Introduction to Inelastic Neutron Scattering

Bruce D Gaulin McMaster University

Brockhouse Institute for Materials Research

Neutrons: Properties and Cross Sections

Excitations in solids

Triple Axis and Chopper TOF Techniques

Practical concerns

²³⁵U + n → daughter nuclei + 2-3 n + gammas

neutrons:

no charge s=1/2 <mark>massive: mc²~1 GeV</mark>

How do we produce neutrons

Fission

- chain reaction
- continuous flow
- 1 neutron/fission

Spallation

- no chain reaction
- pulsed operation
- 30 neutrons/proton

Neutron interaction with matter

• Properties of the neutron

- Mass m_n=1.675 x 10⁻²⁷ kg
- Charge 0
- Spin-1/2, magnetic moment $\mu_n = -1.913 \mu_N$

Neutrons interact with...

- Nucleus
 - Crystal structure/excitations (eg. phonons)
- Unpaired e⁻ via dipole scattering
 - Magnetic structure/excitations (eg. spin waves)

Nuclear scattering

NXS School Magnetic dipole scattering

Wavelength-energy relations

Neutron as a wave ...

• Energy (E), velocity (v), wavenumber (k), wavelength (λ)

$$k = \frac{m_n v}{h} = \frac{2\pi}{\lambda}$$

$$E = \frac{h^2 k^2}{2m_n} = \frac{h^2}{2m_n} \left(\frac{2\pi}{\lambda}\right)^2 = \frac{81.81 \text{meV} \cdot \text{\AA}^2}{\lambda^2}$$

$$E = k_B T = \left(0.08617 \text{meV} \cdot \text{K}^{-1}\right) T$$

 λ ~ interatomic spacing \rightarrow E ~ excitations in condensed matter

	Energy (meV)	Temperature (K)	Wavelength (Å)
Cold	0.1 – 10	1 – 120	4 – 30
Thermal	5 – 100	60 - 1000	1 – 4
Hot	100 – 500	1000 - 6000	0.4 – 1

Incident Beam:

- monochromatic
- "white"
- "pink"

Scattered Beam:

- Resolve its energy
- Don't resolve its energy
- Filter its energy

Fermi's Golden Rule within the 1st Born Approximation

$$W = 2\pi / h | < f | V | i > |^{2} \rho (E_{f})$$

$$\delta \sigma = W / \Phi = (m/2\pi h^{2})^{2} k_{f} / k_{i} | < f | V | i > |^{2} \delta \Omega$$

 $\delta^2 \sigma / \delta \Omega \, \delta E_f = k_f / k_i \, \sigma_{coh} / 4\pi \, N \, S_{coh} (\mathbf{Q}, \omega)$

+
$$k_f/k_i \sigma_{incoh}/4\pi$$
 N $S_{incoh}(\mathbf{Q}, \omega)$

σ_{coh} and σ_{incoh}

parametrize the strength of the scattering from the nuclei

Nuclear correlation functions

 $d\Omega dE_{f}$

 $4\pi k_i$

Nuclear (lattice) excitations

Neutron scattering measures simultaneously the wavevector and energy of **collective excitations** \rightarrow dispersion relation, $\omega(\mathbf{q})$ In addition, **local excitations** can of course be observed

• Commonly studied excitations

- Phonons
- Librations and vibrations in molecules
- Diffusion
- Collective modes in glasses and liquids

Excitations can tell us about

- Interatomic potentials & bonding
- Phase transitions & critical phenomena (soft modes)
- Fluid dynamics
- Momentum distributions & superfluids (eg. He)
- Interactions (eg. electron-phonon coupling)

Atomic diffusion

For long times compared to the collision time, atom diffuses

Auto-correlation function

$$G_{s}(r,t) = \left\{ 6\pi \left\langle r^{2}(t) \right\rangle \right\}^{-3/2} \exp \left(-\frac{r^{2}}{6 \left\langle r^{2}(t) \right\rangle} \right)$$

$$S(Q,\omega) = \frac{1}{\pi h} \exp\left(\frac{h\omega}{2k_BT}\right) \frac{DQ^2}{\omega^2 + (DQ^2)^2}$$

100 θ=60* Ω₀=0·82 *θ* =20° 60 Q=0.28 20 $\left\{ \sigma_{\text{inc}} / \sigma_{\text{inc}} + \sigma_{\text{conf}} \right\} S(Q, \omega) (1/\beta \hbar)$ 60 θ=30* Q=0.42 20 θ=45 Q= 0.62 30 20 θ=90° = 1·16 10 2-0 x 10¹² 0 1.0 -1-0 2.0 -1.0 0 0 ω (rad s-1) Cocking, J. Phys. C 2, 2047 (1969)..

Liquid Na

Molecular vibrations

- Large molecule, many normal modes
- Harmonic vibrations can determine interatomic potentials

C60 molecule

Prassides et al., Nature 354, 462 (1991).

Crystalline Materials: Structure is Periodic with Period a

Work in Reciprocal Space – Momentum space, most natural for understanding diffraction and scattering

Mapping Momentum – Energy (Q-E) space

Bragg diffraction:

Elastic scattering : $|\mathbf{k}_i| = |\mathbf{k}_f|$

Bragg diffraction:

а

Elastic scattering : $|\mathbf{k}_i| = |\mathbf{k}_f|$

Bragg diffraction:

а

Elastic scattering : $|\mathbf{k}_i| = |\mathbf{k}_f|$

Elementary Excitations in Solids

MOMENTUM, Q

• Lattice Vibrations (Phonons)

• Spin Fluctuations (Magnons)

Energy vs Momentum

• Forces which bind atoms together in solids

Phonons

• Normal modes in periodic crystal \rightarrow wavevector

$$\mathbf{u}(l,t) = \frac{1}{\sqrt{NM}} \sum_{j\mathbf{q}} \boldsymbol{\varepsilon}_{j}(\mathbf{q}) \exp(i\mathbf{q}\cdot\mathbf{l}) \hat{B}(\mathbf{q}j,t)$$

• Energy of phonon depends on **q** and polarization

Loragitverimenhodele

FCC structure

Phonon intensities

More complicated structures

Spin excitations

• Spin excitations

- Spin waves in ordered magnets
- Paramagnetic & quantum spin fluctuations
- Crystal-field & spin-orbit excitations

• Magnetic inelastic scattering can tell us about

- Exchange interactions
- Single-ion and exchange anisotropy (determine Hamiltonian)
- Phase transitions & critical phenomena
- Quantum critical scaling of magnetic fluctuations
- Other electronic energy scales (eg. CF & SO)
- Interactions (eg. spin-phonon coupling)

Spin waves

Perring et al., Phys. Rev. Lett. 77, 711 (1996).

Antiferromagnetic 80 [[20]] [00**5**] [٤00] [¦soç] [505] 70 MAGNON ENERGY (meV) 60 50 Tm FeO_z 40 =102.5°K 07 ± 0.58° K 30 =-1.88±0.23°K 20 =-24.51 ±0.14°K J'= 0.0°K 10 $[0,0,\frac{1}{2}]$ [0,0,0] $[\frac{1}{2},0,0]$ $[\frac{1}{2},0,\frac{1}{2}]$ [0,0,0] $\left[\frac{1}{2}, 0, \frac{1}{2}\right]$ Shapiro et al., Phys. Rev. B 10, 2014 (1974).

McQueeney et al., Phys. Rev. Lett. 99, 246401 (2007).

Scattering experiments

Kinematic limitations

- Many combinations of k_i, k_f for same Q, ω
 - Only certain configurations are used (eg. E_f-fixed)
- Cannot "close triangle" for certain Q,ω due to kinematics

Kinematic limits, E_i=160 meV

Brockhouse's Triple Axis Spectrometer

Collimator_

-Shielding drum

Monochromator

crystal

Two Axis Spectrometer:

- 3-axis with analyser removed
- Powder diffractometer
- Small angle diffractometer
- Reflectometers

Soller Slits: Collimators

Define beam direction to +/- 0.5, 0.75 etc. degrees

Single crystal monochromators:

Bragg reflection and harmonic contamination

 $n\lambda = 2d \sin(\theta)$

Get: λ , $\lambda/2$, $\lambda/3$, etc.

Bragg's Law: $n\lambda = 2d sin(\theta)$

 $|\mathbf{k}| = 2\pi / \lambda$

Volume of Q – E space sampled

~ k³ cot (θ)

"Efficiency" of monochromator / analyser varies strongly with k, $\boldsymbol{\theta}$
Bragg Diffraction:

Two Axis Diffraction: No E_f discrimination

Two different ways of performing constant-Q scans

Constant k_f:

• k_f , θ_A do not change; therefore analyser "efficiency" is constant

• k_i , θ_M do change, but monitor detector normalizes to incident neutron flux

 Monitor detector (low) efficiency goes like ~ 1/v ~ 1/k_i

Recall that our cross-section was:

 $\delta \sigma = W / \Phi = (m/2\pi h^2)^2 k_f / k_i |< f | V | i>|^2 \delta \Omega$

Which gave us (keeping only the coherent scattering)

 $\delta^2 \sigma / \delta \Omega \, \delta E_f = k_f / k_i \, \sigma_{coh} / 4\pi \, N \, S_{coh} (\mathbf{Q}, \omega)$

However, we are measuring the incident flux with an efficiency of $1/k_i$

So, for constant k_f, this means we measure:

 $\delta^2 \sigma / \delta \Omega \delta E_f = k_f / k_i \sigma_{coh} / 4\pi N S_{coh} (\mathbf{Q}, \omega) / 1 / k_i \sim S_{coh} (\mathbf{Q}, \omega)$

Mapping Momentum – Energy (Q-E) space

2π/a

MOMENTUM, Q

Elementary Excitations in Solids

• Lattice Vibrations (Phonons)

• Spin Fluctuations (Magnons)

Energy vs Momentum

• Forces which bind atoms together in solids

Constant Q, Constant E 3-axis technique allow us to Put Q-Energy space on a grid, And scan through as we wish

Map out elementary excitations In Q-energy space (dispersion Surface)

picomotor

Inelastic x-ray scattering

- Ei=20 keV, need 1 meV resolution
- $\Delta E/E_i \simeq 10^{-7} !!!$

piezo

 $\ensuremath{\varphi}\xspace$ -scan of monochromator 1 meV $\Rightarrow \ensuremath{\mu}\xspace$ rad

T-scan of monochromator $1 \text{ meV} \Rightarrow 0.02 \text{ K}$

NXS School

Samples

• Samples need to be BIG

- ~ gram or cc
- Counting times are long (mins/pt)

Co-aligned CaFe₂As₂ crystals

Monochromators

• Selects the incident wavevector

- Reflectivity
- focusing
- high-order contamination
 eg. λ/2 PG(004)

Mono	d(hkl)	uses
PG(002)	3.353	General
Be(002)	1.790	High k _i
Si(111)	3.135	No λ/2

Detectors

Gas Detectors

- $n + {}^{3}He \rightarrow {}^{3}H + p + 0.764 \text{ MeV}$
- Ionization of gas
- e⁻ drift to high voltage anode
- High efficiency

Neutron Kinetic Energy [meV] 103 102 Conversion Efficiency [%] 60 ³He (n, p) ³H 20Detector Depth = 1.5 cm 10 6 8 Neutron Wavelength [Å]

- Beam monitors
- Low efficiency detectors for measuring beam flux

Resolution

• Resolution ellipsoid

- Beam divergences
- Collimations/distances
- Crystal mosaics/sizes/angles

Resolution convolutions

 $\mathbf{I}(\mathbf{Q}_0,\omega_0) = \int \mathbf{S}(\mathbf{Q}_0,\omega_0) R(\mathbf{Q}-\mathbf{Q}_0,\omega-\omega_0) d\mathbf{Q} d\omega$

Resolution focusing

- Optimizing peak intensity
- Match slope of resolution to dispersion

Neutrons have mass so higher energy means faster – lower energy means slower

We can measure a neutron's energy, wavelength by measuring its speed

Time-of-flight methods

Spallation neutron source

Pharos – Lujan Center

Effectively utilizes time structure of pulsed neutron groups

$$t = \frac{d}{v} = \left(\frac{m}{h}d\right)\lambda$$

A single (disk) chopper pulses the neutron beam. A second chopper selects neutrons within a narrow range of speeds.

Counter-rotating choppers (close together), with speed \bullet , behave like single choppers with speed 2 \bullet . They can also permit a choice of pulse widths.

Additional choppers remove "contaminant" wavelengths and reduce the pulse frequency at the sample position.

The DCS has seven choppers, 4 of which have 3 "slots"

Disk 4B

Fermi Choppers

- Body radius ~ 5 cm
- Curved absorbing slats
 - B or Gd coated
 - ~mm slit size
- f = 600 Hz (max)
- Acts like shutter, $\Delta t \approx \mu s$

Figure 1. ISIS MAPS chopper and slit package assembly - exploded view

T-zero chopper

- Background suppression
- Blocks fast neutron flash

Position sensitive detectors

- ³He tubes (usu. 1 meter)
- Charge division
- Position resolution ~ cm
- Time resolution ~ 10 ns

MAPS detector bank

Sample environment

- Temperature, field, pressure
- Heavy duty for large sample environment
 - CCR
 - He cryostats
 - SC magnets

NXS School

Guides

- Transport beam over long distances
- Background reduction
- Total external reflection
 - Ni coated glass
 - Ni/Ti multilayers (supermirror)

Size matters

• Length = resolution

- Instruments ~ 20 40 m long
- E-resolution ~ 2-4% E_i
- More detectors
 - SEQUOIA 1600 tubes, 144000 pixels
 - Solid angle coverage 1.6 steradians
- Huge data sets
- 0.1 1 GB

SEQUOIA detector vacuum vessel

Data visualization

- Large, complex data from spallation sources
- Measure $S(\mathbf{Q}, \omega) 4D$ function

Ye et al., Phys. Rev. B, 75 144408 (2007).

63

Order

The appearance of spin waves indicates that the field-induced state is long range ordered

Weak magnetic field // [110] induces LRO:

appearance of long-lived spin waves at low T and moderate H

References

General neutron scattering

G. Squires, "Intro to theory of thermal neutron scattering", Dover, 1978. S. Lovesey, "Theory of neutron scattering from condensed matter", Oxford, 1984. R. Pynn, http://www.mrl.ucsb.edu/~pynn/.

Polarized neutron scattering

Moon, Koehler, Riste, Phys. Rev 181, 920 (1969).

Triple-axis techniques

Shirane, Shapiro, Tranquada, "Neutron scattering with a triple-axis spectrometer", Cambridge, 2002.

Time-of-flight techniques

B. Fultz, http://www.cacr.caltech.edu/projects/danse/ARCS_Book_16x.pdf

Why map reciprocal space?

Crystallography! Variation of Bragg peak intensities = where the atoms are

Kinematics

- Essentially elastic scattering
- No kinematic limits

$$Q \approx 2k_i \sin \theta$$

$$h = h c (k_i - k_f)$$

TOF vs. 3-axis

NXS School

- epithermal (up to 2 eV)
- Total spectra (esp. powder samples)
- Absolute normalization
- Low-dimensional systems
- Hardware inflexible
- Software intensive

- High flux of thermal neutrons
- Focused studies in Q,ω (soft modes, gaps, etc.)
- Three-dimensional systems
- Hardware intensive
- Software inflexible

IXS vs. INS

• SAMPLE SIZE

- Simple scattering geometry (k_i≈k_f)
- Resolution function simpler (most angles fixed, E-scans only)
- No spurions
 (high-order refs. keV, no incoherent scat.)
- Can only do lattice excitations

Computation

Fe₃O₄ spin waves

Incident Beam:

- monochromatic
- "white"
- "pink"

Scattered Beam:

- Resolve its energy
- Don't resolve its energy
- Filter its energy

Absolute normalization

- Absolute normalization
 - Using incoherent scattering from vanadium
 - $-\sigma/4\pi = 404 \text{ mbarns/Sr}$

Fermi's Golden Rule within the 1st Born Approximation

$$W = 2\pi / h | < f | V | i > |^{2} \rho (E_{f})$$

$$\delta\sigma = W / \Phi = (m/2\pi h^{2})^{2} k_{f} / k_{i} | < f | V | i > |^{2} \delta\Omega$$

$$\begin{split} \delta^{2}\sigma / \delta\Omega \, \delta \mathsf{E}_{\mathsf{f}} &= \, \mathsf{k}_{\mathsf{f}}/\mathsf{k}_{\mathsf{i}} \, \, \sigma_{\mathsf{coh}}/4\pi \, \, \mathsf{N} \, \, \mathsf{S}_{\mathsf{coh}}(\mathbf{Q}, \, \omega) \\ &+ \, \mathsf{k}_{\mathsf{f}}/\mathsf{k}_{\mathsf{i}} \, \sigma_{\mathsf{incoh}}/4\pi \, \, \mathsf{N} \, \, \mathsf{S}_{\mathsf{incoh}}(\mathbf{Q}, \, \omega) \end{split}$$

Spin correlation functions

The cross-section is proportional to the magnetic susceptibility, i.e. it is the response of the system to spatially & time varying magnetic field

Paramagnetic scattering

$$\left\langle S_{j}^{\alpha}S_{j'}^{\beta}\right\rangle = 0 \left(j \neq j'\right)$$

Single ion scattering

$$\left\langle S_{j}^{z}(0)S_{j}^{z}(t)\right\rangle = \left\langle \left(S_{j}^{z}\right)^{2}\right\rangle e^{-\Gamma t} = \frac{1}{3}\left\langle \left(S_{j}\right)^{2}\right\rangle e^{-\Gamma t} = \frac{1}{3}S\left(S+1\right)e^{-\Gamma t}$$

$$\frac{\operatorname{Im}\left\{\chi^{zz}(0,\omega)\right\}}{\pi h\omega} = \frac{g^2 S(S+1)\mu_B^2}{3k_B T} \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (h\omega)^2}$$

- Inverse width, $1/\Gamma$, gives relaxation time
- Note crystal field excitation

$$\chi_0 = \int_{-\infty}^{\infty} \frac{\operatorname{Im}\left\{\chi^{zz}(0,\omega)\right\}}{\pi \hbar \omega} d\omega = \frac{g^2 S(S+1)\mu_B^2}{3k_B T}$$

McQueeney et al., Phil. Mag. B 81, 675 (2001).

Scattering experiments

Momentum Transfer (Å⁻¹)

Triple-axis instruments

High flux isotope reactor - ORNL

HB-1A 3-axis spectrometer

- Hardware flexibility
- Constant-Q (or E) scans
 - Ideally suited for single-xtals

Time-of-flight methods

Spallation neutron source

Pharos – Lujan Center

- Hardware inflexible
- Effective for powders
- Complicated **Q**,E-scans a challenge for single-xtals

Detector

Sample

Time

79

Fermi chopper

INS data

- Intensities as a function of ${\bm Q}$ and ω

Other triple-axis stuff

0.9

0.8

transmission 70.0

0.3

0.5

1 1.5 2 2.5 3 3.5 4 4.5 wavelength(Å)

• Soller Collimators

- Define beam divergence
- Q, ω resolution function

• Filters

- Xtal Sapphire: fast neutron background
- Poly Be: low-energy (5 meV) band pass
- PG: higher order contamination

Masks

- Beam definition
- Background reduction

PG filter

Magic numbers

- Best filter for rejection of $\lambda/2$ contamination
- $E_{f} = 13.7, 14.7, 30.5, 41 \text{ meV}$

Reciprocal space

Spurions

- Bragg incoherent Bragg
 - Eg. $k_i 2k_f$
 - ħ ω = 41.1 meV
 - E_f = 13.7 meV
 E_i = 54.8 meV
 4E_f = 54.8 meV
 - Incoherent elastic scattering visible from analyzer $\lambda/2$
- incoherent Bragg Bragg
 - Sample 2 θ in Bragg condition for $k_f\text{-}k_f$
 - Even for inelastic config, weak incoherent from mono

Resolution effects

Introduction to Inelastic Neutron Scattering

Bruce D Gaulin McMaster University

Brockhouse Institute for Materials Research

Lattice

Cubic lattice