exp(i\mathbf{\kappa} \cdot \mathbf{l}) \langle S_0^{\alpha} \rangle \langle S_l^{\beta} \rangle$ $S \perp \mathbf{\kappa} \text{ only} \qquad \text{Add up spins with} \exp(i\mathbf{\kappa} \cdot \mathbf{l}) \text{ phase factor}$

κ = 0,0,1

a*=b*=0: everything within a basal plane (a-b) adds up in phase

c*=1:

 2π phase shift from top to bottom of unit cell

 π phase shift from corners to body-centre –good but μ // κ kills off intensity!

Magnetic Structures can be complicated

Incommensurate structures in

rare earth metals

Single-k Double-k Triple-k
$$\vec{k} = \langle 0 \ 0 \ 1/2 \rangle$$

 \bigcirc ব Ð Œ Tb,Dy,Ho Gd,Tb,Dy Er,Tm Er Ho,Er Tm (a) (c) (d) (f) (b) (e)

Muliple-k structures in high-symmetry antiferromagnets

Mn²⁺ as an example: $\frac{1}{2}$ filled 3d shell S=5/2 (2S+1) = 6 states : $S(S+1), m_z >$ $m_{z} = +5/2 \hbar, +3/2 \hbar, +1/2 \hbar, -1/2 \hbar, -3/2 \hbar, -5/2 \hbar$ -5/2 ħ -3/2 ħ -1/2 ħ 1/2 **ħ** 3/2 ħ H=0; 6 degenerate states

5/2 ħ

 $H \neq 0$; 6 non-degenerate states

 $< 3/2 | S^- | 5/2 > \neq 0 \rightarrow$ inelastic scattering

Inelastic Magnetic Scattering : $|\mathbf{k}| \neq |\mathbf{k}^0|$

Figure 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed from above, showing one wavelength. The wave is drawn through the ends of the spin vectors.

Study magnetic excitations (eg. spin waves) *Dynamic magnetic moments* on time scale 10⁻⁹ to 10⁻¹² sec

Sum Rules:

One can understand very general features of the magnetic neutron Scattering experiment on the basis of "sum rules".

1.
$$\chi_{\text{DC}} = \int (\chi''(\kappa=0, \omega)/\omega) \, d\omega$$
;

where χ_{DC} is the χ measured with a SQUID

2.
$$\int d\omega \int_{BZ} d\mathbf{\kappa} S(\mathbf{\kappa}, \omega) = S(S+1)$$

T = 0.9 T_C Symmetry broken

 $\mathbf{T} = \mathbf{T}_{\mathbf{C}}$

ξ~ very large Origin of universality

 $T = 1.1 T_{C}$

• Bragg scattering gives square of order parameter; symmetry breaking

• Diffuse scattering gives fluctuations in the order parameter

Intensity

=2π/d

Geometrical Frustration:

The cubic pyrochlore structure; A network of corner-sharing tetrahedra

Low temperature powder neutron diffraction from Tb₂Ti₂O₇ Counts (10³ / 6 hrs)

A³⁺ site within a distorted cube of 8 O²⁻ ions – unique direction pointing into or out of tetrahedra

Tb³⁺ : **S=3**, **L=3**, **J=6**

(2J+1) = 13 states split by the crystalline electric field

Inelastic neutron scattering on polycrystalline Tb₂Ti₂O₇

 $(\Delta : Ho_2Ti_2O_7 \sim 240 \text{ K}; Dy_2Ti_2O_7 \sim 380 \text{ K})$

Time-of-flight neutron scattering from DCS on Tb₂Ti₂O₇

One Transition in Zero Field

Five Transitions in Non-Zero Field

Conclusions:

- Neutrons probe magnetism on length scales from 1 – 100 A, and on time scales from 10⁻⁹ to 10⁻¹² seconds
- Magnetic neutron scattering goes like the form factor squared (small κ), follows dipole selection rules $< \lambda^{'} | S^{+,-,z} | \lambda >$, and is sensitive only to components of moments \perp to κ .
- Neutron scattering is the most powerful probe of magnetism in materials; magnetism is a killer application of neutron scattering (1 of 3).