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 Neutrons: Properties and 
Cross Sections

 Excitations in solids

 Triple Axis and 
Chopper TOF Techniques

 Practical concerns





235U + n  

daughter nuclei + 
2-3 n + gammas

neutrons:

no charge
s=1/2  
massive: mc2~1 GeV
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Neutron interaction with matter

 Neutrons interact with…
 Nucleus 

 Crystal structure/excitations (eg. phonons)

 Unpaired e- via dipole scattering 
 Magnetic structure/excitations (eg. spin waves)

Nuclear scattering Magnetic dipole scattering

 Properties of the neutron
 Mass mn =1.675 x 10-27 kg
 Charge 0
 Spin-1/2, magnetic moment   µn = -1.913 µN
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Wavelength-energy relations
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 Neutron as a wave …
 Energy (E), velocity (v), wavenumber (k), wavelength (λ)

Energy (meV) Temperature (K) Wavelength (Å)
Cold 0.1 – 10 1 – 120 4 – 30
Thermal 5 – 100 60 – 1000 1 – 4
Hot 100 – 500 1000 – 6000 0.4 – 1
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mnv
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2π
λ

 

E = kBT = 0.08617meV ⋅ K−1( )T

λ ~ interatomic spacing   E ~ excitations in condensed matter



The Basic Experiment:

(θ, φ)

Incident Beam: 

• monochromatic
• “white”
• “pink”

Scattered  Beam: 

• Resolve its energy
• Don’t resolve its energy
• Filter its energy



Fermi’s Golden Rule  within the 1st Born Approximation

W = 2π /h |< f | V | i>|2  ρ (Ef)

δσ = W / Φ = (m/2πh2)2 kf / ki |< f | V | i>|2 δΩ

δ2σ /δΩ δEf  =  kf/ki σcoh/4π N  Scoh(Q, ω)

+ kf/ki σincoh/4π N  Sincoh(Q, ω)



σcoh and σincoh

parametrize the strength of the scattering 
from the nuclei



Nuclear correlation functions
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G(r,t) =
1
N

δ r'−R j ' (0)( )δ r '+r − R j (t)( )
jj '
∑ dr '∫

Pair correlation function

 

I(Q,t) = G(r,t)eiQ⋅rdr∫ =
1
N

exp −iQ ⋅ R j ' (0)( )exp iQ ⋅ R j (t)( )
jj '
∑

Intermediate function
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2πh
I(Q,t)e− iωtdt∫

Scattering function

 

d2σ
dΩdE f

=
σ scat

4π
k f

ki

NS(Q,ω)

Differential scattering 
cross-section



Nuclear (lattice) excitations
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 Commonly studied excitations
 Phonons
 Librations and vibrations in molecules
 Diffusion
 Collective modes in glasses and liquids

Neutron scattering measures simultaneously the wavevector and energy of 
collective excitations  dispersion relation, ω(q)
In addition, local excitations can of course be observed

 Excitations can tell us about
 Interatomic potentials & bonding
 Phase transitions & critical phenomena (soft modes)
 Fluid dynamics
 Momentum distributions & superfluids (eg. He)
 Interactions (eg. electron-phonon coupling)



Atomic diffusion
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Cocking, J. Phys. C 2, 2047 (1969)..

Liquid Na

Auto-correlation function
 

r2(t) ≈ 6Dt

For long times compared to the collision time, atom diffuses
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Molecular vibrations
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Prassides et al., Nature 354, 462 (1991).
C60 molecule

 Large molecule, many normal modes
 Harmonic vibrations can determine interatomic potentials



2 π / a

2 π / a

Origin of reciprocal space;

Remains fixed for any 
sample rotation

Crystalline Materials:  Structure is Periodic with Period a 

Work in Reciprocal Space – Momentum space, most natural for understanding 
diffraction and scattering

Mapping Momentum – Energy (Q-E) space



Q

ki

kf

-kf

Bragg diffraction:

Constructive Interference

Q = Reciprocal Lattice Vector

Elastic scattering : | ki | = | kf |



Q

ki

kf

-kf

Bragg diffraction:

Constructive Interference

Q = Reciprocal Lattice Vector

Elastic scattering : | ki | = | kf |

2 π / a

a



Q

ki

kf

-kf

Bragg diffraction:

Constructive Interference

Q = Reciprocal Lattice Vector

Elastic scattering : | ki | = | kf |

2 π / a

a



Elementary Excitations in Solids

• Lattice Vibrations (Phonons)
• Spin Fluctuations (Magnons)

Energy vs Momentum

• Forces which bind atoms 
together in solids



Phonons
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Lynn, et al., Phys. Rev. B 8, 3493 (1973).

 Normal modes in periodic crystal  wavevector

 Energy of phonon depends on q and polarization

FCC Brillouin zone

FCC structure

  

 

u(l,t) =
1
NM

ε j q( )exp iq⋅ l( ) ˆ B qj,t( )
jq
∑

Longitudinal modeTransverse mode
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Phonon intensities
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Guthoff et al., Phys. Rev. B 47, 2563 (1993).
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More complicated structures
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Woods, et al., Phys. Rev. 131, 1025 (1963). Optical phonon

Acoustic phonon

La2CuO4

Chaplot, et al., Phys. Rev. B 52, 7230(1995).
NXS School



Spin excitations
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 Spin excitations
 Spin waves in ordered magnets
 Paramagnetic & quantum spin fluctuations
 Crystal-field & spin-orbit excitations

 Magnetic inelastic scattering can tell us about
 Exchange interactions
 Single-ion and exchange anisotropy (determine Hamiltonian)
 Phase transitions & critical phenomena
 Quantum critical scaling of magnetic fluctuations
 Other electronic energy scales (eg. CF & SO)
 Interactions (eg. spin-phonon coupling)



Spin waves
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Perring et al., Phys. Rev. Lett. 77, 711 (1996).

Ferromagnetic

Shapiro et al., Phys. Rev. B 10, 2014 (1974).

Antiferromagnetic

Ferrimagnetic

McQueeney et al., Phys. Rev. Lett. 99, 246401 (2007).

Fe3O4
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Scattering experiments
Single-crystal

Instrument and sample (powder or 
single-crystal) determine how (Q,ω) 
space is sampled

Powder S(|Q|,ω)
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Kinematic limitations

• Many combinations of ki,kf for same Q,ω
– Only certain configurations are used (eg. Ef-fixed)

• Cannot “close triangle” for certain Q,ω
due to kinematics
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Kinematic limits, Ei=160 meV

ki

kf

Q

ki kf

Q

Minimum accessible Q



Bragg’s Law: nλ = 2d sin(θ)



Bragg’s Law: nλ = 2d sin(θ)



| ki | = 2 π / λi

| kf | = 2 π / λf

Brockhouse’s Triple Axis Spectrometer



Momentum Transfer:

Q = ki – kf

kf

- kf

ki

Q

Energy Transfer:

δ E = h2/2m (ki
2 – kf

2)



Two Axis Spectrometer:

• 3-axis with analyser removed

• Powder diffractometer
• Small angle diffractometer
• Reflectometers

Diffractometers often employ working 
assumption that all scattering
is elastic.



Soller Slits: Collimators

Define beam direction to 
+/- 0.5, 0.75 etc. degrees



Filters: 
Remove λ /n from incident or 
scattered beam, or both



nλ = 2d sin(θ)

Get:   λ , λ/2 , λ/3 , etc.

Single crystal monochromators:

Bragg reflection and 
harmonic contamination



Pyrolitic graphite filter:

E = 14.7 meV
λ = 2.37 A
v = 1.6 km/s
2 x v = 3.2 km/s 
3 x v = 4.8 km/s



Bragg’s Law: nλ = 2d sin(θ)

| k | = 2 π / λ

Volume of Q – E space sampled

~  k3 cot (θ)

“Efficiency” of 
monochromator / analyser
varies strongly with k, θ



Q

ki -kf

Bragg Diffraction: 

Two Axis Diffraction: No Ef discrimination



Constant kf Constant ki

Two different  ways of performing constant-Q scans  



Constant kf:

• kf , θA do not change;
therefore analyser “efficiency” is
constant 

• ki, θM do change, but 
monitor detector normalizes to
incident neutron flux

• Monitor detector (low) efficiency
goes like ~ 1/v ~ 1/ki



δσ = W / Φ = (m/2πh2)2 kf  / ki |< f | V | i>|2 δΩ

δ2σ /δΩ δEf  =  kf  / ki σcoh/4π N  Scoh(Q, ω)

Recall that our cross-section was:

Which gave us (keeping only the coherent scattering)

However, we are measuring the incident flux with 
an efficiency of 1/ki 

So, for constant kf, this means we measure:

δ2σ /δΩ δEf  =  kf/ki σcoh/4π N  Scoh(Q, ω) / 1/ki ~ Scoh(Q, ω)



2 π / a

2 π / a

Origin of reciprocal space;

Remains fixed for any 
sample rotation

Mapping Momentum – Energy (Q-E) space







Elementary Excitations in Solids

• Lattice Vibrations (Phonons)
• Spin Fluctuations (Magnons)

Energy vs Momentum

• Forces which bind atoms 
together in solids



Constant Q, Constant E
3-axis technique allow us to
Put Q-Energy space on a grid,
And scan through as we wish

Map out elementary excitations 
In Q-energy space (dispersion 
Surface)



Inelastic x-ray scattering

• Ei=20 keV, need 1 meV resolution
• ∆E/Ei ~ 10-7 !!!
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analyzer

Sector-3, APS

φ-scan of monochromator
1 meV ⇒ µrad

T-scan of monochromator
1 meV ⇒ 0.02 K



Samples

• Samples need to be BIG
– ~ gram or cc
– Counting times are long (mins/pt)

• Sample rotation
• Sample tilt

May 31, 2009 NXS School 47

HB3-HFIR

IN14-ILL

Co-aligned CaFe2As2 crystals



Monochromators

• Selects the incident wavevector

• Reflectivity
• focusing
• high-order contamination

eg. λ/2 PG(004)

l

 

Q(hkl) =
2π

d(hkl)
= 2ki sinθθ

Q(hkl)

Mono d(hkl) uses

PG(002) 3.353 General

Be(002) 1.790 High ki

Si(111) 3.135 No λ/2



Detectors

• Gas Detectors
• n + 3He  3H + p + 0.764 MeV
• Ionization of gas
• e- drift to high voltage anode
• High efficiency

• Beam monitors
• Low efficiency detectors for

measuring beam flux
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Resolution

• Resolution ellipsoid
– Beam divergences
– Collimations/distances
– Crystal mosaics/sizes/angles

• Resolution convolutions
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I(Q0,ω0) = S(Q0,ω0)∫ R(Q − Q0,ω −ω0)dQdω



Resolution focusing

• Optimizing peak intensity
• Match slope of resolution to dispersion
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Neutrons have mass 
so higher energy means faster – lower energy means slower

We can measure a neutron’s energy, wavelength by measuring its speed

v (km/sec) = 3.96 / λ (A)

• 4 A neutrons move at ~ 1 km/sec
• DCS: 4 m from sample to detector
• It takes 4 msec for elastically 

scattered 4 A neutrons to travel 4 m

• msec timing of neutrons is easy
• δ E / E ~ 1-3 % - very good !



Time-of-flight methods
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velocity 
selector

sample

detector banks

Scattered
neutrons

Spallation neutron source Pharos – Lujan Center

 Effectively utilizes time 
structure of pulsed neutron 
groups

 

t =
d
v

=
m
h

d
 
 
 

 
 
 λ









Fermi Choppers

• Body radius ~ 5 cm
• Curved absorbing slats

– B or Gd coated
– ~mm slit size

• f = 600 Hz (max)
• Acts like shutter, ∆t ~ µs
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T-zero chopper

• Background suppression
• Blocks fast neutron flash
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Position sensitive detectors

• 3He tubes (usu. 1 meter)
• Charge division
• Position resolution ~ cm
• Time resolution ~ 10 ns
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MAPS detector bank



Sample environment

• Temperature, field, pressure
• Heavy duty for large

sample environment
– CCR
– He cryostats
– SC magnets
– …
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HB3-HFIR

IN14-ILL



Guides
• Transport beam over long distances
• Background reduction
• Total external reflection

– Ni coated glass
– Ni/Ti multilayers (supermirror)
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Size matters
• Length = resolution

– Instruments ~ 20 – 40 m long
– E-resolution ~ 2-4% Ei

• More detectors
– SEQUOIA – 1600 tubes, 144000 pixels
– Solid angle coverage 1.6 steradians

• Huge data sets
• 0.1 – 1 GB

NXS School 62

SEQUOIA detector
vacuum vessel
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Data visualization
• Large, complex data from spallation sources
• Measure S(Q,ω) – 4D function

Ye et al., Phys. Rev. B, 75 144408 (2007).

La1-xCaxMnO3
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The appearance of spin waves indicates that the field-induced 
state is long range ordered

Development of Long Range 
Order



Weak magnetic field // [110] induces LRO:

appearance of long-lived spin waves at low T and moderate H
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Why map reciprocal space?

Crystallography!
Variation of Bragg peak intensities = where the atoms are 

Peakshape gives spatial
correlations (if resolution 
effects can be negated)



Kinematics

• Essentially elastic scattering
• No kinematic limits
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Q ≈ 2ki sinθ



 

hω = hc(ki − k f )



TOF vs. 3-axis
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 epithermal (up to 2 eV)
 Total spectra (esp. powder 

samples)
 Absolute normalization
 Low-dimensional systems
 Hardware inflexible
 Software intensive

 High flux of thermal neutrons
 Focused studies in Q,ω (soft modes, 

gaps, etc.)
 Three-dimensional systems
 Hardware intensive
 Software inflexible



IXS vs. INS
• SAMPLE SIZE

• IXS
– Simple scattering geometry (ki≈kf)
– Resolution function simpler 

(most angles fixed, E-scans only)
– No spurions 

(high-order refs. keV, no incoherent scat.)
– Can only do lattice excitations
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Computation

Pb phonons

Fe3O4 spin waves



The Basic Experiment:

(θ, φ)

Incident Beam: 

• monochromatic
• “white”
• “pink”

Scattered  Beam: 

• Resolve its energy
• Don’t resolve its energy
• Filter its energy



Absolute normalization

• Absolute normalization
– Using incoherent scattering

from vanadium
– σ/4π = 404 mbarns/Sr

NXS School 73



Fermi’s Golden Rule  within the 1st Born Approximation

W = 2π /h |< f | V | i>|2  ρ (Ef)

δσ = W / Φ = (m/2πh2)2 kf / ki |< f | V | i>|2 δΩ

δ2σ /δΩ δEf  =  kf/ki σcoh/4π N  Scoh(Q, ω)

+ kf/ki σincoh/4π N  Sincoh(Q, ω)



Spin correlation functions
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Scattering
cross-section

Dipole
interaction

Spin-spin
correlation function
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2

δαβ − ˆ Q α ˆ Q β( ) eiQ⋅(R j ' −R j )

jj '
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2πh
dte− iωt∫ S j

α (0)S j '
β (t)
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d2σ
dΩdE f inel
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1
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  

 
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2

δαβ − ˆ Q α ˆ Q β( )1− ehω / kT( )−1 1
π (gµB )2 Im χαβ Q,ω( ){ }

αβ
∑

The cross-section is proportional to the magnetic susceptibility,
i.e. it is the response of the system to spatially & time varying magnetic field



Paramagnetic scattering
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Single ion scattering

 

S j
αS j '

β = 0 j ≠ j'( )

 

S j
z (0)S j

z (t) = S j
z( )2

e−Γt =
1
3

S j( )2
e−Γt =

1
3

S S +1( )e−Γt
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Im χ zz 0,ω( ){ }
πhω

=
g2S(S +1)µB

2

3kBT
1
π

Γ
Γ2 + hω( )2

McQueeney et al., Phil. Mag. B 81, 675 (2001).

 Inverse width, 1/Γ, gives relaxation time
 Note crystal field excitation



 

χ0 =
Im χ zz 0,ω( ){ }

πhω
dω

−∞

∞

∫ =
g2S(S +1)µB

2

3kBT
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Scattering experiments
Single-crystal

Instrument and sample (powder or 
single-crystal) determine how (Q,ω) 
space is sampled

Powder S(|Q|,ω)

NXS School
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Triple-axis instruments

High flux isotope reactor - ORNL HB-1A 3-axis spectrometer

kf

ki
 Hardware flexibility
 Constant-Q (or E) scans
 Ideally suited for single-xtals



Time-of-flight methods

NXS School 79

velocity 
selector

sample

detector banks

Scattered
neutrons

Spallation neutron source Pharos – Lujan Center

 Hardware inflexible
 Effective for powders
 Complicated Q,E-scans a 

challenge for single-xtals



INS data

• Intensities as a function of Q and ω
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Lynn, et al., Phys. Rev. B 8, 3493 (1973).



Scoh (Q,ω) and Sincoh(Q,ω)
describe the structure and
dynamics of the atoms and
magnetic moments

σcoh and σincoh

parametrize the strength 
of the scattering from the 
nuclei or magnetic moments



Other triple-axis stuff

• Soller Collimators
– Define beam divergence
– Q,ω resolution function

• Filters
– Xtal Sapphire: fast neutron background
– Poly Be: low-energy (5 meV) band pass
– PG: higher order contamination

• Masks
– Beam definition
– Background reduction
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PG filter
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• Magic numbers
– Best filter for rejection of λ/2 contamination
– Ef = 13.7, 14.7, 30.5, 41 meV



Reciprocal space
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

 

hω = Ei − E f

 

Q = k i − k f

FCC Brillouin zone

 

q = Q − τ
Wavevector in 1st

Brillouin zone

Scattering triangle

Momentum/energy transferred to sample



Spurions
• Bragg – incoherent – Bragg

– Eg. ki – 2kf

• ħω = 41.1 meV 
• Ef = 13.7 meV

Ei = 54.8 meV
4Ef = 54.8 meV

• Incoherent elastic scattering 
visible from analyzer λ/2

• incoherent – Bragg – Bragg
– Sample 2θ in Bragg condition for kf-kf

– Even for inelastic config, weak incoherent from mono 
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Resolution effects
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