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Synopsis

• Stress/strain concepts• Stress/strain concepts
• Techniques of stress determination with X-rays

– Basic Theory
– Examples

• SuggestionsSuggestions
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The Tensile Test
• Specimens are 

gripped and pulled 
to failure.
– The elongation and 

load are monitored 
continuously.

– This data yield the 
“stress-strain”stress-strain  
curve.

– The strain rate is 
constant during the 
test.

Gage
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elastic modulus.

strain γτ G=
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The elastic range

klijklij C εσ =
C3333

st
re

ss
klijklij

strain Cijkl: Stiffness tensor

(homogeneous, anisotropic 
sample).

Definitions
Homogeneous: The property 
we are measuring is the same 
l i di ti

]001[

along a given direction 
throughout the entire volume.
– Isotropic: The measured 

property is independent of 
direction and location.

– Anisotropic: The measured

]010[

Anisotropic: The measured 
property is independent of 
location but changes with 
direction.

]100[
]111[
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Single crystals are homogeneous for length 
scales larger than hundreds of unit cube edges. 

Polycrystalline aggregates are quasi-y y gg g q
homogeneous only for length scales that exceed 
the representative length  (VR )1/3 for the 
particular aggregate.

Quasi-isotropicQ p

Quasi-anisotropic

For dimensions smaller than the 
representative length, the mechanical 
response of the aggregate is heterogeneousresponse of the aggregate is heterogeneous 
(inhomogeneous).

.

elastic 
range

Local values     global averages ≠
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Analysis of local deformation through an 
evaporated grid

• Pb-Sn dogbone specimens• Pb-Sn dogbone specimens,
• Cast and annealed microstructure, polished 

and etched:
– Eutectic (750-800 μm grain size)
– 98Pb-2Sn (550-600 μm grain size

Al id d h h k h• Al grid evaporated through a mask on the 
gage section:
– 12.5 μm dots on 100 μm centers
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x

Uniaxial tensile loads were applied to this specimen 
We  monitored the grid deformation at various plastic 

strains.

•Local deformation is not uniaxial

•Rotation, shear

10 % 
pl. 
strain
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10% pl. 
strain

Incompatibility is most pronounced @ triple
junctions.

Local crack initiation occurs where the 
strain localization is highest.
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The local plastic strain within each grain (A,B,C.D) 
changed linearly with applied plastic strain.

gb
p
xxgrain

p
xx )()( εε <<

The local plastic strain across each grain boundary also 
changed linearly with applied plastic strain.
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• Thus, even though the far-field strain is 
uniaxial tensile, the local strain state is not.

• There is local rotation and shear.
• The strain state is heterogeneous:

x

• The strain state is heterogeneous:
– Strain varies from grain to grain,
– Grain interior to grain boundary,
– Across grain boundaries.

xxε

Our next task is to find the minimum length scale

gb
xxεgr

xxε
Our next task is to find the minimum length scale 
over which the average strain is equal to the far-
field strain.

This defines the “representative length”, above 
which the average strain is invariant with location.
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Representative length is ~7 mms ( ~8 grains). 

The smallest volume is 7mmx7mm x 5 mm (~80 grains).

• The previous analysis used a eutectic structure with 
“colony” boundaries.

• The results do not change much  if we use a single-
phase alloy: 98Pb2Sn. 
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Summary of plastic strain 
distributions

• Local deformation is non-uniform and can 
be within 5x to 2x of the applied strainbe within .5x to 2x of the applied strain.

• The minimum volume element in which the 
average strains yield the applied strain is 
termed the representative volume, VR.

• The average material response for volumes g p
larger than is VR quasi-homogeneous.

Bonda, N.R.  Noyan, I.C. IEEE Trans. Comp. 
Packag. Manuf. Technol. A , Vol.19, 1996

What about elastic strain 
distributions?

• Strains are too small; we can not use the• Strains are too small; we can not use the 
same grid technique easily.

• We decided to use a FEM grid to simulate 
the strain distribution.
– 400 cubic grains

201 isotropic– 201 isotropic
– 199 fully anisotropic

• All randomly placed in a mesh.
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FEM-details
• Abaqus code.

8 d C3D8 l• 8-node C3D8 elements
– A single layer of cubic grains loaded uniaxially.

F F

W-mesh

• Tungsten is isotropic• Tungsten is isotropic.
• Thus, this material served as a test of the 

mesh.
• We expect all grains to have the same stress 

state in the sample coordinates independent p p
of orientation.
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The mesh works, and all grains have the same stress state.

This is not so with Cu.
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The mean stress is correct, but the stresses/strains in 
individual grains can be~ +/- 40% of the mean.

.
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A
Th l l t iThe local strain 
within each grain 
changes linearly
with applied load.

The local strain within any grain can be used to determine 
the global strain/stress if its proportionality constant is 
known (applied strain/load measurement).

,

•Thus, measurement of applied loads is quite straightforward.
•Differential measurement.
•Easy to obtain the correlation parameter vs. applied load.

•Meas rement of resid al stresses/strains is more complicated•Measurement of residual stresses/strains is more complicated.
•Each grain may have a different strain value.
•One has to measure enough grains to make sure that local 
oscillations are averaged out.



16

Residual Strain/Stress Definitions

Residual stress: self-equilibrated stresses 
existing in a free body with no surface tractionsexisting in a free body with no surface tractions.

Stresses in one part of the body balance out the 
stresses in another part.

Shot-peening, laser-peening

L0
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ΔL+L0

LL0

To match the boundaries across the interface apply 
external forces to the boundary.
Then glue the interface and relax the external forces.

bulk
bulk

surface
surface

t
F

t
F

=

−
=

σ

σ

FF

δ+L0

The surface layer is compressed from ΔL+L0 to δ+L0
by the bulk (compressive residual stresses).
The bulk layer is pulled to to δ+L0 from to L0 by the surface layer 
(tensile residual stresses). MACRO RESIDUAL STRESSES
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Micro residual stresses

DD0

Assume matrix is much softer than the second-phase particles.

D0

Apply a load to the composite that can cause plastic 
flow in the matrix but not in the precipitates.
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D0

The holes in the matrix will no longer have the same shape or 
diameter as the precipitates. 
To fit each precipitate in its hole a complex stress state must 
be applied. MICRO RESIDUAL STRESSES

In polycrystalline materials we usually measure the sum of 
macro and micro residual stresses.

The relative magnitudes of these terms depend on the 
measurement volume.

If you need a “bulk-average” stress, we need to measure a 
large volume.

If local stresses are needed, than small regions are sampled.
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Strain/Stress Determination Techniques with Diffraction

1-Lattice parameter measurements:
Polycrystals-Polycrystals

-Single crystals
2-Curvature measurements

Single crystals
3-X-ray topography measurements

Single crystalsg y

Lattice spacing measurements

• All techniques start from the measurement• All techniques start from the measurement 
of a plane spacing via Bragg’s law.

θλ sin2d=
Once the “d” spacing is determined it can beOnce the d  spacing is determined it can be 
transformed into a strain:

0

0
d

dd −
=ε

Unstressed plane 
spacing
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L3

λ λ
θ θ2

F F

This strain is along the “L3” direction; the normal to the 
diffracting planes.diffracting planes.
For a tensile applied load,, the strain along the measurement 
vector @ ψ=0 is the minimum.

11
'
33

0

0 *ενεψ −==
−

d
dd

L3

λ λ

S3 ψ
λ

θ

As ψ-tilt increases, the strain L3 increases.
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L3λ λθθ
S3

ψ

At 90o ψ-tilt, the strain along the measurement 
vector is maximum.

• Thus, if the lattice parameter increases with tilt 
angle (from Poisson contraction to tensile 
expansion) we have tensile stresses.

• If the lattice parameter decreases with tilt angle 
(from Poisson expansion to compression) we(from Poisson expansion to compression) we 
have compressive stresses.

ψd

m stressecompressivm
stresstensilem

0
0

<
>

ψ2sin

p
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λ λ

θ

S3,

S

L3ψ

L2

φ
S1

S2
Sφ

L1
There are two coordinate systems:

S defines the sample surface.
L defines  the measurement.

Only L3 is used.
For each ψ-tilt, a new L system is defined.

φ

S3,

S

ψ
φψL
r

0F
r

O φ

S2

S1

φψP
r

0
1F
r

1F O
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λ λ

θ

S3,L3

S2

0=ψ

φ
S1

The strains along all these different directions 
are related to the strains in the sample 
coordinate system by a simple transform.

direction cosines

kllk aa
d

dd
εε ψφ

33
0

0,'
33 =

−
=

λ λ

θ

S3,

S

L3ψ

L2

φ
S1

S2
Sφ

L1

⎤⎡ − ψψφψφ sincossincoscos

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

ψψφψφ
φφ

ψψφψφ

cossinsinsincos
0cossinija

The direction cosines linking the two systems (S & L)
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This is the fundamental diffraction equation.This is the fundamental diffraction equation.

It has six unknown strains.

We can also substitute for the strains in terms of stresses 
using Hooke’s law.

mnklmnlk Saa
d

dd
σψφ

33
0

0, =
−

This equation is in terms of stresses but weThis equation is in terms of stresses, but we 
really determine strains!

For any homogeneous specimen, we can 

simulate the expected variation of dψ with

sin2ψsin ψ.

In the case of an isotropic specimen, the above 
equation becomes:
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ψσφφσφσφσν
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This equation has a term that is linear for +/- ψ
And a term that changes sign  with +/- ψ

Thus, we can predict three types of dψ vs. sin2ψ 
plots.
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Summary of Expected Behaviour

Linear model: 0=σLinear model:
dψ+ = dψ- for all ψ.
All measured dψ must fall on a straight 
line within measurement error.

Triaxial model

033 =σ

dψ+ ≠ dψ- for all ψ.
Their sum, and difference, however, 
must fall on straight lines.
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There are also oscillatory d vs. 
sin2ψ plots.

One should not treat 

ψd

moscillatory data as a straight 
line.

ψ2sin

. Data that do not fit indicate that the model is 
inappropriate.

1.1730

1.1732

Ball lot 5898A 0.001” etched.

1 1724

1.1726

1.1728

d 
(A

o )

 data
 Linear Fit
 Predicted data

0.0 0.1 0.2 0.3 0.4 0.5

1.1724

sin2ψ

Stress from slope~1 ksi
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1.1732

Line 1Line 2
Line 3

Line 4

1.1726

1.1728

1.1730

d 
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o )

 data
 Linear Fit
 Predicted data

Ball lot 5898A 0.001” etched.

0.0 0.1 0.2 0.3 0.4 0.5

1.1724

sin2ψ

ψd
One should not treat 
oscillatory data as a straight 
line.

m

ψ2sin

Neither should one 
cherry-pick the data and 
discard the points that do 
not fit.

x
Measuring only two tilts 
is OK if you know that 
the data in-between is 
linear.
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The treatment given so far does not 
need to assume the type of sample.
Applicable to single crystals as 
well.
For these materials, the ψ-angles 
are not arbitrary; they are given by

]001[

]100[

]010[

are not arbitrary; they are given by 
the symmetry of the material.
One can simply measure the plane 
spacing from various reflections 
and then use the angles between 
these lattice vectors and the sample 
coordinates to do the tensor 

]100[
]111[

transformation.
The lattice parameter vs. angle 
plots, however, must obey the 
previous equations.

Curvature Methods

Macro residual stresses existing at one surface cause 
curvature.
One can note that the moments taken at the sample mid-
plane are not balanced.

FF

One can measure the curvature and calculate the 
stress using various equations. Stoney’s equation is 
used frequently.
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tf:film thickness
a: initial curvature of substrate
δ: deflection of substrate

Ω
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For single crystal substrates, one can translate the sample
and measure the sample rotation angle, Ωx,  at which the 
Bragg reflection is obtained.

If this is repeated at various positions and Ω vs x isIf this is repeated at various positions, and Ωx vs. x is 
plotted, the radius of curvature is obtained from the slope.

One can also obtain the slope from laser interferometry or 
optical comparator measurements.

X-rays yield very accurate measurements for rotations.X rays yield very accurate measurements for rotations.

This is a differential measurement.

Topographic Stress/Strain Determination

This technique is applicable to single crystal systems 
scattering in the dynamical regime.

In topographic measurement, we  measure the integrated 
intensity from the substrate  as a function of position.

This intensity is then modeled using mechanics and 
diffraction equations.
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• Sample: Etched  step-
edge;pseudomorphic film of 

i i

Residual stress profile of a step-edge

Si0.8Ge0.2 on 001 Si, 90 nm 
thick.

• 11.2keV incident energy.
• 5μm x-ray spot.
• We did both “d” spacing and 

h {
x

z
substrate

filmh {
x

z
substrate

film

incident intensity maps.

• The “d” spacing analysis yielded nonsensical results.

0.9

0.0

0.3

0.6

In
te
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ity

θ ThetaθB

In an intensity mapping measurement  we  measure the 
integrated intensity from the substrate  as a function of 
position.
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• The profile consists of two distinct intensity maxima bracketing the film edge.
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The decay rate outside the feature is 2x the rate 
inside the feature,
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Mechanics Modelling
h {

x
z

substrate

filmh {
x

z
substrate

film
The strain distribution 
can be obtained from the 
edge-force model:
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Δε is the mismatch strain between the film and substrate (0.0076 for 
Si0.8Ge 0.2). 

εzz is an odd function of x about the feature edge; in the normal 
direction the substrate experiences compression outside  the feature 
(x<0)  or tension under it.

Substrate strain field:  edge-force approximation

t film{
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SiGe blanket film (t = 90 nm)
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out-of-plane strain, εzz
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Diffraction Modelling
• Approximate the distorted crystal 

as a stack of perfect crystal 
lamellae with different out-of-
plane lattice constants, c(z). θ

Io

Id

-z // [001]

θθ

Io

Id

-z // [001]
z

• Obtain a recurrence relation that 
calculates the diffraction ratio 
(diffracted wave amplitude, Dh, 
over transmitted wave amplitude, 
D0) on the top (z = zT) and bottom 
(z = zB) boundaries of a lamella 
by integrating the Takagi-Taupin 
equations.
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g is the geometry factor (β, γ represent 
0D
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χgχCw

θηg)χ(
β/γg

4

2sin21
coscos

22

0

−=

++=
=

ξ

ξ

the angles of the incident and 
diffracted x-ray beams). 

χ are the Fourier coefficients of the 
susceptibility of the material,  

θBis the Bragg angle of the unstrained 
t l l l t d f th B ’ l

BγπKw/Φ cos= crystal calculated from the Bragg’s law, 
η is the deviation of the incidence 
angle from the local exact Bragg angle, 
C is the polarization factor, K is the 
wave number of the incident x-ray in 
vacuum.
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It fits rather well.

Testing the model
We then used a more 
complicated structure.
The nitride feature could beThe nitride feature could be 
made to have tensile or 
compressive stresses.
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Major and minor peaks switch if the film has “tensile” stresses.
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The positions, separation and intensities of the satellite peaks 
depend on the magnitude and sign of the strain field.
By comparing modeled and measured diffraction profiles, one 
can determine the full strain distribution.
Inverse problem: Agreement shows possible solution only.

Kalenci, Murray, Noyan, JAP 104 063503 (2008)

• Diffraction peak/ plane 
spacing measurements
– Global averaging

Information Volumes

Global averaging 
methods:  The  
diffracting volume is 
defined by the incident 
and diffracted beam 
optics , the penetration 
depth of the radiation and  

λ

the sample scattering 
function.
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λ

Scattering Volume Definition
If the sample is a single crystal:
For t<τextinction, the entire irradiated 
volume diffracts.
For t>τextinction, the diffracting 
volume is a slanted cylinder with thevolume is a slanted cylinder with the 
thickness ~τextinction.
For a polycrystalline material, where 
the grain thickness is ~< τextinction, 
then only those grains in the 
diffraction condition within the 
photoelectric absorption depth 
scatter.

Eτ

PEτ

Si sample, 12 keV monochromatic  rad

τPE

τEx

Eτ

PEτ

(deviation from B
Definition of the measurement volume is not simple for samples 
with complex topologies, strain distributions, or when spherical 
incident beams are used.
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Diffraction peak / plane spacing measurements
• Real-space (ray tracing) methods: A subset within 

the diffracting volume is localized through the use 
of suitable apertures in the incident and diffracted 
beam optics

Radial or conical 
collimators in neutron 
diffraction.
Apertures or wire-
scanning in x-raysg y

Definition of the measurement volume is simpler for kinematically
scattering samples.
These methods do NOT work for dynamically scattering samples.

• Designing diffraction experiments to 
measure applied stress/strain 
distributions is straightforward

Observations

distributions is straightforward.
• Measurement of  residual strain 

distributions may require significant 
work.

• Cavalier application of these techniques 
can yield puzzling results; Bragg’s law 
is more complicated that one wouldis more complicated that one would 
expect from

• When properly used, these techniques 
can yield invaluable data.

θλ sin2d=
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