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Introduction 

 

The crystallographic approach to magnetic structures is largely based on two kinds of 

descriptions: symmetry invariance of magnetic configurations (Magnetic Space Groups, often 

called Shubnikov groups) and group representation theory applied to conventional 

crystallographic space groups. The first approach is nearly exclusively used for the case of 

commensurate magnetic structures and usually is limited to a description of the invariance 

symmetry properties for this kind of configurations [1-5]. The representation analysis is more 

general and can be applied to all kinds of magnetic structures. The literature on this field is 

broad and one can consult the papers of E.F. Bertaut [6-9] and Y. Izyumov and co-workers 

[10-15] to get a deeper insight into the problem. A possible extension of the Shubnikov 

approach may be developed in the sense of Magnetic Superspace Groups as in 

crystallographic incommensurate structures. This more general approach extends the 

invariance concept to incommensurate magnetic structures and may be a better approach 

when macroscopic properties have to be deduced from the spin configurations. At present not 

too much work has been done in that sense so it will not be considered in the present notes. 

 
The outline of this document is as follows: 

 

1:  What is a magnetic structure? 

2:  Invariance properties of magnetic structures.  

2.1: Behaviour of axial vectors under the action of operators representing general motions 

2.2: Magnetic point groups, Magnetic lattices and magnetic space groups 

2.3: Magnetic point groups 

          2.4: Magnetic Lattices 

3:  Shubnikov Groups: Opechowski-Guccione and Belov-Neronova-Smirnova notations. 

4:  Summary of the representation theory for space groups 

5:  The formalism of propagation vectors for describing magnetic structures.  

6:  How we get information about magnetic structures: magnetic neutron scattering 

 6.1: The scattering amplitude 

 6.2: Magnetic interaction vector of the whole crystal 

 6.3: The magnetic structure factor 

7:  The symmetry analysis based on representation theory for determining magnetic structures 

7.1: The working space for symmetry analysis of magnetic structures: magnetic representation 

7.2: The magnetic representation as direct product of permutation and vector representation 

7.3: Projection operators and basis vectors of irreducible representations of Gk  

7.4: Relations between the Fourier coefficients of the magnetic moments and the basis vectors 

7.5: Magnetic Space Groups and Irreducible Representations of dimension 1 

8:  The magnetic structure factor when symmetry is considered. 

9:  Limitations of neutron scattering for determining magnetic structures 

10:  Examples of commensurate magnetic structures with propagation vector at the centre or at the surface of the Brillouin 

Zone (BZ). 

 10.1: LaMnO3, Pbnm, k = (0, 0, 0) 

 10.2: Tb3F12, I4/m, k = (0, 0, 1) 

 10.3: R2BaNiO5, Immm, k = (1/2, 0, 1/2) 

 10.4: Commensurate structures of R2T2X compounds, P4/mbm 

11:  Examples of incommensurate magnetic structures. 

 11.1: R2T2X, P4/mbm, Ce2Pd2Sn – k = ( , 0, 0) 

    11.2: DyMn6Ge6, P6/mmm, k1 = (0, 0, 0) & k2 = (0, 0, ) 

12:     Final remarks 
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1. What is a magnetic structure? 

 

The appearance of magnetic moments in atoms is due to the existence of unpaired electrons in 

some electronic shells. The Hund’s rule favours the “ferromagnetic” interaction between 

electrons inside the same ion when they are in different orbitals, so that an intrinsic moment 

appears in such cases. The intrinsic moment contains, in general, an orbital and a spin 

contribution. For our purposes we assume that there are atoms, in positions R, with magnetic 

moments that are usually disordered in the paramagnetic state ( , 0RR m
t

, where the bracket 

symbol means time average) and become frozen ( 0Rm
t

), and eventually ordered, below a 

certain temperature. A magnetic structure corresponds to a particular, nearly static, spatial 

arrangement of magnetic moments that sets in below the ordering temperature. Above the 

ordering temperature the system is in the paramagnetic state. In this document we disregard 

the quantum properties of spin operators and we interchange loosely the terms magnetic 

moment (generated by the spin and orbital angular momentum of electrons) and “atomic total 

spin” or “spin” for short. For us, the magnetic moment of an atom is a classical “axial vector” 

(magnetic dipole) supposed to be generated by an “electrical current”. 

The magnetic structures are commonly represented as a set of arrows, associated to the 

magnetic atoms, with magnitudes and orientations characteristics of the particular magnetic 

structure. For considering symmetry properties we have to suppose that each arrow is in fact a 

current loop, the direction of which determines the orientation of the arrow by the right-hand 

rule of electromagnetism. 

 

What governs the setting up of a particular kind of magnetic ordering? Let us consider a 

classical and general Hamiltonian of interacting spins (in fact magnetic moments) of the 

following form: 

 

  
, , ,

, , ,

... ( )n

il jm il jm il jm kn il jm kn

il jm il jm kn

H J S S J S S S O S   (1) 

Where the indices i, j, k label atoms in the primitive cell, the indices l, m, n label different unit 

cells (they are composite indices, describing the origin of the unit cells at lattice vectors Rl, 

Rm and Rn) and the indices , ,  label the components x, y, z.  If we consider that the 

magnetic atoms at positions Rlj have intrinsic magnetic moments of module mj (Slj=mj nlj), for 

a given set of exchange parameters , , ,{ , ,...}il jm il jm knJ J , the magnetic structure at T = 0 K 

corresponds to the minimum of H with respect to the orientations of the unit vectors nlj. In 

general the terms of order greater than 2 in the spins are much weaker than those of second 

order. Moreover the isotropic part of the tensors ,il jmJ  is strongly dominant in many cases; the 

energy can be simplified to obtain the so called Heisenberg Hamiltonian: 

 

      

,

, ,

,

, ,

( )

( ) ( ) cos

S S R -R S S

R -R n n R -R

iso il jm il jm ij m l il jm

il jm il jm

iso ij m l i j il jm ij m l i j il jm

il jm il jm

H J J

H J m m J m m
 (2) 

The magnetic energy in such a case does not depend on the absolute orientation of the spins. 

It depends only on the relative orientation of the spins (scalar product). This means that for a 

given configuration, any global rotation acting on the spins does not change the energy, so the 

Hamiltonian has more symmetry elements than the space group underlying the crystal 

structure if the interaction between the magnetic moments is strictly isotropic. We see here 

that the relevant symmetry to be considered for studying the magnetic ordering is that of the 
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Hamiltonian of the system. However the Hamiltonian of a system is generally unknown, so 

we do not know what is the relevant symmetry to begin with. In the absence of this 

information we have at our hands the possibility to know the symmetry of the crystal structure 

of the compound under study. The space group of the crystal summarises in some way the 

result of the different interactions between electrons and nuclei in the solid. We expect that 

the magnetic ordering conserves some of the symmetry properties of the crystallographic 

structure even in the case of a structural transition accompanying the magnetic ordering. This 

is the reason why we use the symmetry of the crystal structure as a starting point for our 

analysis. In the course of the analysis of experimental data we may arrive to the conclusion 

that we have to modify our previous assumptions on the starting symmetry; or even to 

suppose that we have more symmetry (additional symmetry elements) in the magnetic 

Hamiltonian than in the crystallographic space group.  

 

 

2. Invariance properties of magnetic structures. 

 

We assume that the reader is familiar with crystallography and with the crystallographic point 

and space groups (see chapter by Grenier & Ballou). The symmetry operators used in crystal 

structures can also be used to study the invariance properties of magnetic structures: We have 

then to consider, in addition to positions of point atoms, a property associated to each point 

atom that is represented by an axial vector (an arrow surrounded by a current loop). To study 

the invariance of magnetic configurations we have to introduce a new operator that is usually 

called “spin reversal” or “time reversal”. This operator is acting on magnetic moments that are 

“classical axial vectors”
1
. The action consists of changing the sense of the current loop 

(proportional to the product of a charge by a velocity vector), so that the orientation of the 

magnetic moment is reversed. We note this operator as 1′ and it acts only on the magnetic 

moments/spins not on the atom positions: 1′∙m= m.  

 

The spin reversal operator cannot be contained in the set of symmetry operators that leave 

invariant a magnetically ordered system, however it is contained in the paramagnetic state of a 

magnetic system. This gives immediately the so called “paramagnetic space groups” that are 

obtained by adding 1′ to the set of symmetry elements of the space group. The notation of the 

paramagnetic space groups is identical to that of crystallographic groups with the 1′ symbol 

added (e.g. Pbnm1′). In magnetically ordered systems the spin reversal operator can be 

combined with a conventional symmetry operator. The operator is called “primed” to indicate 

that we have to invert the spin after applying the “non-primed” operator to the spin.  

The symmetry operators we have to consider for exploring the invariance of spin 

configurations are then formed by the usual operators considered in crystallography together 

with these same operators followed by the spin reversal.  

 

                                                 
1
 In quantum mechanics “time reversal” is an anti-unitary operator acting on wave functions and quantum 

operators and is related to “conjugation” for spinless systems. We will not treat this point in this document. 

                                        
Figure 1: Action of time reversal in a current loop: the magnetic dipole is inverted 
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2.1: Behaviour of axial vectors under the action of operators representing general motions 

 

Axial vectors are in fact second order antisymmetric tensors in the conventional 3D Euclidean 

space. The three independent components of these tensors can be written as components of a 

vector with the particularity, contrary to polar vectors, that the orientation of the vector 

depends on the handedness of the reference frame. Examples of polar vectors are, for 

instance, the vector position, velocity and acceleration of a particle, the electrostatic field, etc. 

The behaviour of axial vectors under the action of motions (translations, proper and improper 

rotations, glide planes and screw axes) is different from that of polar vectors. This can be 

visualised in the following scheme representing the action of a mirror plane on an electric 

dipole and on a magnetic dipole (magnetic moment). 

 

Mathematically the action of whatever kind of symmetry operator, which can be represented 

by an orthogonal matrix in the appropriate reference frame, on an axial vector is identical to 

that on a polar vector except that we have to multiply by the determinant of the matrix. 

Moreover if we consider a “primed” element we have to multiply again by -1 all the 

components of the resulting vector. In summary a general operator g = {h | th + n} (see 

chapter by Grenier & Ballou) acting on an atom rj in the cell at the origin (zero-cell) having a 

magnetic moment mj is transformed as follows: 

Position: 

' { | }r r t n r r t n=r aj j h j j h i gjg h h    (3) 

Magnetic moment: 

' det( )m m mj j jg h h      (4) 

  

The transformed atom position rj′ is translationally equivalent to the atom labelled “i” in the 

zero-cell. The vector agj is a lattice vector depending on the initial atom j and the operator g. It 

is called “returning vector” because its opposite is the vector we need to apply on the 

transformed atom to put it back in the zero-cell. 

The corresponding magnetic moment is transformed using only the rotational part of the 

operator and the resulting vector is multiplied by the determinant and the “signature” ( ) of 

the operator. The signature is =1 for unprimed elements and  = -1 for primed elements. 

In a magnetically ordered system the operator g is a symmetry operator if it is a symmetry 

operator of the space group and if mj′=mi. 

           
Figure 2: Action of a mirror plane on an electrical dipole (polar vector) and on a 

magnetic dipole (axial vector) 
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2.2: Magnetic point groups, Magnetic lattices and magnetic space groups 

 

Let us define the time reversal group that is formed by only two elements: R = {1, 1′}. 

Whatever crystallographic magnetic group, M, can be obtained as a subgroup of the exterior 

direct product of R by the crystallographic group G: M  G R. The group G is always a 

magnetic group (called “colourless”). The paramagnetic (“grey”) groups of the form 

P=G+G1′ are also magnetic groups. The fact that the product of two primed elements must be 

an unprimed element gives the fundamental lemma for constructing the rest of magnetic 

groups (“black-white” groups): the magnetic groups derived from the crystallographic group 

G can be constructed considering the index 2 subgroups H of G as constituting the unprimed 

elements and the rest of operators, G  H, those that are multiplied by the time reversal 

operator. Remember that the index of H in G is the ratio of the orders of G over H, 

[i](H/G)=n(G)/n(H). The magnetic group is then related to the subgroup H  G (of index 2) 

by the expression:  

M = H + (G  H) 1′.      (5) 

This is valid for all kind of groups: point groups, translation groups and space groups. 

Even without tables of magnetic group one can construct easily different magnetic groups 

looking into the International Tables of Crystallography, Volume A (ITA), where the 

subgroups of index 2 for all the space groups are given. 

 

Let us consider an example for magnetic point groups. One has to consult the scheme of the 

group/subgroup relations as given in page 781 of ITA and reproduced in Figure 3. 

 

Consider the point group G = 4/m of order 8. Its subgroups of index 2 are H1 = 4, H2 = 4  and 

H3 = 2/m:  

Figure 3 (reproduced from ITA) 
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There are then four magnetic point groups derived from G, they have the following elements: 

 

0

1 1 1

2 2 2

3 3 3

4 /

( )1' {1,4 ,2 ,4 ,1', ',4 ',4 '} 4 / '

( )1' {1,4 ',2 ,4 ',1', ',4 ,4 } 4'/ '

( )1' {1,4 ',2 ,4 ',1, ,4 ',4 '} 4'/

M G

M H G H

M H G H

M H G H

z z z z z z

z z z z z z

z z z z z z

m

m m

m m

m m

 

 

2.3: Magnetic point groups 

 

Following the previous procedure one can construct the full list of magnetic point groups. It is 

easy to apply the lemma to the crystallographic point groups and deduce that we have 32 

trivial magnetic point groups (identical to the 32 crystallographic point groups), 32 

paramagnetic groups,  and  <3+3> + (5+13+5) + [5+13+8] + 3 = 58 black-white point groups. 

This last sum is obtained by counting the number of lines connecting groups with subgroups 

of index 2 in Figure 3. The symbols < >, ( ), [ ] surrounding the figures refers to cubic, 

hexagonal-trigonal and tetragonal-orthorhombic groups; the absence of parenthesis for the last 

figure refers to monoclinic-triclinic point groups.  

An important concept is that of “admissible magnetic point groups”. It is clear that in 

magnetically ordered system, the magnetic point group of a magnetic atom cannot be one of 

the paramagnetic groups; moreover many of the colourless and black-white magnetic point 

groups cannot be realized in ordered system. Let us consider, for instance, the magnetic point 

group discussed above M3 = 4′/m. If we put a magnetic moment S in the origin pointing along 

an arbitrary direction and apply the operators, we arrive to the conclusion that S should vanish 

if M3 is to be a symmetry group. If S is along the fourfold axis, 4′ inverts the spin so that 4′ 

cannot be a symmetry operator. If S lies within the mirror plane, m inverts the spin so that m 

cannot be a symmetry operator. The point group 4′/m is an example of a non-admissible 

magnetic point group. There are only 31 admissible magnetic point groups that are listed, 

together with their admissible spin direction in the following table: 

 

Admissible magnetic point groups  Admissible spin (magnetic moment) direction 

1 1      Any direction 

2′ 2′/m′ m′m2′     Perpendicular to the 2-fold axis (& to m for m′m2′) 

m′       Any direction within the plane 

m       Perpendicular to the plane 

m′m′m        Perpendicular to the unprimed plane 

2′2′2        Along the unprimed axis 

2 2/m m′m′2     Along the 2-fold axis 

4 4  4/m 42′2′    Along the four-fold axis  

4m′m′ 4 2m′  4/mm′m′    Along the four-fold axis  

3 3   32′ 3m′ 3 m′   Along the three-fold axis  

6 6   6/m 62′2′    Along the six-fold axis  

6m′m′ 6 m′2′   6/mm′m′    Along the six-fold axis  
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2.4: Magnetic lattices 

 

A translation group in 3D is generated by three non-coplanar vectors {a1, a2, a3} called the 

basis of the unit cell (sometimes we will use the crystallographic convention: {a, b, c}). For 

primitive Bravais lattices, integer linear combinations of the three vectors generate the whole 

translation group: 1 1 2 2 3 3{ | , }T  t t a a aP il l l l  

If we consider centred lattices the whole group is generated not only by the linear 

combinations but by adding centring vectors ( 1,.. )t
C

i ci n :  

1 1 2 2 3 3 1 1 2 2{ | ... , , {0,1}}T  t t a a a t t t
c c

C C C

C n n i il l l n n n l n  

The centring vectors are of the form: 
1 1 2 2 3 3,( )t  a a a

C

i i i i niq q q q  
The translation group can always be described using a primitive cell but, in order to simplify 

the expressions of the symmetry operators a centred basis is often more convenient. 

Following the previous procedure one can construct the different magnetic Bravais lattices. A 

subgroup, of index 2, of the translation group, can be obtained just by suppressing half of the 

translations; for instance if we take l1 = 2n we obtain a lattice L that is described with a unit 

cell with a1’ = 2a1. This lattice is a subgroup of index 2 of T (L  T, [i] = n(T)/n(L) = 2), the 

lost translations (T-L) can be associated with time reversal for constructing the magnetic 

lattice: ML = L + (T-L)1′. The classification of all magnetic lattices can be found in 

references [2] and [15]. 

 

 

3. Shubnikov Groups: Opechowski-Guccione and Belov-Neronova-Smirnova notations. 

 

The same procedure can be applied to Bravais lattices and space groups. One obtains a total of 

1651 types of Shubnikov groups. Among the 1651 magnetic space groups, considering G as a 

space group type, 230 are of the form M0=G (called also “monochrome”), 230 of the form 

P=G+G1′ (paramagnetic or “grey” groups) and 1191 of the form M= H + (G  H)1′ (“black-

white” groups). Among the black-white groups there are 674 in which the subgroup H  G is 

an equi-translation group: H has the same translation group as G (first kind, BW1). The rest 

of black-white groups, 517, are equi-class group (second kind, BW2). In this last family the 

translation subgroup contains “anti-translations” (pure translations associated with the spin 

reversal operator). The two notations for describing magnetic space groups existing in the 

literature are due to Belov-Neronova-Smirnova (BNS) [1] and to Opechowski-Guccione (OG) 

[2]. Both notations are identical for the major part of magnetic space groups except for the 

second kind black-white magnetic space groups. Recently a list of all magnetic space groups, 

in a similar form as that of the ITA for crystallographic groups, has been published [4] using 

the OG notation. A re-interpretation of [4] in terms of the BNS notation has also been 

published [5].  

 

In the Shubnikov groups of the first kind the subgroup of translations is the same as that of the 

space group of which they derive, so the spin reversal operator is not associated with 

translations: the magnetic unit cell is the same as the crystallographic cell. 

In the Shubnikov groups of the second kind there are some translations associated with spin 

reversal, so that the “primitive magnetic unit cell” is bigger than the primitive crystal cell. 

The matrix representation of the symmetry operators depends on the basis used for referring 

to atom positions and magnetic moments. A drawback of using the magnetic unit cell as 

reference is that we have to re-write the symmetry operators and atom positions in a different 

basis as that of the crystallographic structure. 
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We shall use the ITA for determining all the magnetic groups deriving from a particular space 

group type. To be specific we select, as an example, the space group 46 Ima2. For 

constructing all magnetic space group derived from this space group we have to look for 

space groups that are subgroups of index 2. The symmetry operators of Ima2 and the 

subgroups are tabulated in ITA as follows: 

 

Site symmetry and positions of space group Ima2 

 

  (0, 0, 0)+ (½, ½, ½)+ 

8  c    1    (1) x, y, z  (2) -x, -y, z  (3) x+½, -y, z  (4) -x+½, y, z 

4  b    m . .    ¼, y, z  ¼, -y, z   

4  a    . . 2   0, 0, z  ½, 0, z   
 

Symmetry operations 

 

For (0, 0, 0)+ set 

 (1) 1          (2) 2 0,0,z  (3) a    x,0,z  (4) m  ¼, y,z 

For (½ , ½ , ½)+ set 

 (1) t(½ , ½ , ½)           (2) 2(0,0, ½)    ¼,¼,z    (3) c   x, ¼,z      (4) n(0, ½ , ½)   0, y,z 

 

Maximal non-isomorphic subgroups of Ima2 

I  [2] I 1 1 2  (C 2)  (1; 2)+ 

[2] I 1 a 1   (C c) (1; 3)+ 

[2] I m 1 1 (C m) (1; 4)+ 

 

IIa  [2] P m a 2  1; 2; 3; 4 

[2] P n c 2  1; 2; (3; 4) + (½ , ½ , ½) 

[2] P n a 21  1; 3; (2; 4) + (½ , ½ , ½) 

[2] P m c 21  1; 4; (2; 3) + (½ , ½ , ½) 

IIb none 

 

The groups I correspond to the translationengleiche of t-subgroups and the groups II to the 

klassengleiche or k-subgroups that are also subdivided in order to distinguish those having the 

same conventional cell (IIa) from those having a multiple cell (IIb) (see chapter from Tasci et 

al.). The division I and II correspond to the BW1 and BW2 respectively. Applying the 

formula M = H + (G  H) 1′ we obtain: 

 

Colourless trivial magnetic group: M0 = I m a 2 = {1, 2z, ay, mx}T 

For simplicity we remove the translation group and use only the coset representatives. We 

first list the BW1 groups using the data I of the ITA and show the OG notation that in this 

case coincides with the BNS notation. The subscript of mirror planes (rotation axes) indicates 

that they are perpendicular (parallel) to the given direction: 

 

I : M1 = I 1 1 2   +(I m a 2 – I 1 1 2 )1′ =  {1, 2z}+{ ay, mx}1′= I m′ a′ 2 

M2 = I 1 a 1   +(I m a 2 – I 1 a 1 )1′ =  {1, ay}+{ 2z, mx}1′= I m′ a 2′ 

M3 = I m 1 1  +(I m a 2 – I m 1 1)1′ =  {1, mx }+{2z, ay}1′= I m a′ 2′ 

 

For the BW2 groups, the translation subgroup is that formed by integer linear combinations of 

conventional cell parameters. The centring translations tC = (½, ½, ½) become anti-
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translations (translations followed by a spin reversal: primed translations), so the magnetic 

lattice contains the following set of translations and anti-translations  

 

L= {t | t=l1 a1+ l2 a2+ l3 a3;  li } 

L′= (T-L)1′= {t′ | t′=l1 a1+ l2 a2+ l3 a3 + tC;  li } 

 

We write below the BW2 groups using the data IIa of the ITA and show the BNS and the OG 

notation. It is clearly seen that the BNS notation correspond directly to the subgroups written 

in ITA by putting the lattice symbol PI for stating that an original body centred lattice 

becomes primitive and the centring translations become anti-translations. None of the 

generators appearing in the symbol is primed. This is a characteristic of the BNS notation for 

all BW2 groups. On the contrary the OG conserves the original HM symbol changing the 

lattice type to IP and using primed generators when they appear. From the information given 

in the decomposition of the magnetic group in terms of translations and anti-translations one 

can derive easily the BNS (the generators are selected from the coset representatives with 

respect to L) or the OG notation (the generators are always those of the parent space group 

and they are primed if they belong to the coset representatives with respect to L′).  

 

IIa: 

 ITA             Notations:                               BNS  OG 

[2] P m a 2 M4 ={1, 2z, ay, mx}L+{1, 21z, cy, nx}L′  = PI m a 2  IP m a 2 

[2] P n c 2  M5 ={1, 2z, cy,  nx}L +{1, 21z, ay, mx}L′= PI n c 2  IP m′ a′ 2 

[2] P n a 21  M6 ={1, ay, 21z, nx}L+{1, 2z, cy, mx}L′  = PI n a 21    IP m′ a 2′ 

[2] P m c 21  M7 ={1, mx, 21z, cy}L+{1, 2z, ay, nx}L′  = PI m c 21  IP m a′ 2′ 

 

The association of spin reversal with translations is more conveniently described using the 

more general formalism of propagation vectors. Using this formalism we do not need the 

magnetic unit cell for describing the magnetic structure. Using the transformation properties 

of the spin configuration limited to the content of a primitive cell is enough to calculate the 

magnetic moment of whatever atom in the crystal. 

 

 

4. Summary of the representation theory for space groups 
 

For a mathematical treatment of the notions related to group theory and representation theory 

see chapter by Canals and Schober and that by Ballou. The group representation theory can be 

used to classify the possible magnetic structures that derive from a crystal structure in which 

there are magnetically ordered atoms. The magnetic order takes place in a crystal having 

symmetry properties described by a space group G.  

 

Let us summarize the principal results of the representation group theory.  If a mapping can be 

established between the elements of a group and a set of square matrices that preserves the 

group multiplication, we say that the set of matrices constitute a “representation” of the group.  

 

1 2 1 2( ) | , ( ) ( ) ( )g g G g g g g    (6) 

 

A similarity transformation applied to all matrices provides an equivalent representation (the 

matrix U is generally unitary: U
-1

=U
†
).  
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1( ) ( ) withg U g U g G     (7) 

  

A particular group has an infinite number of representations of arbitrary dimensions. An 

arbitrary representation may be reduced to “block-diagonal form” by an appropriate similarity 

transformation. For instance the shape of all the matrices of the representation after the 

transformation may be as: 

 

 

     

11 12

21 22

11

11

11 12 13

21 22 23

31 32 33

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

( ) 0 0 0 0 0 0 ( ) 2 ( ) ( )

0 0 0 0

0 0 0 0

0 0 0 0

A A

A A

B

g B A g B g C g

C C C

C C C

C C C

          (8) 

 

 

The matrices A(g), B(g) and C(g) are also representations of the group. The most important 

representations are called “Irreducible Representations” (irreps). These are those that cannot 

be reduced to block-diagonal form. A reducible representation can be decomposed in direct 

sum of irreps in a unique way. We shall note the different irreps with the index  and a 

symbol  that may be used also for matrices. The decomposition of a reducible representation 

can be written as: 

 

   
1 2 3

1 2 3 ... m

mn n n n n    (9)   

 

 

The dimension of the representation  is l . The characters of a representation (traces of the 

matrices) will be represented as (g). The irreducible representations satisfy the following 

great orthogonality theorem: 

* ( )
( ) ( )ij lm il jm

g G

n G
g g

l
    (10) 

 

with n(G) the order of the group. We can deduce the following corollary for the characters of 

the irreps: 
*( ) ( ) ( )

g G

g g n G      (11) 

 

As a consequence we can calculate the number of times a particular irrep is contained in a 

reducible representation. From (9) and (11): 

 

*1
( ) ( )

( ) g G

n g g
n G

     (12) 
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The elements of the symmetry groups act on position vectors. For each particular problem we 

can select a set of physically relevant variables i{i =1, 2 …p} spanning a working functional 

space W. These functions constitute a basis of the W space. The action of the operator 

associated to a symmetry operator when applied to a function of position vectors is defined by 

the expression:  

 
1( ) ( ) ( ) '( )r r rO g g       (13) 

 

When using the functions i(r), the action of the operator O(g) gives rise to a linear 

combination, defining a representation of the group G:   

 

( ) ( ) '( ) ( ) ( )r r rj ij i

i

O g g     (14) 

 

If we take another basis  related to the initial one by a unitary transformation we may get the 

matrices of the  representation in block-diagonal form.  

 

( ) ( )r rj ij i

i

U      (15) 

 

The system of p -functions splits in subsystems defining irreducible subspaces of the 

working space W. If we take one of these subspaces (labelled ), the action of the operator 

O(g) on the basis functions is:  

1

( ) ( ) ( ) ( )r r
l

j ij i

i

O g g     (16) 

Here the functions are restricted to those of the subspace .  

In treating a physical problem for a symmetry analysis, it is simple to find the initial working 

space with an arbitrary set of basis functions that generates a reducible representation. We 

dispose of a set of operators, called projection operators, providing the basis functions of the 

irreducible representations contained in the initial reducible representation. The action of the 

projection operator P
 
providing the basis functions of the irrep  is given by the expression: 

 

*

[ ]

1
( ) ( ) ( 1,... )

( )
i i j

g G

P g O g i l
n G

   (17) 

 

The result of the above operation is zero or a basis function of the corresponding irrep. The 

index [j] is fixed, taking different values it provides new basis functions or zero.  

 

This is all we need for our purposes. We shall study how the so called magnetic representation 

decomposes in irreducible representations of space groups. For that let us start working with 

the translation subgroup of whatever space group. The translation group T  G is Abelian 

(commutative), so their irreps are all one-dimensional. Considering the properties of the 

translation operators and the Born-Von Karman periodic boundary conditions (see chapter by 

Schober), the translation operators and their representation matrix (a single number equal to 

its character) are given by the expressions:  
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31 2

1 1 2 2 3 3 1 2 3

1

3 31 1 2 2

1 2 3

( ) ( ) ( ) ( ) ( )

( ) ( ) 1,2,3

( ) exp 2 , , & 0 1

j

ll l

N

j j

i i i i

O O l l l O O O

O O j

p lp l p l
O i p N p N

N N N

t a a a a a a

a a

t

  (18) 

Ni is the number of unit cells along the direction ai. There are N1  N2  N3 =N representations 

(= number of unit cells in the crystal) labelled by the reciprocal space vector: 

 

3 31 2 1 2
1 2 3

1 2 3 1 2 3

, ,k b b b
p pp p p p

N N N N N N
    (19) 

 

The matrix of the representation k corresponding to the translation t is then: 

 

3 31 1 2 2

1 2 3

( ) exp 2 exp 2k
t k t

p lp l p l
i i

N N N
   (20) 

 

where the k-vectors in reciprocal space are restricted to the first Brillouin Zone
2
. 

It is clear that adding a reciprocal lattice vector H to k does not change the matrix, so the 

vectors k’=H+k and k are equivalent.  

The basis functions of the group of translations must satisfy the equation: 

 

( ) ( ) ( ) ( ) exp 2 ( )k k k k
t r t r k t rO i    (21) 

 

The most general form for the functions 
k
(r) are the Bloch functions

3
: 

 

( ) ( )exp{ 2 }, ( ) ( )k

k k kr r kr r t ru i with u u    (22) 

 

For constructing the representations of the space groups it is important to start with the basis 

functions. Let us see how the Bloch functions behave under the action of a general element of 

the space group g={h|th}: 

( ) ( ) { | } ( ) '( )k k
r t r rhO g h     (23) 

To determine the form of the functions  ′(r) one can see that they should also be Bloch 

functions with a different k-label: 

   
1

1 1

( ) '( ) {1| } '( ) {1| }{ | } ( ) { | }{1| } ( )

{ | }exp{2 } ( ) exp{2 }{ | } ( )

exp{2 } '( )

k k

k k

t r t r t t r t t r

                t k t r k t t r

                k t r

h h

h h

O h h h

h i h i h h

i h

  (24) 

 

                                                 
2
  The sign of the phase factor is a matter of convention. Here we take the positive sign in order to be consistent 

with the convention used in crystallography for Fourier series. This selection makes the phase sign of Bloch 

functions to be negative (see chapter by Schober). In many textbooks of solid state physics and representation 

analysis the negative sign is adopted. This reduces to rename the vector k as –k and vice versa. 
3
 This is easily verified by applying the rules of the operators action on functions: 

( ) ( ) ( ) ( )exp{ 2 ( } exp{2 } ( )exp{ 2 } exp{2 } ( )k k k

k kt r r t r t k r t) kt r k r kt rO u i i u i i   
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so that:     

( ) ( ) { | } ( ) ( )k k k
r t r r

h

hO g h      (25) 

 

The Bloch functions also serve as basis functions but the representations are no longer one-

dimensional because the Bloch functions whose wave vectors are related by the rotational part 

of g G belong to a same subspace. The set of non-equivalent k vectors obtained by applying 

the rotational part of the symmetry operators of the space group constitute the so called “star 

of k”:       

1 1 2 1 3 1 4 1 1 2{ } { , , , ,...} { , ,... }k k k k k k k k
kl

h h h h   (26) 

 

The ki vectors are called the arms of the star. The number lk is less or equal to the order of the 

point group n(G0). The set of elements g G leaving the k vector invariant, or equal to an 

equivalent vector, form the group Gk, called the group of the wave vector (or propagation 

vector group) or the “little group”. It is always a subgroup of G. The whole space/point group 

can be decomposed in cosets of the propagation vector group:  

 

2

1

0 0 2 0 0

1

: ...

...

k k k

k k k

G G G G

G G G G k k

k

k

l

L

L

l

L L L

L

Space Group g g

Point Group : h h h

   (27) 

 

The point group G0k is also called the “little co-group”. The fact that the translation group is a 

normal subgroup of the space group simplifies enormously the representations of space 

groups. We have to handle only the representative elements of the space group in their 

decomposition into cosets of the translation group. The quotient group G/T is always finite 

and isomorphic to the point group of the space group. 

 

Let us note the irreducible representations of Gk as 
k

 of dimensionality l  . The basis 

functions should be of the form: 

  

( ) ( )exp 2 ( 1,2... )k

kr r k ti iu i i l   (28) 

 

Under the action of the elements of Gk the functions transform into each other with the same 

k-vector. Using the elements of G not belonging to Gk one generates other sets of basis 

functions:    
31 2( ); ( ); ( ) ... ( ); ( 1,2... )

kk k k
r r r rL

i i i i i l   (29) 

 

constituting the basis functions of the representations of the total space group.  

These representations are labelled by the star of the k vector as: 
{k}

 and are of 

dimensionality l lk. Each irreducible “small representation” induces an irreducible 

representation of the total space group. The induction formula is: 

 

1

{ } 1

, ( ) ( )
k

k k

L M
Li Mj ij L M g g g G

g g g g     (30) 

 

The symbol  is 1 if the subscript condition is true, otherwise it is zero. 
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We need to know only the matrices of the small representations (representations of Gk) for the 

coset representatives of Gk with respect to the translation group: 

 

2 31kG Τ Τ Τ Τng g g     (31) 

For a general element of Gk we have: 

 

2

( ) ({ | }) ({1| }{ | }) ({1| }) ({ | })

({ | }) ({ | })

k k k k k

k k t k

t t t t t t

t t  t

h h h

i

h h

g h h h

h e h
 (32) 

 

The matrices 
k

 of the small representations can be easily calculated from the projective (or 

loaded) representations that are tabulated in the Kovalev book [16]: 

 
2

( ) ({ | }) ( )
k tk k

t  hi

h projg h h e    (33) 

 

or calculated with the appropriate algorithm [17]. 

 

 

5. The formalism of propagation vectors for describing magnetic structures.  

 

If we disregard, for the moment, the symmetry properties, except the translation subgroup of 

the space group, of the magnetic moment configuration whatever class of magnetic structure 

can be represented by the Fourier series: 

 

                       ( 2 )
k

k

m S kRlj j lexp i     (34) 

This defines the magnetic moment of the atom numbered j in the unit cell having as origin the 

lattice vector Rl (the atom at Rlj = Rl + rj). The k vectors are defined in reciprocal space and 

are called propagation vectors of the magnetic structure. For the description of magnetic 

structures they can be restricted to the first Brillouin zone (BZ). Notice that a Fourier series in 

nothing else that a development of a function in terms of Bloch functions. 

The Fourier coefficients Skj are, in general, complex vectors and must verify the equality

-j jk kS S to make the sum result a real vector. Even disordered magnetic structures, like those 

of spin glasses, may eventually be described with an expression like (34) if a nearly 

continuous distribution of k-vectors inside the BZ is considered. In practice, most of the 

magnetic structures can be describe by a small number (1 to 3) of propagation vectors. 

 

We may have defined (34) in a slightly different manner also usual in literature. Instead of 

writing Rl in the argument of the exponential function, one can write Rlj = Rl + rj: 

 

     ( 2 ( ))
k

k

m T k R rlj j l jexp i      (34’) 

 In such a case the Fourier coefficients,
jkT , of the new expression should be related to those of 

expression (34) by a phase factor, ( 2 )k kS T krj j jexp i , that depends on the atom positions 

inside the unit cell. We shall see that the convention we have adopted (34), similar to that of 

reference [18], is more convenient for a unified description of commensurate and 

incommensurate magnetic structures. On the other hand (34’) is more convenient when 

symmetry invariance is used in incommensurate structures. 
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The formulae we are considering in this paragraph are written in vectorial form, so they are 

independent of the particular frame for describing the magnetic moments, propagation 

vectors, atom positions, etc. Atom positions inside the unit cell are normally referred to the 

conventional basis A=(a, b, c), so that fractional co-ordinates are dimensionless. The Fourier 

coefficients, 
jkS , have the same units as magnetic moments, usually Bohr magnetons, and 

their components are given with respect to the unitary frame of the conventional unit cell 

U=(a/a, b/b, c/c) = (e1, e2, e3). The components of reciprocal lattice vectors, H, of the nuclear 

structure and those of the propagation vectors k, are given with respect to the reciprocal basis 

of the conventional unit cell and are also dimensionless. This is a very important point 

because in many of the available tables of space group irreducible representations, the k-

vectors are given with respect to a primitive basis of the reciprocal lattice b=(b1, b2, b3) which 

coincides with a
*
=(a1

*
, a2

*
, a3

*
) only for primitive direct lattices. When the Bravais lattice of 

the crystal is centred, the set b is obtained from a primitive basis of the direct cell and not 

from the Bravais (or conventional) unit cell.  Izyumov and collaborators [15] have introduced 

a set of vectors B=(B1, B2, B3) as a reference frame for the reciprocal lattice. The set B 

correspond to the “Bravais cell” of the reciprocal lattice. This is a frame that is not used by 

crystallographers and, giving the components of the reciprocal vectors with respect to it is 

confusing. We do not recommend the use of this frame for studies of magnetic structures. 

 

The lattice vectors lR appearing in the argument of the exponential function are integer linear 

combinations of the basis vectors of frame A only for primitive lattices. For centred lattices 

two formal types of lattice vectors exist: 1 2 3l n n n nR R a b c  with in
 

and 

l n CR R t , where Ct  is one of the centring vectors of the lattice with components it . 

There is nothing special for these two types of lattice vectors, the different type of 

components is just a matter of convention. The minimum set of magnetic atoms to be 

considered for describing a magnetic structure, without considering at this stage the 

symmetry, should not be related by lattice centring translations. The expression (34) assures 

the knowledge of the magnetic moments in the whole crystal when we know both the 

propagation vector(s) and the Fourier coefficients of the elemental set of atoms in the 

reference zero-cell 0 (0,0,0)R . The translational properties of the crystal allow reducing the 

necessary number of free parameters for describing a magnetic structure. If no translational 

properties exist the free parameters correspond to the three components of magnetic moments 

of each atom in the crystal. The Fourier decomposition (34), consequence of the translational 

symmetry, indicates that we need to consider only a finite number of, in general, complex 

vectors associated to the magnetic atoms within a primitive unit cell.  

 

Let us describe general types of magnetic structures of increasing degree of complexity, using 

the formalism of propagation vectors through the expression (34).  

 

a) The simplest types of magnetic structures existing in complex crystals have a single null 

propagation vector at the centre of the BZ: k = (0, 0, 0) = 0. The Fourier coefficients should 

be real and can be identified to the magnetic moments directly: 

   ( 2 )lj j l j jexp i0 0 0m S 0R S m        (35) 

This expression tells us that the orientation and magnitudes of the magnetic moments in 

whatever cell of the crystal are identical to those of the zero-cell. The translational symmetry 

of the magnetic structure is identical to that of the crystal structure: the magnetic unit cell is 

the same as the chemical cell. This class of magnetic structures may be ferromagnetic, 

ferrimagnetic or antiferromagnetic, collinear or non-collinear. The propagation vector at the 
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centre of the BZ does not mean that the magnetic structure is ferromagnetic. This is only true 

for Bravais lattices (a single magnetic atom per primitive cell). This kind of magnetic 

structure can be described by one of the 230 monochrome or the 674 black-white first kind 

(BW1) magnetic space groups. 

Notice that if we had taken the convention for the Fourier series (34) that puts in the 

exponential term the global vector position of the atom, Rlj = Rl + rj, the Fourier coefficients 

jkT  could not be identified with magnetic moments because of the phase factor containing the 

atom positions.  

 

b) The next class of magnetic structures corresponds also to a single propagation vector, in 

this case of the form: k=1/2H, where H is a reciprocal lattice vector. The propagation vectors 

of this kind correspond to high symmetry points of the surface of the BZ (Liftchitz points). In 

this case we have: 

0( 2 ) ( ) ( 1) ( 1) ( 1)l l ln n

lj j l j l j j jexp i exp i
HR

k k k km S k R S H R S S m   (36) 

This expression tells us that the orientation and magnitudes of the magnetic moments in 

whatever cell of the crystal are either identical or opposite to those of the zero-cell. The 

translational symmetry is lower than that of the chemical cell. The magnetic cell can easily be 

deduced from the particular values of the propagation vector (see [15] for a classification of 

magnetic lattices in terms of propagation vectors). The magnetic structures of this kind are 

necessarily antiferromagnetic and can be described by one of the 517 black-white second kind 

(BW2) magnetic space groups. 

 

c) This is the general case, where the k-vector is not a special vector as in the two previous 

types. For these cases there is no Shubnikov group, in three dimensions, that can describe the 

symmetry properties of such spin configuration. The general expression of the Fourier 

coefficient for the atom j is explicitly given by: 

1 2 3 1 2 3

1 1
{ }exp( 2 ) { ( )}exp( 2 )

2 2
k k k k k k k k k k kS e e e e e e

x y z x y z

j j j j j j j j j j jR i I i R R R i I I I i  

Only six real parameters define the Skj vectors, so the phase factor 
kj

is not generally needed, 

but it is convenient to use it when particular relations or constraints between real and 

imaginary vectors, ( , )
k kj jR I , are given. The calculation of the magnetic moment of the atom j 

in the unit cell of index l, should be performed by using the formula (34) that may be also 

written in this case as: 
 

                      

{ cos2 [ ] sin 2 [ ]}k k k k

k

m k R k Rlj j l j j l jR I  (37) 

where the sum is now extended to half the number of propagation vectors, i.e. over the total 

number of pairs (k,-k). 

 

If the magnetic structure represents a helical order the Fourier coefficients are of the form: 

1 2

1
{ }exp( 2 ), | | | | 1, 0

2
k kS u v u v u vj j j j j j j j j jm im i with         (38) 

where u j
 and v j

 are orthogonal unit vectors.  

 

Three situations can then be encountered: 
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i- : The magnetic structure corresponds to a modulated sinusoid of 

amplitude  

ii-  
1 2j jm m : All j atoms have equal magnetic moments. If the propagation vector is 

perpendicular to the plane formed by the vectors u j
 and v j

the magnetic structure 

for the sublattice j corresponds to a classical helix (or spiral), of cylindrical 

envelope (see Fig. 4b). If the propagation vector is within the (u, v) plane, the 

structure is called a cycloid (see Fig. 4c).  

iii- 
1 2j jm m : The helix (or cycloid) has an elliptical envelope and the moments have 

values between min(m1j, m2j) and max(m1j, m2j).  

 

 

 

6. How we get information about magnetic structures: magnetic neutron scattering 
 

6.1: The scattering amplitude 

 

The intensity of magnetic Bragg peaks due to neutron scattering by magnetically ordered 

systems can be calculated in a similar way as for X-rays or nuclear neutron scattering. The 

most important difference is that the scattering amplitude is not a scalar variable. Here we will 

give a summary of the most important expressions needed to calculate the intensity of a Bragg 

2 0jm

1 jA m

 
Figure 4: Examples of magnetic structures. In all cases the orientation of the lattice is 

similar, except in the second view of (b) in which the point of view is nearly along b. 

(a) Sinusoidal structure with propagation vector k=(0, ,0) and Sk=(0,0,w) 

(b) Helical, or spiral, structure with propagation vector k=(0, ,0) and Sk=(ui,0,u) 

(c) Cycloidal structure with propagation vector k=(0, ,0) and Sk=(0,u,ui) 

 

(a)

(b)

(c)

b
c

(a)

(b)

(c)

(a)

(b)

(c)

b
c

b
c
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reflection, the reader interested in more details of the elastic magnetic scattering in relation 

with magnetic structures can consult [18] and the references therein. 

The interaction of neutrons with the magnetic moments of atoms is of dipolar origin through 

the magnetic moment of the neutron. The scattering amplitude vector, for a single atom with 

atomic moment m, is given by: 

 

     
2 2

1 ( ) 1
( ) ( ) ( ) ( )( )

2 2

Q m Q
a Q m m Q m Qe epf Q r f Q r f Q

Q Q
  (39) 

 

The constant p = re /2 = 0.2695 allows the conversion of the magnetic moments, given in 

Bohr magnetons to scattering lengths units of 10
-12

 cm. The other constants appearing in 

formula (39) are: the classical radius of the electron
 

2 2 13/ 2.81776 10 cmer e mc and the 

magnetic moment of the neutron in nuclear magnetons  ( 1.9132). The function ( )f Q  is the 

atomic magnetic form-factor (Fourier transform of the unpaired electron density, normalized 

as f(0) =1, assumed to be spherical hereafter), and m  is the perpendicular component of the 

atomic moment to the scattering vector Q=2 s. As shown in (39), only the perpendicular 

component of m contributes to the magnetic scattering of neutrons by matter. The vectorial 

character of the interaction allows determining the magnetic moment direction with respect to 

the crystal lattice. 

 

6.2: Magnetic interaction vector of the whole crystal 

 

For unpolarised neutrons the nuclear and magnetic intensities are simply additive and are, in 

general, of the same order of magnitude. An important difference between nuclear and 

magnetic scattering is that the latter is strongly reduced at high Q. The absence of “form 

factor” in the case of nuclear scattering gives rise to a decrease of intensity with Q due only to 

thermal vibrations, whereas the magnetic form factor f(Q) in (39) is the Fourier transform of 

the unpaired electron density having a spatial extension of the order of magnitude of the 

neutron wavelength. The elastic scattered intensity by a crystal, as a function of Q or s, is 

proportional to the square of the total amplitude (also called “magnetic interaction vector”): 

 

2 2

2 2

1
( ) ( ) ( ) ( )

s R s R
M s m s m s = s M s slj lji iT T

j lj j lj

lj lj

p
pf s e f s e

s s
 (40) 

 

The vector M
T
 is the magnetic structure factor of the whole crystal. The scattered intensity is 

calculated multiplying the expression (40) by its complex conjugate as usual. 

 

Contrary to the majority of crystal structures, many magnetic structures are incommensurate: 

the periodicity of the orientation of the magnetic moments is not commensurate with the 

underlying crystal structure. This is a consequence of the competition of the exchange 

interactions giving rise to different kinds of frustration in many compounds. We shall develop 

the expression (40) using the formalism of propagation vectors that allows, for magnetic 

scattering, a general way of treating, on the same foot, commensurate and incommensurate 

magnetic structures. Using this formalism we do not need to use the concept of magnetic unit 

cell even in the case of commensurate structures. 
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6.3: The magnetic structure factor 

 

We can substitute (34) in the expression (40) to obtain a compact description of the magnetic 

interaction vector of the whole crystal: 

 
2 2 2

2 22 (

( ) ( ) ( )

( ) ( ) ( )

s R s R k R

k

k

s r s rs k) R

k k

k k H

M s m S

S S s k H

lj lj l

j jl

i i iT

j lj j j

lj lj

i ii

j j j j

j l j

p f s e p f s e e

p f s e e p f s e
(41) 

 

The expression (41) indicates that the magnetic intensity is practically zero in the whole 

reciprocal space except at positions given by: 

 

s h H k           (42)

     

Magnetic diffraction appears like a filter. Each satellite is decoupled of the rest of satellites, so 

if there are different propagation vectors k there is no interference between them, so there is 

always a phase factor between the Fourier coefficients Sk corresponding to different 

propagation vectors that is not accessible by diffraction methods unless a crystal structure 

distortion is coupled with the magnetic ordering. Notice that the concept of “fundamental 

reflections” (used in modulated crystal structures) does not apply here because h=H 

corresponds to nuclear reflections. Only when k=0 there is a magnetic contribution in top of 

the nuclear reflections. 

For a particular magnetic reflection indexed as in (42) the magnetic structure factor of the unit 

cell is: 

 
2 2 ( )

( ) ( ) ( )
h r H k r

k khM h M S SH kj ji i

j j j j

j j

p f h e p f e  (43) 

 

The intensity of a magnetic Bragg reflection is proportional to the square of the magnetic 

interaction vector: 

 2

1
( )h h h h hM h M h e M e M e M e

h
 (44) 

where e is the unit vector along the scattering vector h=H+k. In the case of a propagation 

vector k=0 the intensity of a Bragg reflection for non polarised neutrons is given by: 

 
*

hhhhh MM
*NNI   (45)

            

where ( )h hN F is the nuclear structure factor, otherwise only the second term (pure 

magnetic scattering) of the sum contributes to the intensity of reflection h.  
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7. The symmetry analysis based on representation theory for determining magnetic 

structures 

 

Magnetic neutron diffraction experiments provide as immediate information the position of 

magnetic reflections in reciprocal space. This allows the determination of the propagation 

vector(s) characterising the magnetic moment configuration given by the Fourier series (34). 

The measurement of the intensities gives us a list of non-linear equations with the Fourier 

coefficients Skj as unknowns (equations 43-45). The problem of determining the magnetic 

structure of a crystalline solid, for which the crystal structure is known, reduces to the 

determination of the quantities {k} and {Skj} from which we can apply the expression (34) for 

determining the magnetic moment of whatever atom in the crystal. This result takes into 

account only the translational symmetry of the crystal. In general we have enough information 

from the whole symmetry of the crystal structure to further reduce the number of free 

independent parameters. Let us apply the general method of group representations 

(summarised in section 4) to the problem of finding and classifying the possible magnetic 

structures that can be realised in the frame of a particular crystal structure. Notice that in the 

forthcoming sections we will not use the time inversion symmetry (primed operators).  The 

concept of propagation vector(s) in the Fourier series (34) replaces to some extend the “anti-

translations” in the description of commensurate magnetic structures having k=1/2 H (see 

formula (36)).  

  

 

7.1: The working space for symmetry analysis of magnetic structures: magnetic representation  

  

Up to now we have considered the index j for labelling magnetic atoms in a primitive cell 

without taking into account the space group and the different Wyckoff positions. We do the 

analysis for the propagation vector k. Let us now consider that the magnetic atom site j has 

equivalent atoms labelled as js (j1, j2, …jpj) under the application of symmetry operators of 

the crystal space group G belonging also to the wave vector group Gk. The group Gk is 

formed by the set of symmetry operators that leave invariant the propagation vector modulo a 

reciprocal lattice vector: Gk={g G | gk=k+H, H L*}, where L* is the crystallographic 

reciprocal lattice. One can generate a reducible representation of Gk by considering the 

complex working space spanned by all the components of Skjs. Each complex vector has three 

components (but two parameters per component: modulus and phase or real and imaginary 

part). As the atoms belonging to different sites do not mix under the symmetry operators, we 

can treat separately the different sites. For us the index j is then fixed and the index s varies 

from 1 to pj. Being pj the number of sublattices generated by the site j. The working complex 

space for site j has dimension nj=3  pj and it is spanned by unit vectors { k
ε

j

s
} (  = 1, 2, 3 or 

x, y, z and s = 1… pj,) represented as column vectors (with a single index n) with zeroes 

except for n= +3(s-1) for which the component is one. The vectors { k
ε

j

s
} are formed by 

direct sums (juxtaposition) of normal 3D unit vectors { k
u

j

s
}. For instance one of the vectors is 

given by: 
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k

k

u

u
ε u

u
j

j

j

j

x

j

yj
j

zj
jj j
xs s

s

j
jp

p y

j

p z

u

u

u

u

u

u

 

The vectors { k
ε

j

s
} may be considered as the columns of the unit matrix of dimension 

nj nj=9pj
2
: 

 

 11 12 13 2 3

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

{ }

0 0 0 1 0

0 0 0 0 1

k k k k k
ε ε ε ε ε

j j

j j j j j

p p  

 

The nj { k
ε

j

s
} vectors refer to the zero-cell. One can extend the basis vectors to the whole 

crystal by using the Bloch propagation then forming column vectors of up to nj  N = 3 pj N 

dimensions, being N the total number of unit cells in the crystal. The component number n, for 

each kind of vector (3D, 3pjD and 3NpjD), is given by the expressions:  

 

, , 3( 1)

2

, 3( 1) 3

3 ( ) ; 3 ( )

exp( 2 ) 3 ( )

k k k k

kRk k k

ε u u ε

ε kR φ l

j
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s s l j s n n s lp

l

D p D

i Np D e
  (46) 

If one applies the symmetry operators of Gk to the vectors { k
ε

j

s
} taking into account that they 

are axial vectors we obtain another vector (after correcting for the Bloch phase factor if the 

operator moves the atom outside the reference zero-cell) of the same basis. The matrices 

, ( )kj

s q g  of dimension nj nj corresponding to the different operators constitute what is called 

the “Magnetic Representation” for the site j and propagation vector k. Let us get an explicit 

form for these matrices.  

The action of the operator O(g) on the vector { k
ε

j

s
} can be obtained from the equations (3) 

and (4) but considering only conventional crystallographic operators. Applying a symmetry 

operator to the vector position and the unit spin associated to the atom js along the -axis, 

changes the index js to jq and reorient the spin according to the nature of the operator g={h|th} 

for axial vectors. 

 

, ,

; ( , )

( ) det( ) det( ) ( ) det( ) det( ) [ ]k k k

r r t r a a

u u u

j j j j j

s s h q gs gs

j j j q

s gs m q m m m

m m

g h gs q

O g h h h h h h h h q (47) 
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The operator g acting on atom positions permutes the numbering of the atoms belonging to a 

same site (orbit) and provides a returning vectora
j

gs , which must appear in a phase factor 

when working with Bloch functions when the transformed atom is outside the zero-cell. 

 

 
2

, ,( ) ( ) det( )
k ak k k k

ε ε ε
j
gsij j j j j

s q s q s gq q

q q

O g g e h h   (48) 

 

The explicit components for the magnetic representation are: 

 

2

, ,( ) det( )
k ak

j
gsij j

Mag q s q gsg e h h    (49) 

 

The  symbol has value equal to 1 when the operator g transforms the atom s into the atom q, 

and zero otherwise.  

 

7.2: The magnetic representation as direct product of permutation and vector representation 

 

An inspection to the explicit expression for the magnetic representation, given by equation 

(49), for the propagation vector k, the Wyckoff position j, with sublattices indexed by (s, q), 

shows that it may be considered as the direct product of the so called “permutation 

representation” by the axial (or in general “vector”) representation. The explicit matrices of 

the permutation representation, of dimension pj pj, are: 

 

2

,( )
k ak

j
gsij j

Perm qs q gsP g e     (50) 

 

The matrices of the axial representation, of dimension 3, are constituted by the rotational part 

of the Gk operators multiplied by -1 when the operator g={h|th} corresponds to an improper 

rotation. 

( ) det( )Axial V g h h     (51) 

 

Mag Perm Axial  

 

The magnetic representation Mag, irrespective of the indices, can be decomposed in 

irreducible representations of the propagation vector group. Using the expressions (9-12) and 

taking into account that, though the space group is infinite, we work only with the coset 

representatives with respect to the translation subgroup, we can calculate a priori the number 

of possible basis functions of the irreps of Gk that describe the possible magnetic structures. 

This number (NBV) is equal to the number of times the representation  is contained in Mag 

times the dimension of : NBV=n   l . 

 

7.3: Projection operators and basis vectors of irreducible representations of Gk 

 

The basis functions of the irreps of Gk can be calculated using the projection operator formula 

(17) particularised for the explicit expression of O(g) acting on the vectors {
kj

s} (equation 

48). The explicit formula giving the nj-dimensional basis vectors of the representation   for 

site j is the following: 
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  (52) 

 

It is convenient to use, instead of the basis vectors for the whole set of magnetic atoms in the 

primitive cell, the so called atomic components of the basis vectors, which are normal 3D 

constant vectors attached to individual atoms: 

 

, 1,...

( ) ( )k k
S

js p

j js     (53) 

The explicit expression for the atomic components of the basis functions is: 

 

1

2*

[ ] , [ ] 2
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( ) ( ) e det( )
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js g h h
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  (54) 

 

The possible magnetic structures, described by Fourier coefficients, can be obtained in terms 

of hopefully less number of independent parameters if these Fourier components are linear 

combinations of the basis vectors (54). 

 

We have considered up to now a single k-vector and the representations of the wave vector 

group Gk. It is convenient to derive the basis vectors corresponding to the full star in terms of 

the basis vectors of a single arm. If we assume that the transition involves all the arms of the 

star (representations of the full space group) we can eventually obtain more constraints and 

reduce the number of free parameters. Taking into account the fact that for the arm kL=gLk 

(see equations (27)) the wave vector group is conjugate to Gk (GkL=gL Gk gL
-1

) we obtain the 

following relation between the atomic components of the basis vectors: 

 
2

( ) e det( ) ( )
k a

k k
S S

j
L g q

L L
i

L Ljs h h jq     (55) 

 

The atoms s and q of the site j and the returning vector given in the exponential term are 

related by the equation: 

r r t r a
L L

j j j j

L q L q h s g qg h      (56) 

 

Notice that gL is an operator of the full space group that connects atoms that may be split into 

different orbits in the wave vector group Gk. We can impose further constraints by applying 

the relation (55) not just to basis vectors but to Fourier vector coefficients belonging to 

different orbits reducing the number of free parameters to describe a magnetic structure.  

The so-called multi-k structures correspond to magnetic structures in which the full set of 

star-arms participates in the spin configuration. It is very difficult to determine how many 

arms, transition channel [15], are contributing to an experimental magnetic structure (see 

chapter 4, starting at section 18, of reference [15]) unless a physical test can be performed to 

distinguish a real multi-k structure from the presence of magnetic domains. 
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7.4: Relations between the Fourier coefficients of the magnetic moments and the basis vectors 

 

A general magnetic structure can be described by a Fourier series as (34) where the index j 

was for a generic magnetic atom irrespective of symmetry. The Fourier series can be rewritten 

using the notation used in the present section, simply by changing the index j for the double 

index js. The fundamental hypothesis of the symmetry analysis, when working with magnetic 

structures, is that the Fourier coefficients Skjs that describe magnetic structures with 

propagation vector k must be a linear combination of the basis functions (atomic components) 

of the Gk irreducible representations.  

 

( )k k

k
S Sjs n n

n

C js            (57) 

where labels the active irreducible representation, , of the propagation vector group Gk,  

labels the component corresponding to the dimension of the representation , n is an 

additional index (with respect to expression (54)) running between one and the number of 

times (n=1...n ) the representation  is contained in the global magnetic representation Mag. 

The quantities ( )k
Sn js  are constant vectors, in general complex, obtained by the application 

of the projection operator formula to axial unit vectors along the directions of the unit cell 

axes attached to the positions js. The explicit formula for obtaining them is the equation (54). 

These vectors are similar to the polarisation vectors of normal modes in lattice dynamics 

except that they are axial vectors. The basis vectors may be normalised in different ways. An 

additional sum over  is sometimes necessary when more than one irreducible representation 

is involved in the magnetic phase transition (see reference [15] for examples and details). In 

the case the representation analysis is fully used, the mixing coefficients k

nC  are the free 

parameters of the magnetic structure (they correspond to the order parameters in the Landau 

theory of phase transitions) and usually the total number is lower than the number of Fourier 

components of each magnetic atom in the unit cell. If we add a sum over representations, the 

expression (57) gives the most general case; in practice one has to assume additional 

constraints because the number of mixing coefficients may be too high. In particular for 

multidimensional representations one can select a particular direction in the representation 

space (for instance not considering all the -indices) in order to diminish the number of 

parameters. In the case of commensurate magnetic structures this selection corresponds to the 

assumption of different Shubnikov groups. The same may be stated for incommensurate 

structures when superspace groups are considered.  

 

The number of free coefficients to describe a magnetic structure corresponding to a single 

representation of Gk is related to the number of independent basis vectors nf  n   dim( ). 

In the general case the basis functions can be complex vectors as well as the coefficients k

nC , 

the condition -k kS Sjs js assures the reality of the magnetic moments. The effective number of 

free parameters depends on some additional assumptions related to the consideration of the 

star of the wave vector. Let us consider only a single wave vector and the representations of 

Gk. In such a case, the analysis is successful when the number of free parameters is lower 

than 6pj in the case of k not equivalent to -k or 3pj in case of real Fourier coefficients. In 

summary, the group theory, considering only Gk, is useful when:  

 

nf  = 2 n   dim( ) < 6 pj  (for k non equivalent to -k)   (58)  

nf  =   n   dim( ) < 3 pj  (for k equivalent to -k)    (58’) 
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The factor 2 comes from the fact that, in general, the coefficients may be complex (modulus 

and phase). When the constraints introduced by symmetry analysis are not enough to simplify 

the problem and tackle successfully the experimental data, one has to consider other kind of 

restrictions imposed by the previous knowledge of the physics of the system. The most 

common constraint, based on physical grounds, is that the magnetic moment of the different 

atoms belonging to a same crystallographic site should have the same modulus, at least for 

commensurate magnetic structures. 

 

Let us consider briefly the invariance properties of a magnetic structure described by the 

propagation vector k. Using the full basis vectors of a single Wyckoff site of Gk (direct sum 

over s=1...p, see eq. (53)) we can remove the index s and write: 

 

[ ]( )k k k k

k k
S S S ψs n n n n

n n

C s C     (59) 

If an operator g of Gk is a symmetry operator of the magnetic structure it must verify
4
: 

  

[ ] [ ]( )
k k

S SO g
     

(60)
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So that,  

     ' ' ( )k k k

n nC g C      (61) 

where
' ( )k g are the matrix elements of the irrep 

k  
of Gk corresponding to the operator g.  

If g is a symmetry operator of the magnetic structure, then the mixing coefficients k

nC  must 

satisfy the equation (61). 

 

We can extend the same considerations to a magnetic structure described by the full set of 

arms of {k}. If we consider a single Wyckoff site of the full space group, the Fourier 

coefficients and the basis vectors of the full irrep 
{k}

 can be written and related as: 

 
'

[{ ] [{ ] [{ ] , ' ' '

' '

; ( ) ( )k k k k{k}

k} k} k}
S ψ S SL L L L

n n n L L n

L n L

C O g C g C   (62) 

In this case the matrix elements , ' '( ){k}

L L g correspond to those of a full irreducible 

representation of the space group G. They are related to the irreps matrices of Gk by the 

induction formula (see eq. 30). The relations (62) put the appropriate constraints between 

mixing coefficients in order to assume that the operator g G (or g GP) is a symmetry 

operator of the magnetic structure.  

 

For incommensurate magnetic structures one can extend the invariance equation (62) by 

including a global phase factor associated to the symmetry operator for each pair of (k,-k) 

arms of the star:  
2

[ - ] [ - ]( )
k, k k, k

S S gi
O g e      (62’) 

                                                 
4
  For the invariance symmetry we have to consider also operators combined with time inversion. We can use the 

representations of the paramagnetic group (GP=G+G1’), which have a one to one correspondence to those of the 

space group G without need of using co-representations (useful in quantum mechanics): the matrices 

corresponding to primed elements are just the product of those corresponding to unprimed elements by the 

negative identity matrix. Symbolically (g’) = – (g), with g, g’ GP. 
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This extends the symmetry invariance to incommensurate structures. The full treatment 

should be done using the superspace formalism not treated in this document. 

 

For the case of incommensurate magnetic structures one has to consider at least two wave 

vectors in the arm: k and –k. In such cases it may be possible that atoms belonging to a same 

orbit in the full space group are split into two orbits in Gk. The atomic components of the 

basis vectors of the atoms belonging to the two orbits are related by the relations (55). When 

using the superposition (57) for k and –k and the condition -k kS Sjs js , one can obtain the 

relations between the coefficients k

nC  and -k

nC . If we assume additional symmetry 

constraints by using the relations (62), or the equation (55) applied to Skjs, restricted to the 

pair (k, –k), we can fix the relation between the Fourier coefficients of the two orbits. 

    

Instead of using directly the mixing coefficients for describing a magnetic structure, one can 

use a more traditional crystallographic approach in some cases. The Fourier component k of 

the magnetic moment of atom j1, which transforms to the atom js when the symmetry 

operator gs={h|t}s of Gk is applied (r
j
s=gsr

j
1=hsr

j
1+ts), is transformed as: 

 

1 { 2 }k k kS Sjs js j jsM exp i            (63) 

 

The matrices Mjs and phases kjs can be deduced from the relations between the Fourier 

coefficients and atomic basis functions (57). The matrices Mjs correspond, in the case of 

commensurate magnetic structures, to the rotational parts of the magnetic Shubnikov group 

acting on magnetic moments.  

 

 

7.5: Magnetic Space Groups and Irreducible Representations of dimension 1 

 

 

There exists a well defined relation between the theory of magnetic space groups (Shubnikov 

groups) and the representation theory. This is known in the literature as the Niggli-Indenbom 

theorem and it is related to the fundamental lemma discussed in section 2 about the subgroups 

of index 2 of crystallographic groups. The theorem states that: the magnetic space groups 

correspond to real 1D irreducible representations of conventional crystallographic space 

groups. This is easily seen by considering the following: suppose we have a real 

representation  of the space group G, the matrices of this representation can be of the form 

(g)=1 or (f)= 1; if we associate the time reversal operator 1′ to the elements f  G, so they 

become primed elements f ′,  the multiplication table of g-type and f ′-type elements coincides 

with the multiplication table of the { (g) …, (f)…} matrices. There is then an isomorphism 

between magnetic groups and real 1-dimensional irreducible representations of space groups.   

 

 

8. The magnetic structure factor when symmetry is considered. 
 

If isotropic thermal motion is considered and if symmetry relations are established for 

coupling the different Fourier components, we obtain the general expression of the magnetic 

structure factor: 
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The sum over j concerns the atoms of the magnetic asymmetric unit for the wave vector k. So 

that j labels different sites. The sum over s concerns the symmetry operators of the wave 

vector group Gk. The phase factor kjs has two components:  

    
jsjjs kkk

         (65) 

kj is a phase factor that is not determined by symmetry. It is a free parameter and it is 

significant only for an independent set of magnetic atoms (one orbit) which respect to another 

one. The component kjs is a phase factor determined by symmetry as shown in (63). The sign 

of kjs changes for -k. In the general case Skj1 is a complex vector with six components. These 

six components per magnetic orbit constitute the parameters that have to be refined from the 

diffraction data. Symmetry reduces hopefully the number of free parameters per orbit to be 

refined. Notice that we have adopted a different phase sign convention than that used in 

reference [19]. 

 

In the case of a commensurate magnetic structure one can calculate the magnetic structure 

factor in the magnetic unit cell. In such a case Skj1 are real vectors corresponding to the 

magnetic moment of the atom j1, the matrices Mjs are all real and the phases verify kjs =0. 

The crystallographic magnetic group theory can be fully applied in such a case [1-5]. 

 

In the case the general decomposition in terms of atomic basis functions (57) is used, the 

magnetic structure factor can be written as: 

 
2

/ 2

1

( ) {2 ( )}k k
M(h) (h) S h x h t

a

j

n
B h

j j n n s j s

j n s

p O f e C js exp i   (66) 

where we have written h h
T

s sh (superscript T stands here for transpose) 

 

 

9. Limitations of neutron scattering for determining magnetic structures 
 

If the magnetic structure has several propagation vectors k, and there is no strong coupling 

with the crystal lattice, it is not possible to determine unambiguously the spin configuration 

because the phase between the different Fourier components cannot be determined by 

diffraction methods. Here we take j as the index of a generic magnetic atom (irrespective of 

symmetry sites). One can see easily what the origin of this problem is; let us rewrite the 

expression (34) as: 

 

{ 2 ( )} { 2 }
k k k

k k

m S kR S kRm

lj j l j lexp i exp i    (67) 

In which we have added an arbitrary phase factor k depending only on k. We can 

understand easily that the modified Fourier coefficients, kS
m

j , give rise, in general, to another 

kind of magnetic structure specially if the structure is commensurate. However, the diffraction 

pattern obtained with a Fourier series like (67) is identical to that obtained with (34). This is 

readily demonstrated because the modified magnetic structure factors (43) and the intensity 

corresponding to the reflection h=H+k are given by: 
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 (68) 
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The arbitrary phase factor disappears when calculating the intensity. So, if several 

propagation vectors exist in a diffraction pattern, infinitely many structures are able to explain 

the observed pattern and diffraction alone is unable to provide a unique solution. Symmetry 

constrains and, more importantly, restrictions on the amplitude of the magnetic moments can 

reduce the number of solutions. A study of the different kinds of propagation vectors that can 

be combined in order to provide constant moment structures, among the study of the physical 

properties, was performed long time ago by Nagamiya [20]. Fortunately, nature often selects 

simple solutions and many magnetic structures have a single propagation vector, or display 

some symmetry constraints that reduce the complexity of the periodic magnetic structures 

given by (34).  

 

Special consideration requires the sinusoidal structures in which the single pair (k,-k) of 

propagation vectors at the interior of the Brillouin Zone has commensurate components. Here 

the change of the global phase k modifies the physical properties of the magnetic 

arrangement. If k is incommensurate the change of phase means only a change of global 

origin in the crystal and all the amplitudes of the magnetic moments between extreme values 

are realized somewhere in the crystal. If k is commensurate some particular values of the 

phases give a picture of the magnetic ordering that is really different of a conventional 

sinusoid. Let us consider the simplest case of a single atom per primitive unit cell and a 

propagation vector k=1/4H. To be specific, consider the case described in Figure 4(a). The 

magnetic moment, expression (67), in the lattice position Rl =(l1, l2, l3) is given by: 

 

2

,

{ 2 ( )} (0,0, )cos 2 (1/ 4 ) (0,0, )cos 2 ( )
4

k k k k

k k

m S kR HRl l l

l
exp i w w  

 

with l2 integer.  

 

Two interesting cases occur: 

 

i) If 0k  the sequence of magnetic moment components along c for the lattice 

points l2= (0, 1, 2, 3, 4, 5 …) are: (w, 0, -w, 0, w, 0 …).  

ii) If 1/ 8k  the sequence is: (w', w', -w', -w', w', w', -w', -w'…), with ' / 2w w .  

 

Both sequences give exactly the same diffraction pattern up to the constant factor 1/ 2 , so 

they are indistinguishable. In the first case there are paramagnetic atoms and in the second we 

have a constant moment magnetic structure. If the coupling of the magnetic moments with the 

crystal lattice is strong, one can distinguish the different solutions by their effect on the 

atomic displacements. It is clear that the pattern of atomic displacements in the case of 

0k should be totally different from that of 1/ 8k . In the major part of the cases the 

coupling is not strong enough to see nuclear superstructure reflections and we need other 

experimental techniques (Mössbauer spectroscopy, μ-SR, NMR …) that can help in getting 

the good choice among a set of indistinguishable solutions.  

 

The problem of the degeneracy of solutions (different magnetic structures giving rise to the 

same diffraction pattern) is exacerbated in the case of powder diffraction. To a particular 

observed peak there is the contribution of different Bragg reflections so that the magnetic 

structure of compounds with symmetry higher than orthorhombic cannot be determined 

unambiguously. The paper by G. Shirane [21] examines the case of “uniaxial” (collinear) 
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magnetic structures and concludes that for cubic symmetry the direction of the magnetic 

moments cannot be determined by powder diffraction. In the case of tetragonal, rhombohedral 

and hexagonal systems, only the assumed “common” angle of the magnetic moments with the 

c-axis can be determined. The powder diffraction pattern is not sensitive to the orientation 

angle in the a-b plane. 

 

10. Examples of commensurate magnetic structures with propagation vector at the 

centre or at the surface of the Brillouin Zone (BZ). 

 

Let us consider the two types of magnetic structures described in (a) and (b) of section 5. 

These are respectively (a) k=0 and (b) k=1/2H, where H is a reciprocal lattice vector 

(Liftchitz points of the BZ). Of course, the first type (a) is a particular case of the second (b) 

when H=0. We have separated the two cases only for signalling the largely spread confusion 

that when k=0, the magnetic structure is necessarily ferromagnetic. We shall consider a single 

orbit in the following paragraphs, so the index s labels the different sublattices of a single site. 

 

For all magnetic structures with k=1/2H (now including H=0), the Fourier coefficients 
kS j

 

should be real and there are cases where it is not possible to obtain from representation 

analysis real basis functions 
k

Sn s  or a coherent set of coefficients k

nC  allowing the 

description of a real magnetic structure. There are combinations of space groups and 

propagation vectors of the k=1/2H type giving rise to complex representations providing 

complex basis functions. Classically the Frobenius-Schur criterion for determining the type of 

representation (real or complex) for point groups can be extended for space groups (Herring’s 

criterion). In summary we have the following cases: 
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 (69) 

 

where the sum is extended only for those operators of the space group transforming k into –k 

and lk is the number of arms of the star of k. For the second and third cases the mixing of two 

or more irreducible representations is needed for obtaining real basis functions. In some cases 

the combination of several irreducible representations provides real basis functions but non-

constant magnetic moments. One has to decide if for the particular physical situation this is an 

acceptable issue. In case the physical situation indicates a clear preference for constant 

magnetic moment it is necessary to reduce the symmetry of the initial space group and apply 

extra constraints. Let us consider four examples of the above general problem. 

 

10.1: Symmetry analysis of the magnetic structure of LaMnO3. 

 

This compound contains a single Mn site and it is an example of the simplest case of a 

propagation vector k=0 and only real 1D irreps [22]. The space group is G=Pbnm, the cell 

parameters are a=5.695 Å,  b=5.695 Å and c= 7.540 Å (see chapter by Grenier &Ballou). The 

Mn atoms are in the Wyckoff positions 4b: 1(1/2,0,0), 2(1/2,0,1/2), 3(0,1/2,1/2) and 

4(0,1/2,0). As the propagation vector is k=(0, 0, 0), the magnetic unit cell is identical to the 

nuclear cell. The whole symmetry analysis may be performed by hand [23] or by using one of 
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the available computing programs doing the work automatically [24-26]. We use hereafter the 

program BASIREPS [24]. 

The propagation vector is invariant, so Gk=G=Pbnm. The list of the irreducible 

representations (all of them of dimension 1) is given in Table 1, in which p=1/2. 

 

 

Table 1: Irreducible representations of Gk=G=Pbnm. 
---------------------------------------------------------------------------------------------- 

Irreps  {1}   {2z|00p}   {2x|pp0}    {2y|ppp}   {-1}  m={mz|00p}  b={mx|pp0} n={my|ppp}   SG 

----------------------------------------------------------------------------------------------     

 1:     1       1          1           1        1        1          1          1       Pbnm 

 2:     1       1          1           1       -1       -1         -1         -1       Pb’n’m’ 

 3:     1       1         -1          -1        1        1         -1         -1      Pb’n’m 

 4:     1       1         -1          -1       -1       -1          1          1      Pbnm’ 

 5:     1      -1          1          -1        1       -1          1         -1      Pbn’m’ 

 6:     1      -1          1          -1       -1        1         -1          1      Pb’nm 

 7:     1      -1         -1           1        1       -1         -1          1      Pb’nm’ 

 8:     1      -1         -1           1       -1        1          1         -1      Pbn’m 

 

We have provided the symbol of the Shubnikov group (SG) corresponding to each irreducible 

representation (see sections 3 and 7.5) in the last column of the table. All irreps are real, so 

we are in the first case or rule (69). 

We do not give the matrices of the magnetic representation m, of dimension 3 pj=3 4 = 12, 

because it can be easily deduced by hand or from the information given in the output file of 

BASIREPS.  m has the characters: ( m-4b) = (12, 0, 0, 0, 12, 0, 0, 0) and decomposes 

(see equations (9) and (12)) in terms of the irreps of the previous table as follows: 

1 3 5 7(4 ) 3 3 3 3m b  

This means that if a single irrep defines the magnetic structure we have only three free 

parameters: nf= n dim( )=3 1=3, which is well below the 12 components of magnetic 

moments in the primitive cell. The calculation of the basis vectors applying the formula (54) 

is done by BASIREPS, here we reproduce the output of the calculation for the irrep 3 

corresponding to the experimental magnetic structure: 

 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  Basis functions of Representation IRrep( 3) of dimension  1 contained 3 times in GAMMA 

 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

              SYMM  x,y,z   -x+1,-y,z+1/2   -x+1/2,y+1/2,-z+1/2   x-1/2,-y+1/2,-z 

              Atoms:      Mn_1              Mn_2              Mn_3              Mn_4 

 BsV( 1, 1: 4):Re (    1    0    0) (   -1    0    0) (    1    0    0) (   -1    0    0) 

 BsV( 2, 1: 4):Re (    0    1    0) (    0   -1    0) (    0   -1    0) (    0    1    0) 

 BsV( 3, 1: 4):Re (    0    0    1) (    0    0    1) (    0    0    1) (    0    0    1) 

 

  The Fourier coefficients are LINEAR COMBINATIONS of Basis Functions: coefficients u,v,w,p,q… 

  The general expressions of the Fourier coefficients Sk(j) of the atoms non-related 

  by lattice translations are the following: 

 

  SYMM x,y,z                           Atom: Mn_1      0.5000  0.0000  0.0000 

  Sk(1): (u,v,w) 

  SYMM -x+1,-y,z+1/2                   Atom: Mn_2      0.5000  0.0000  0.5000 

  Sk(2): (-u,-v,w) 

  SYMM -x+1/2,y+1/2,-z+1/2             Atom: Mn_3      0.0000  0.5000  0.5000 

  Sk(3): (u,-v,w) 

  SYMM x-1/2,-y+1/2,-z                 Atom: Mn_4      0.0000  0.5000  0.0000 

  Sk(3): (-u,v,w) 

 

The fact that only four irreps contribute to the magnetic representation is due to the fact that 

the Wyckoff position (4b) contains a centre of symmetry and the irreps with χ(1)=-1 are not 

allowed. In other terms, time inversion cannot be mixed with the centre of symmetry in this 
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case because the atoms in that position would have a zero magnetic moment. The point group 

1’ is not admissible (see section 2.3) .  

 

The interpretation of the above table in terms of the mathematical expressions given in this 

article is as follows (the indices n  are combined in a single integer index): 

Example 1: the atomic component of the basis vector (BsV) 1 for atom Mn_2 of 

representation 3 for propagation vector (000) is: 
(000) 3

1 2( ) ( 1,0,0)k
S Sn js Mn

 Example 2: The atomic component of the basis vector 2 for atom Mn_3 of 

representation 3 for propagation vector (000) is: 
(000) 3

2 3( ) (0, 1,0)k
S Sn js Mn

 Example 3: the full basis vector 2 for representation 3 and propagation vector (000) 

for the whole set of atoms is: 
31 2 4

(000) 3

2(2,1: 4) (0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0)k
ψ ψ      -     nBsV  

 

If we call u, v, w the three free mixing coefficients (in our case they are real numbers because 

k=0), the magnetic structure can be globally described by the global Fourier coefficient (it 

coincides with the whole set of magnetic moments):  

[1,2,3,4] [ ] 1 2 3

k k k k k

k
m =S ψ ψ ψ ψn n

n

C u v w  

 

The individual magnetic moments of the four atoms are:  

1 1(1) (1) ( , , )k k

k
m = S Sn n

n

Sk C u v w ;     
2 2(2) (2) ( , , )k k

k
m = S Sn n

n

Sk C u v w  

3 3(3) (3) ( , , )k k

k
m = S Sn n

n

Sk C u v w ;   
4 4(4) (4) ( , , )k k

k
m = S Sn n

n

Sk C u v w  

A very common notation in the literature is that of sequence of signs G(+,–,+,–), A(+,–,–,+), 

F(+,+,+,+) and C(+,+,–,–), called modes by Bertaut [6,7]. For the current irrep 3 (Shubnikov 

group Pb’n’m) the label for the magnetic structure in terms of these modes is: (Gx, Ay, Fz).  

The structure is antiferromagnetic with a very weak ferromagnetic component (only seen by 

macroscopic magnetisation measurements) along c and formed by ferromagnetic planes 

        
Figure 5:  Magnetic structure of LaMnO3. Four unit cells and the 

numbering of the Mn atoms are shown. From the fitting of the powder 

diffraction pattern, we obtain u≈0, v≈3.8 B, w≈0. See text for details. 
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stacked antiferromagnetically along c. This is the so called A-type AF structure in literature 

about perovskites. The structure is shown in Figure 5. 

 

If we list the four magnetic moments (identical to Fourier coefficients in this case) as: 

 
 1(u,v,w);  2(-u,-v,w);  3(u,-v,w);  4(-u,v,w)  

 

together with the symmetry operators that pass from atom 1 to 1, 2, 3, 4, respectively: 

 
    1(x,y,z):1; 2(-x+1,-y,z+1/2): 21z;  3(-x+1/2, y+1/2,-z+1/2): 21y;  4(x-1/2,-y+1/2,-z): 21x  

 

we can see that the rotational parts of the symmetry operators correspond to the action of the 

elements: 1, 2z, 2y and 2x respectively. We can interpret the symbols (u, v, w) as matrices 

corresponding to the transformation of the magnetic moment of the atom 1 to the magnetic 

moments of the atoms 1,2,3,4. As binary axes are proper rotations, we can see that the 

matrices correspond to the symmetry operators: 1, 2z, 2’y and 2’x respectively. Time inversion 

is then associated with the symmetry operators 21y and 21x as required by the Shubnikov 

group Pb’n’m (see the characters of the irrep 3 for operators {2x|½½0} and {2y|½½½} in 

Table 1). 

 

10.2: Symmetry analysis of the magnetic structure of KTb3F12. 

 

This compound contains two Tb sites, 2b and 4d, which are attributed to a charge ordering of 

Tb
3+

 and Tb
4+

 respectively [27]. Additional information can be found in the “Examples and 

Tutorials” section of the FullProf site [28]. The space group is G=I4/m, the cell parameters 

are a=7.695 Å and c= 7.540 Å at room temperature. The first magnetic peak can be indexed 

as (100) that is a forbidden reflection for a lattice of I-type. That means the propagation vector 

k = (1, 0, 0) = ½ (2, 0, 0) is in the surface of the Brillouin Zone and it is equivalent to –k. The 

group of the propagation vector is the whole space group because all symmetry operators 

leave invariant the propagation vector: Gk = G = I4/m. The irreducible representations are 

given in Table 2. 

 

Table 2: Irreducible representations of Gk=G= I4/m for k=(1, 0, 0) 
------------------------------------------------------------------------------------------  

 Irreps    {1}      {2z}     {4
+
z}       {4

-
z}      {-1}    {mz}       {-4

+
z}     {-4

-
z}   SG 

------------------------------------------------------------------------------------------ 

 1:        1        1         1          1         1       1          1          1    Ip4/m 

 2:        1        1         1          1        -1      -1         -1         -1    Ip4/m’ 

 3:        1        1        -1         -1         1       1         -1         -1    Ip4’/m 

 4:        1        1        -1         -1        -1      -1          1          1    Ip4’/m’ 

 5:        1       -1         i         -i         1      -1          i         -i 

 6:        1       -1         i         -i        -1       1         -i          i 

 7:        1       -1        -i          i         1      -1         -i          i 

 8:        1       -1        -i          i        -1       1          i         -i 

  

Here the small representations coincide with the irreps of the full space group. The complex 

irreps 5 to 8 are of dimension 1, so they cannot be reduced to real representations because 

matrices of dimension 1 always commute: there is no similarity unitary transformation 

reducing them to real matrices. This is the reason there is no Shubnikov symbol associated to 

them. Notice that 5 is the complex conjugate of 7 and 6 is the complex conjugate of 8. 

We are in the case 2 of rule (69). Let us consider now the position of the magnetic atoms 

Tb(2b): (0,0,1/2) and Tb(4d): (0,1/2,1/4), (1/2,0,1/4). Notice that we consider only the content 
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of a primitive cell even if we refer the coordinates to the conventional centred cell. The global 

magnetic representation obtained by the direct product of the axial representation by the 

permutation representation has the following list of characters for the symmetry operators of 

the space group given in the same order as in Table 2: 

 

 ( m-2b) = (3,-1, 1, 1, 3,-1, 1, 1) 

 ( m-4d) = (6,-2, 0, 0, 0, 0,-2,-2) 

The decomposition of the global magnetic representation in terms of irreps for the two sites is 

given by:  

1 5 7(2 )m b  
 

2 3 5 6 7 8(4 )m d  

 

The final Fourier coefficients obtained from the basis functions calculated for the different 

representations and the two sites are summarised in the following: 

 

Site 2b, a single sublattice:   

1

5

7

(2 ) : (0,0, )

(2 ) : ( ,0,0) (0, ,0)

(2 ) : ( ,0,0) (0, ,0)

k

k

k

S

S

S

b v

b v i v

b v i v

 

 

Site 4d, two sublattices: 

2

3

5

6

7

(4 ) : (1) (0,0, ); (2) (0,0, )

(4 ) : (1) (0,0, ); (2) (0,0, )

(4 ) : (1) ( ,0,0) (0, ,0); (2) ( ,0,0) (0, ,0)

(4 ) : (1) ( ,0,0) (0, ,0); (2) ( ,0,0) (0, ,0)

(4 ) : (1) ( ,0,0) (0,

k k

k k

k k

k k

k

S S

S S

S S

S S

S

d u u

d u u

d u i u u i u

d u i u u i u

d u i

8

,0); (2) ( ,0,0) (0, ,0)

(4 ) : (1) ( ,0,0) (0, ,0); (2) ( ,0,0) (0, ,0)

k

k k

S

S S

u u i u

d u i u u i u

 

 

The parameters u and v correspond to the coefficients k

nC  and are the free parameters of the 

possible magnetic structures. Here we have simplified the notation but one has to keep in 

mind that the parameters appearing in different representations may have different values. The 

representations 1, 2 and 3 describe real magnetic structures for this system. Notice that the 

representation 4 does not appear in the decomposition of the global magnetic representation 

for any of the two sites. One can see that the irreps 5, 6, 7 and 8 cannot describe alone 

real magnetic structures because, according to the eq. (34), the Fourier coefficients must be 

real. Only if we combine the basis functions of the irreps that are complex conjugate, and we 

put the same value for the coefficients, we can obtain real magnetic structures. So, apart from 

the three representations mentioned above the following combination or representations and 

basis functions give real magnetic structures: 

 

1 2 3 5 7 6 8, , , ,  

 

The corresponding basis functions are the following: 

 

Site 2b, a single sublattice:   
1

5 7

(2 ) : (0,0, )

(2 ) : ( ,0,0)

k

k

S

S

b v

b v
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Site 4d, two sublattices: 

2

3

5 7

6 8

(4 ) : (1) (0,0, ); (2) (0,0, )

(4 ) : (1) (0,0, ); (2) (0,0, )

(4 ) : (1) ( ,0,0); (2) ( ,0,0)

(4 ) : (1) ( ,0,0); (2) ( ,0,0)

k k

k k

k k

k k

S S

S S

S S

S S

d u u

d u u

d u u

d u u

 

 

When more than one site exists in a crystallographic structure, the magnetic ordering is 

usually driven by a single irrep. So, in our case if magnetic ordering should exist in both sites 

the only common magnetic structure should be described within the reducible representation 

5 7  (called usually physically irreducible).  

 

Experimentally, the physically irreducible representation 5 7  does not give satisfactory 

results. The analysis of the diffraction pattern shows that the site 4d (Tb
4+

) orders according to 

the single irrep 3,  which does not exist for site 2b, so the magnetic moment of atoms in 2b 

(Tb
3+

)  should be zero. This is easily verified experimentally and well justified from the 

physical point of view because the crystal field acting on a Tb
3+

 may create a non magnetic 

singlet. Iin this case, the molecular field of the magnetic configuration of Tb
4+

 ions creates a 

zero molecular field at the site of Tb
3+

 so that, even in the case of an effective magnetic 

doublet, the Tb
3+

 ions remain paramagnetic due to frustration. The refined powder diffraction 

pattern at 1.5K and a scheme of the magnetic structure are shown in Figure 6.  

 

 

Figure 6: Refined powder diffraction pattern of KTb3F12 with the model discussed in the 

text and displayed on the right. The lower set of tick marks in the powder diagram 

corresponds to magnetic reflections. The green spheres in the magnetic structure’s 

schematic representation correspond to paramagnetic (non-ordered) Tb
3+

 ions and the 

blue spheres are Tb
4+

 ions. 
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10.3: Symmetry analysis of the magnetic structure of the compounds R2BaMiO5. 

 

The magnetic structures of the family of compounds R2BaNiO5 (R = Rare earth or Y) have 

been studied and summarised in reference [28]. The R2BaNiO5 oxides present interesting 

structural and magnetic properties due to the fact that their structure possesses a strong 1D 

character [4, 5]. These oxides crystallise in the orthorhombic system with the body centred 

space group G = Immm and having approximate cell parameters: a≈3.8 Å, b≈5.8 Å, and 

c≈11.3 Å. The main structural feature is the presence of one-dimensional (1D) chains of NiO6 

octahedra along the a-axis. The octahedra are strongly distorted with a very short Ni-Oapical 

distance (≈1.88 Å), and a longer Ni-Obasal distance (≈2.18 Å). The basal angle O-Ni-O (≈78°) 

is also much smaller than expected for a regular octahedron (90°). The structural details at 

room temperature and the dependence of the rare earth size upon the structural parameters 

have been extensively discussed in reference [29]. 

The Ni ions are in a single Bravais sublattice at (2a) site: (0, 0, 0). The rare earth site (4j) 

generates two sublattices 1: (1/2, 0, z) and 2: (−1/2, 0, −z) in a primitive unit cell. The other 

atoms of the conventional unit cell are related to those already given by the centring 

translation tI =(1/2, 1/2, 1/2). The magnetic moments in positions outside the reference cell 

are calculated from those at the reference cell by the expression (34). Thus, in order to 

describe the magnetic structure we need to know only the Fourier components of magnetic 

moments of the Ni ion at the origin and of R1 at (1/2, 0, z) and R2 at (−1/2, 0, −z).  

These compounds are all antiferromagnetic with propagation vector k=(1/2, 0, 1/2), 

equivalent to -k. However the directions of magnetic moments are different as a consequence 

of the different anisotropy of the rare earth ions. The symmetry analysis using the 

representation theory and the program BASIREPS [24], provides immediately the little co-

group G0k=2/m, with unique axis along b. The representations of Gk are those of G0k because 

the space group is symmorphic, there are then four 1D irreps of Gk. The small representations 

are gathered in Table 3. 

 

Table 3: Small irreducible representations of Gk= I12/m1 for k=(1/2, 0, 1/2) in G=Immm. 
---------------------------------------------------------------- 

  irreps       {1|000}     {2y|000}       {-1|000}      {my|000} 

---------------------------------------------------------------- 

  1 (Ag):       1             1             1             1 

  2 (Au):       1             1            -1            -1 

  3 (Bg):       1            -1             1            -1 

  4 (Bu):       1            -1            -1             1 

 

We have added the notation for the irreps used in reference [28] and in chapters by Perez-

Mato et al. and Tasci et al. The star of the k-vector is constituted by two independent arms: 

 

  {k} = {k=k1=(1/2, 0, 1/2); k2=(-1/2, 0, 1/2)}  

 

The space group can be decomposed in cosets (eq. (27)) as: G = Gk + mx Gk, where mx is the 

mirror plane perpendicular to the a-axis that transforms k1 into k2. 

 

The full representations of the space group Immm are two dimensional and can be constructed 

by using the induction formula (30). As an example of the use of formula (30) we give below 

the 2D matrix corresponding to the operator 2y for irrep 3: 
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1
1 1

1
2 2

1
1 2

{ }3 3 1 3 3

1,1 1 1 12 1 22

{ }3 3 1 3 3

2,2 2 2 2 22

{ }3 3 1 3

1,2 1 2 2

(2 ) ( 2 ) (1 2 1) (2 ) 1

(2 ) ( 2 ) ( 2 ) (2 ) 1

(2 ) ( 2 ) (1 2 )

k kk

k kk

k

k k k k

k k k k

k k k

y yy

x y x yy

y

y y y G y Gg g G

y y x y x m m G y Gg g G

y y y xg g G

g g

g g m m

g g m

1
1 2

3

12

{ }3 3 1 3 3

2,1 2 1 2 12

{ }3

( ) 0

(2 ) ( 2 ) ( 2 1) ( ) 0

1 0
(2 )

0 1

k k

k kk

k

k k k k

k

y x z

x y zy

m G z m G

y y x y m G z m Gg g G

y

m

g g m m

 

The matrix corresponding to mz that does not belong to Gk is given by: 

 

1
1 1

1
2 2

1
1 2

{ }3 3 1 3 3

1,1 1 1 1 1

{ }3 3 1 3 3

2,2 2 2

{ }3 3 1 3

1,2 1 2 1

( ) ( ) (1 1) ( ) 0

( ) ( ) ( ) ( ) 0

( ) ( ) (1 )

k kk

k kk

k

k k k k

k k k k

k k k

z zz

x z x zz

z

z z z m G z m Gg m g G

z z x z x m m m G z m Gg m g G

z z z x mg m g G

m g m g m m

m g m g m m m m

m g m g m m

1
1 2

3

2

{ }3 3 1 3 3

2,1 2 1 1 2

{ }3

(2 ) 1

( ) ( ) ( 1) (2 ) 1

0 1
( )

1 0

k k

k kk

k

k k k k

k

z x y

x z yz

m G y G

z z x z m m G y Gg m g G

z

m g m g m m

m

 
 

One can proceed similarly for all the coset representatives of the space group Immm and we 

obtain all the irreducible representations of Immm (from all the small irreps of Gk) that are all 

two dimensional for the star {k1, k2}. Normally we do not need to calculate explicitly these 

matrices because the basis vectors corresponding to the different arms are given explicitly by 

the formula (55). 

 

Let us come back to the small representations for the single k = (1/2, 0, 1/2). The global 

magnetic reducible representation has the following list of characters for the symmetry 

operators of the space group given in the same order as in the above table (1, 2y, -1, my): 

 

 ( m-Ni) = (3,-1, 3, -1) 

 ( m-R) = (6, 0, 0, -2) 

 

The decomposition of the global magnetic representation in terms of irreps for the two sites is 

given by:  

1 3( ) 2m Ni  
 

1 2 3 4( ) 2 2m R  

 

In principle (if the two sites order according to the same representation) only the 

representations 1 and 3 are allowed.  The final Fourier coefficients obtained from the basis 

functions calculated for these representations and the two sites are summarised in the 

following: 

1:     Ni (0, v, 0) R1(0, q, 0),  R2(0, q, 0) 

3:     Ni (u, 0, w) R1(p, 0, r),  R2(p, 0, r) 
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The coefficients should be real because k is equivalent to –k. The experiments have 

demonstrated that the active representation is 3 (four free parameters: u, w, p, r) for all the 

rare earth except for Tm in which the data can only be explained by mixing both 1 and 3 

(six free parameters) with a strongly dominant 1 component (within 3 standard deviations in 

the magnetic moments, only 1 is present in the Tm case). Notice that (see Table 3), from the 

point of view of symmetry invariance, the representation 3 corresponds to having the 

following association of symmetry operators of the little co-group with time inversion: {1, 

2’y, -1, m’y}.  Just the trivial {1, 2y, -1, my} colourless little co-group is associated with 1.  

As an example we show the refinement of the powder diffraction pattern of Ho2BaNiO5 and a 

picture of its magnetic structure, assumed to be single k. 

 

With powder diffraction it is, in general, impossible to determine the transition channel (e.g. 

what are the arms of the star defining the magnetic structure), however if we assume that the 

magnetic structure is multi-k in this case we will show that the magnetic moments amplitude 

will not be constant. Let us just select the Ni ions at the origin of the lattice. The Fourier sum 

(34) can be written for the present case as: 

 

1 2

1 2

1 2

1 3 1 3

1 3

1 1 3 3 1 3

( ( )) ( ( ))

( ); ,

1 1
( ); ; ; ,

2 2

k k

k k

k k

m S S

S S

m
S S

l

l

exp i l l exp i l l

l l

l n l n n n
 

The real Fourier coefficients Sk1 and Sk2 may be chosen in order to restore the global 

orthorhombic symmetry imposing that mx, or its combination with time inversion, has to be a 

 
Figure 7: Refined powder diffraction pattern of Ho2BaNiO5 and scheme of  its magnetic 

structure. The space group is Immm. There is only three magnetic atoms per primitive unit cell. Ni 

at (0, 0, 0) and Ho at positions 1(1/2, 0, z), 2(-1/2, 0,-z) with z=0.2025. The magnetic moments are 

not in scale, the amplitude of those of Ho atoms have been arbitrarily multiplied by 0.3 for 

representation purposes. The magnetic unit cell is doubled along a and c. The magnetic moments of 

the three atoms are: Ni(u, 0, w), with u  0.59 B, w  -1.3 B , Ho1(p, 0, r), Ho2(p, 0, r), with p 0.1 B 

and r 9 B. 
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symmetry operator of the magnetic structure. In any case one can see that the magnetic 

moment amplitude can only be conserved if Sk1 is perpendicular to Sk2. If one applies the 

formula (55) taking into account (56), for the basis vectors using hL=mx (that transform k1 into 

k2) the basis vectors (except for a change of sign) are the same for Ni ions. This implies that 

the Fourier coefficients Sk1 and Sk2 are parallel, so the amplitude of the magnetic moments 

cannot be conserved in a multi-k structure for the present case. 
 

 

10.4: Symmetry analysis of the commensurate magnetic structures of the compounds R2T2X. 

 

The R2T2X compounds, with R = Rare-Earth or Uranium, T = Fe, Co, Ni, Ru, Rh or Pd and 

X= Sn or In, crystallise in the tetragonal U3Si2-type crystal structure with space group 

P4/mbm [30-35]. The occupied Wyckoff positions are (4h) R: (xR, 1/2+xR, 1/2); (4g) T: (xT, 

1/2+xT,0)  and X: (2a) (0, 0, 0). The R-ions are the only “magnetic” atoms all along the R2T2X 

series of compounds. 

Some examples of commensurate magnetic structures, revealed from neutron diffraction 

experiments in this family of compounds, are shown in Figure 8. These are described either 

with k = (0 0 0), identical crystalline and magnetic unit-cells, or k = (0 0 ½) (a, a, 2c 

magnetic unit-cell). Other commensurate k = (½ ½ 0), k = (½ ½ ½) and k = (¼ ¼ ½) values 

have been observed for compounds in the series, but with no example shown in Figure 8. 

 

 
8a 

 
8b 

U2Pd2In – U2Pd2Sn – k = (0 0 0) U2Pd2.4Sn0.6 - k = (0 0 ½) 

  
8c 

 
8d 

U2Ni2In - k = (0 0 ½) U2Ni2Sn - U2Rh2Sn - k = (0 0 ½) 
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Figure 8: Commensurate magnetic structures in P4/mbm R2T2X compounds [30-34]. 

 

We shall take as examples the symmetry analysis for the cases k = (0, 0, 0) and k = (0, 0, 1/2) 

corresponding to the compounds shown in Figure 8. The determination of their magnetic 

structure has been performed using the method that we have illustrated in the previous 

examples. Here we will give some more detailed information concerning the reducible 

magnetic representation discussed in sections 7.1 and 7.2. 

 

Table 4 lists the symmetry operators of the coset representatives of P4/mbm space group with 

respect to the translation group. When no translation associated to the symmetry operator is 

given, [000] is assumed. The same applies for the location of the symmetry element. We have 

emphasised the lines containing the generators in the Hermann-Mauguin (H-M) symbol, and 

written them in red. 

 

Table 4: Coset representatives of the space group G= P4/mbm 

Symmetry 

operators 

ordering 

 

Symmetry 

operators 

 

Symbol 
(rotational part)  

Translation Location 
Kovalev 

Notation 
(rotational part) 

SYMM( 1) x, y, z 1    h1 

SYMM( 2) -x, -y, z z2    h4 

SYMM( 3) ½-x, ½+y, -z y2  [0 ½ 0] (¼ 0 0) h3 

SYMM( 4) ½+x, ½-y, -z x2  [½ 0 0] (0 ¼ 0) h2 

SYMM( 5) ½+y, ½+x, -z 1102  [½ ½ 0]  h16 

SYMM( 6) ½-y, ½-x, -z 011
2   (0 ½ 0) h13 

SYMM( 7) y, -x, z 34 z    h15 

SYMM( 8) -y, x, z        z4   (4)   h14 

SYMM( 9) -x, -y, -z 1   h25 

SYMM(10) x, y, -z        zm  (/m)   h28 

SYMM(11) ½+x, ½-y, z ym  [½ 0 0]  (0 ¼ 0) h27 

SYMM(12) ½-x, ½+y,  z       xm
  (b) [0 ½ 0]  (¼ 0 0) h26 

SYMM(13) ½-y, ½-x, z 110m
(m)

  (0 ½ 0) h40 

SYMM(14) ½+y, ½+x, z 011
m  [½ ½ 0]   h37 

SYMM(15) -y, x, -z 34z    h39 

SYMM(16) y, -x, -z 
z4    h38 

  

 The U atoms (the only magnetic atoms) are labelled from 1 to 4, as shown below, either in 

the table or in the figure. The corresponding Fourier coefficients (in this case identical to 

magnetic moments) are referred as S1, S2, S3 and S4. 

 

Table 5: List of U-atoms in the 4h positions of space group G = P4/mbm. The list of 

symmetry operators passing from the first atom to the others is given as well as the 

coordinates in terms of the parameter xU. 
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  SYMM order + 

translation 
x y z 

U1 x, y, z (1) xU ½ + xU ½ 

U2 -x+1, -y+1, z (2)+[1,1,0] 1 - xU ½ - xU ½ 

U3 -x+1/2, y-1/2, -z+1    (3)+[0,-1,1] ½ - xU xU ½ 

U4 x+1/2, -y+3/2, -z+1 (4)+[0,1,1] ½ + xU 1 - xU ½ 

 

In the 12-dimensional space of S1 to S4 magnetic moments components (12=4 3, where 4 

stands for the number of distinct atoms, and 3 for the number of magnetic moment 

components for one atom), each of the Gk symmetry operators is represented by a 12 12 

square matrix: this matrix reflects the transformations of S1, S2, S3 and S4 by the considered 

symmetry operator, including both permutational and orientational contributions (permutation 

of U1-4 atoms, (re)orientation of magnetic moments). The components of the matrices can be 

obtained simply by inspection of the action of the symmetry operator (taking into account the 

axial character of S-vectors) or by applying directly the formula (49) or (50) and (51). 

For instance, the magnetic matrix for SYMM(1) is clearly the 12 12 identity matrix with 

character m(1)=12. For displaying the magnetic representation matrices we can use a cell 

representation of the matrices in order to emphasize the labelling of the atoms positions. The 

magnetic matrices for the SYMM(10) operator (mirror perpendicular to the tetragonal c-axis, 

keeping unchanged U1-4 atoms) and for SYMM(2) operator (two-fold axis parallel to the c-

axis, that permutes atoms 1-2 and 3-4) are: 

m(mz)= m(10)= 

 U1 U2 U3 U4 

U1 -1   

 -1  

  1 
 

   

U2  -1   

 -1  

  1 
 

  

U3   -1   

 -1  

  1 
 

 

U4    -1   

 -1  

  1 
 

 

of character m(10)=-4, and 

m(2z)= m(2)= 

 U1 U2 U3 U4 

U1  -1   

 -1  

  1 
 

  

U2 
-1   

 -1  

  1 
 

   

U3    -1   
 -1  

  1 
 

U4   -1   
 -1  

  1 
 

 

 

of character m(2)=0. Each cell is a 3 x 3 matrix holding the axial representation of the 

operator. Empty cells are filled with zeroes in the conventional representation of a matrix. 

U1

U3

U4

U2

U1

U3

U4

U2
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The set of all the sixteen magnetic matrices form a 12-dimensional representation ( m  of the 

Gk=(000) group. The matrices for k=(0, 0, 1/2) are constructed in a similar way and the 

differences come from the phase factors we have to include when using “returning vectors” 

that in our case are always +1 or -1. The explicit form of the matrices can easily be 

constructed by inspecting the output of the program BASIREPS [24]. 

 

m can be decomposed into irreps of Gk=(000) or  Gk=(001/2). These irreps coincide in this 

particular case (notice that there is no symmetry operator in the list of the previous table with 

associated translation along the c-axis) and are listed in Table 6. The numbers of the first row 

correspond to the symmetry operators listed in a previous table with operators 8, 10, 12 and 

13 emphasised because they appear in the H-M symbol of the space group. 

  

Table 6: Irreducible representations of Gk= G=P4/mbm for k=(0, 0, 0) and k=(0, 0, 1/2). 

 
P4/mbm 
k=(0,0,0) 

k=(0,0,1/2) 
1 2 3 4 5 6 7 

8 

(4) 
9 

10 

(/m) 
11 

12 

(b) 

13 

(m) 
14 15 16 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

3 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

4 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

6 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

8 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

9 
 1  0 

 0  1 

–1  0 

 0 –1 

 1   0 

 0 –1 

–1  0 

 0  1 

0  1  

1  0 

 0  -1  

-1   0 

0  -1  

1   0 

  0  1  

-1  0 

–1  0 

 0 –1 

 1  0 

 0  1 

–1  0 

 0  1 

 1   0 

 0 –1 

 0  -1  

-1   0 

0  1  

1  0 

  0  1  

-1  0 

0  -1  

1   0 

10 
 1  0 

 0  1 

–1  0 

 0 –1 

 1   0 

 0 –1 

–1  0 

 0  1 

0  1  

1  0 

 0  -1  

-1   0 

0  -1  

1   0 

  0  1  

-1  0 

 1  0 

 0  1 

–1  0 

 0 –1 

 1   0 

 0 –1 

–1  0 

 0  1 

0  1  

1  0 

 0  -1  

-1   0 

0  -1  

1   0 

  0  1  

-1  0 

Table 6 shows that there are 10 irreps, eight of them are 1D ( 1-8) and two are 2D ( 9-10). The 

application of orthogonality rules leads easily to the subsequent decomposition of 

m {k = (0, 0, 0)} = 2 3 4 6 7 8 9 10 

m {k = (0, 0, 1/2)} = 1 2 3 5 6 7 9 10 

 

Figure 9 shows the magnetic structures (basis vectors of i) which have been obtained, by 

          
 

Figure 9: Magnetic structures for 2, 3, 4, 6, 7 and 8 irreps 

corresponding to P4/mbm space-group for propagation vector 

k = (0, 0, 0) and (4h) Wyckoff position.  
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applying the formula (54), for each one of the six 1D irreps contained in the m {k = (0, 0, 0)} 

decomposition. For all i, with i = 2, 3, 4, 6, 7 or 8, the associated magnetic structure depends 

only on a single parameter: the value of the common magnetic moment for U1 to U4 atoms.  

 

In Figure 9 we give the symbols of the Shubnikov groups in one-to-one correspondence with 

the 1D irreps. As m{k = (0, 0, 0)} contains 9 and 10 they have also to be considered. 

These irreps are both 2D, but are present either once or twice in the  decomposition. That 

means that two and four parameters will be necessary to describe the 9 and 10 respectively. 

The general Fourier coefficients obtained from the basis vectors are (adapted from BASIREPS 

output): 

 

9 

SYMM x,y,z               Sk(1): (0,0,u-v)    S1:(0,0, )          

SYMM -x+1,-y+1,z         Sk(2): (0,0,-u+v)   S2:(0,0,- ) 

SYMM -x+1/2,y-1/2,-z+1   Sk(3): (0,0,-u-v)   S3:(0,0,- ) 

SYMM x+1/2,-y+3/2,-z+1   Sk(4): (0,0,u+v)    S4:(0,0, ) 
 

10 

SYMM x,y,z               Sk(1): (u+p,v+w,0)  S1:( , ,0) 

SYMM -x+1,-y+1,z         Sk(2): (u+p,v+w,0)  S2:( , ,0) 

SYMM -x+1/2,y-1/2,-z+1   Sk(3): (-u+p,v-w,0)  S3:( , ,0) 

SYMM x+1/2,-y+3/2,-z+1   Sk(4): (-u+p,v-w,0)  S4:( , ,0)   

 

We have performed a change of mixing coefficients (last column) in order to simplify the 

aspect of the Fourier vectors (magnetic moments). Depending on the selection of coefficients 

we obtain different invariance symmetries for the magnetic structures. For obtaining constant 

moment magnetic structures the coefficients should be constrained as follows: ( 9)  = , 

( 10) (  =  and = ) or (  =  and = ). 

 Figure 10a shows a scheme of the U2Pd2In magnetic structure, as deduced from symmetry 

analysis and Neutron Powder Diffraction (NPD) experiments (see Figure 10b). This magnetic 

structure is characteristic of the irrep 6 (P4’/m’bm’), with mU = 1.55 B at T=1.4K [33].  

 
(a)                          (b) 

 

Figure 10: U2Pd2In: magnetic structure (T<TN) and difference NPD data [T=1.5K]-

[T>TN] collected on G4.1 at LLB,  = 2.425Å. Only the magnetic contribution to NPD at 

T=1.5K data is shown in the figure. 
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001 101

U2Pd2In
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A similar analysis can be done for m{k = (0, 0, 1/2)}. We have already shown three different 

cases of magnetic structures corresponding to this case. The magnetic structures correspond to 

the following irreps of Gk = (0, 0, 1/2). 

Figure 8b: 7 (P2c4/mb’m’) : S1 = (m, m, 0); S2 = (-m, -m, 0); S3 = (-m, m, 0); S4 = (m, -m, 0)   

Figure 8c: 2 (P2c4/m’b’m’): S1 = (0, 0, m); S2 = (0, 0, m); S3 = (0, 0, m); S4 = (0, 0, m) 

Figure 8d: 6 (P2c4’/m’bm’): S1 = (0, 0, m); S2 = (0, 0, m); S3 = (0, 0, -m); S4 = (0, 0, -m) 

This can be easily seen by inspecting the output of the BASIREPS program. 

 

11.  Examples of incommensurate magnetic structures. 
  

In this section we provide two examples of simple incommensurate magnetic structures. The 

first one is a simple sinusoidal structure (single propagation vector, Ce2Pd2Sn, from the 

R2T2X family discussed in subsection 10.4) and the second one a conical structure 

(DyMn6Ge6 with two propagation vectors belonging to different stars) close to a 

commensurate superstructure.  

 

11.1:  Incommensurate k = ( , 0, 0) magnetic structure of Ce2Pd2Sn 
 

Experimental studies on Ce2Pd2Sn magnetic properties [36] are presented in Figures 11-14.  

  

  

Figure 11: Ce2Pd2Sn, magnetic susceptibility (T).  
Figure 12: Ce2Pd2Sn, NPD data (G4.1 - 

 = 2.425Å), at T=1.5K (T<TC), T=4K (TC<T<TN) 

and T=10K (T>TN).  

 

 

Figure 13: Ce2Pd2Sn, NPD data vs. T, in [39°, 44°] 

2 -range: (210) Bragg peak and (210)-, (120)-, 

(120)+, (210)+ magnetic satellites, k = (  0 0). 

Figure 14: Ce2Pd2Sn, propagation vector (  0 0): 

=kx vs. T. Coexistence of commensurate (  = 0) and 

incommensurate (   0) propagation vectors 

observed around 3K. 

 

TN =4.8 K 

TC =3 K 
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From magnetic susceptibility measurements ( (T), Figure 11) the existence of two successive 

magnetic transitions is deduced, at around TN = 4.8(2) K (antiferromagnetic transition) and 

TC = 3.0(2) K (ferromagnetic transition) respectively.  

Characteristic NPD data are shown in Figures 12 and 13. Below T = 2.6 K (Figure 12c), the 

Ce2Pd2Sn magnetic structure is ferromagnetic with k = (0 0 0) and Ce
3+

 magnetic moments 

parallel to the tetragonal c-axis. In the intermediate [3.4 K - 4.75 K] T-range, NPD data 

(Figures 12b and 13) are associated with Ce
3+

 magnetic moments parallel to c-axis. The 

experimental NPD data can be fit with a very simple magnetic structure in which the moments 

of the Ce atoms are described as: mlj = mCe cos{2 k (Rl + rj)}, with k = ( , 0, 0),  being T-

dependent (see Figure 14) and mCe the common amplitude of magnetic moments that is 

directed along the c-axis.  

 

Whatever the case of an incommensurate propagation vector k, the little group Gk is no more 

coincident with G (P4/mbm), but a sub-group of G. For k =  a*, as observed for Ce2Pd2Sn in 

the intermediate T-range, this subgroup includes only four symmetry operators, SYMM(1), 

SYMM(4), SYMM(10) and SYMM(11), according to Table 4. The list of Gk operators are 

given in Table 7. 

 

Table 7: Coset representatives of the little group Gk= P21am (k =  a* in P4/mbm)  

 Symmetr

y operators of 

Gk 

Symbol 
(rotational part)  

Translation Location 
Kovalev 

Notation 
(rotational part) 

x, y, z 1    h1 

½+x, ½-y, -z x2  [½ 0 0] (0 ¼ 0) h2 

x, y, -z zm    h28 

½+x, ½-y, z ym  [½ 0 0]  (0 ¼ 0) h27 

 

The space group may be decomposed in coset representatives with respect to Gk (P21am) as 

follows: 

 G=P4/mbm=Gk+ 21y Gk + 4
–

z Gk + 4
+

z Gk 

 

The full star of the propagation vector is formed by four non-equivalent k-vectors: 

  

     {k} ={ k1=( , 0, 0); k2=(- , 0, 0); k3=(0, , 0); k4=(0, - , 0)}  

 

The magnetic moments in Ce2Pd2Sn are now still located at the (4h) Wyckoff position 

(Ce
3+

 site). But, in the case of k = ( , 0, 0), with   0 and   ½, Gk now splits their 

sublattices into two independent sets (orbits): Ce1 and Ce4 on one side, and Ce3 and Ce2 on the 

other. No symmetry operation in Gk allows transforming any Ce atom of one orbit to a Ce 

atom in the other orbit.  

 

These two orbits, Ob1 and Ob2, are listed below: 

 

Ob1 
Ce1 xCe ½ + xCe ½ 

Ce4 ½ + xCe 1 - xCe ½ 

 

Ob2 
Ce3 ½ - xCe xCe ½ 

Ce2 1 - xCe ½ -xCe ½ 
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Each of these orbits, Ob1 and Ob2, is associated to a 6-dimensional magnetic (reducible) 

representation of Gk, m(Ob1) and m(Ob2) respectively. 

The Table 8 lists all the irreps of Gk = ( , 0, 0) group. These irreps are no more real, but 

complex, with  parameter being equal to  = exp{2 i 1/2 )} = exp{ i }, where =  is the 

phase-shift associated to the [1/2, 0, 0] translation of the symmetry operators. 

 

Table 8: Small representations of the little group Gk= P21am. 

 

Gk 1 {2x|1/200} {mz|000} {my|1/200} 

1 1 1 

2 1 -1 -  

3 1 -  1 -  

4 1 -  -1 

 

Both m(Ob1) and m(Ob2) can be decomposed into Gk = ( , 0, 0) irreps. Whatever the orbit, Ob1 

or Ob2, we get:   

 

m = 1 2 3 4 

 

The Fourier coefficient deduced from the basis vectors are listed in the table below. Similar 

vectors are obtained for {Ce1, Ce4} (orbit Ob1) and {Ce3, Ce2} (orbit Ob2) sets, but, in 

principle (no symmetry constraint), with no relationship either between w and w’ ( , ) or 

{u, v} and {u’, v’} ( , ) parameters. We can leave these parameters free in the refinement 

adding a phase factor between the two orbits. In such a case three free parameters define the 

magnetic structure for ( , ) and five parameters for ( , ). However we can consider that 

the transition channel comprises always two arms of the star: (k, –k) and one of the 

symmetry operators relating k to –k transforms the Fourier coefficients of the one orbit to the 

other using the equation (55) or equations (62). 

  

m Sk(Ce1) Sk(Ce4) Sk(Ce3) Sk(Ce2) 

 (0, 0, w) * (0, 0, -w) (0, 0, w’) * (0, 0, -w’) 

 (u, v, 0) * (u, -v, 0) (u’, v’, 0) * (u’, -v’, 0) 

 (0, 0, w) * (0, 0, w) (0, 0, w’) * (0, 0, w’) 

 (u, v, 0) * (-u, v, 0) (u’, v’, 0) * (-u’, v’, 0) 

 

We know that at the lowest temperature the magnetic structure is ferromagnetic with all 

moments along c. A very simple hypothesis is to consider that a simple sinusoidal wave 

embraces all magnetic atoms in the unit cell (all are in phase) that tends towards the 

ferromagnetic structure when 0. This is verified by the representation . The aspect of the 

Fourier coefficients of both orbits is of the same type and can be related to the relative 

position of the atoms: 

                    
4 1

2 3

1
2

2 ( )2
4 1 1 1

1
2

2 ( )2
2 3 3 3

* e  e

* e  e

k r r

k k k k

k r r

k k k k

S S S S

S S S S

i
i

i
i

Ce Ce Ce Ce

Ce Ce Ce Ce

 

Considering that the Fourier coefficients of the atoms Ce1 and Ce3 are related in the same way 

as the internal relation within the orbits we establish the following constraint: 
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3 12 ( )

3 1 e
k r r

k kS S
i

Ce Ce  

The relation between primed parameters (Ob2) and unprimed parameters (Ob1) is then given 

by:
                                  

3 12 ( ) 2 (1/ 2 2 )
' e e

k r r Cei i x
p p p  

This constraint fixes the phase between the two orbits to  =  (1/2-2xCe) (in fraction of 2 ) 

and provides the same amplitude of the Fourier coefficients of the two orbits. This constraint 

is quite well verified experimentally (see Figure 15a) for irrep . 

The  Ce2Pd2Sn incommensurate magnetic structure is shown on Figure 16, either within the 

origin crystal unit-cell (a b c) [Figure 16a] or within (10a b c) volume [Figure 16b]. 

 

  

Figure 15.Portion of the pure magnetic NPD pattern of 

 Ce2Pd2Sn   refined with the model corresponding to 3  

Figure 16a. Ce2Pd2Sn, k = (0.105, 0, 0) magnetic 

structure 

 

 
 

Figure 16b. Ce2Pd2Sn, k = (0.105, 0, 0) magnetic structure 
 

We can rewrite the Fourier coefficients for all representations and the four atoms multiplying 

by the phase factor exp(-2 i kr1), this does not change the calculated diffraction pattern, and 

then we obtain, for instance, for irrep : 
2

Ce 0,0,  e ji
j w

k r
kS  

We can see, looking at the Fourier series defined as in (34) and (34’), that: 

 

      

22 2

, , ,

(0,0, ) (0,0, ) ( 2 ( ))

2 (0,0, ) cos{2 ( )} (0,0, ) cos{2 ( )}

krk R k R

k

k k k k k k

m S k R r

m k R r k R r

jl l
ii i

lj j l j

lj l j Ce l j

e w e e w exp i

w m

 

 

The Fourier coefficients Tkj = (0, 0, w) are all identical and real in irrep .  

Experimentally, the refinement of the phase factor between the two orbits constraining the 

amplitudes to be the same (two free parameters) gives =0.015(6) to be compared with the 

expected value =  (1/2-2xCe)=0.105 (0.5-2 0.1781)= 0.0151. The refined value of the 

amplitude is mCe = 1.70(5) B at T = 4K. 
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11.2:  A conical magnetic structure: DyMn6Ge6 with k1 = (0, 0, 0) and k2 = (0, 0, ) 

 

The compound DyMn6Ge6 crystallizes in the well known HfFe6Ge6 structure [37]: space 

group P6/mmm, unit cell parameters a≈5.21 Å, 

c≈8.15 Å.  All the compounds RMn6Ge6 (R: rare 

earth) have a macroscopic ferrimagnetic 

behaviour, however their magnetic structures are 

quite complex and vary with temperature. The 

magnetic atoms occupy the Wyckoff positions R 

(1a) and Mn (6i) with the representative first 

positions (0, 0, 0) and (1/2, 0, z), respectively. The 

Mn atoms form two Kagomé planes perpendicular 

to the c-axis (Figure 17). We present here the low 

temperature magnetic structure of DyMn6Ge6 [38] 

(see also Table 3 of reference [39] for corrected 

parameters) that is an example of the coexistence 

of two propagation vectors k1 = (0, 0, 0) and k2 = 

(0, 0, ) (Figure 18) and we will see that the 

magnetic structure can be described as a double 

conical structure. The value of  ≈ 0.1651(4) is 

quite close to a commensurate rational value (  = 1/6), so that the structure may also be 

described with an approximate Shubnikov group. 

 

The symmetry analysis using the representation theory and the program BASIREPS [24], 

provides immediately the little groups 
1kG = P6/mmm and 

2kG = P6mm. The numbering of 

irreps is that provided by the program. We do not write explicitly all the irreps in the present 

case. There are eight 1D irreps and four 2D irreps for Gk1 and four 1D irreps and two 2D 

irreps for Gk2. From the analysis of the magnetic representation for both sites: 

 

1, (0,0,0) 3 12Dy-1m ak   

    
1, (0,0,0) 2 3 5 6 7 8 9 10 11 12Mn-6 2 2m ik   

 

it is clear that a strong candidate to explain the ferrimagnetic component observed 

macroscopically is the representation 3, for which the magnetic moments are aligned along 

the c-axis for both sites: Dy(0, 0, mzDy) and Mnj=1,..6(0, 0, mzMn). This representation should be 

combined with the appropriate representation(s) corresponding to k2 = (0, 0, ). The Wyckoff 

positions of Mn (6i) are now split in two orbits of three atoms each. The decomposition of the 

magnetic representation in small irreps is as follows: 

 

  2, (0,0, ) 2 6Dy-1m ak   

  
2, (0,0, ) 2 3 4 5 6Mn-6 2m ik   

 

 
Figure 17: Magnetic sublattices in 

DyMn6Ge6, showing the Kagomé 

planes of Mn atoms and the Dy atom 

at the origin of the unit cell 
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The representation 2 for Dy provides a basis function with Fourier components along c:  

 
    

2 2,Dy, (0,0, )ukS  

 

The Fourier coefficients for Mn atoms are all of the same type (along the c-axis) as those for 

Dy atom. The representation 2 for k2 combined with the representation 3 for k1 will give a 

collinear magnetic structure with fluctuating magnetic moments along the c-axis. This can be 

immediately rejected by comparing with experimental data. 

 

The special position occupied by Dy atoms (a simple Bravais lattice) induces strong 

constraints for the possible magnetic models for describing the whole magnetic structure. The 

only possibility is to consider the representation 6 (2D irrep) that gives a Fourier component 

for Dy that is within the ab plane:  

 

  

2 2,Dy,

1
, ,0 2 ,2 ,0

23

i
u v u v u v ikS R  I  

 

If we put the restriction of a constant magnetic moment, the real part R must be perpendicular 

to the imaginary part I (e.g. R · I =0). This is obtained using real values for u and v and by 

putting v=0 (or u=0), so: 

  

2 2,Dy, ,0,0 ,2 ,0
3

i
u u ukS  

 

It is very easy to verify that (u, 0, 0) is perpendicular to (u, 2u, 0) in the hexagonal reference 

frame. The magnetic structure for the Dy atoms corresponds in this case (if we combine with 

3 for k1) to a conical structure, described by the expression: 

 
Figure 18: Powder diffraction pattern of DyMn6Ge6 at 11K taken at DMC (PSI) with 

 = 2.425Å. The first propagation vector is k1 = (0, 0, 0) and the second one is k2=(0, 0, ) 

with  ≈ 0.1651(4), quite close to  = 1/6. The calculated nuclear diffraction pattern is 

shown as a continuous line. 
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1 2 2

2

Dy

, ,

2 2

(Dy) (Dy) (0, 0, )

2
2 ( ,0,0) cos{2 } ( ,2 ,0) sin{2 }

3

li

l z

l l

e m

u u u

k R

k

k k k

m S  

k R k R

 
 

The vectors are given with respect to the unitary frame along the axes of the conventional cell. 

If we adopt a Cartesian frame with x along a, y in the ab plane and z along c, the Fourier 

coefficient for Dy is then: 
2 2,Dy, Dy1/ 2 ( )m ikS  x  y , with mDy=2u the amplitude of the 

helical moment of Dy. The equation can be simplified as (remember that k2 = (0, 0, )): 

 

         
1 2 2

2

Dy 3 Dy 3 Dy

, ,

(Dy) (Dy) cos(2 ) sin(2 )li

l ze m l m l m
k R

k

k k k

m S x y z  

The amplitude of the magnetic moments of the Dy atoms is independent of the particular unit 

cell of the crystal and is given by: 

 

2 2 2 2 2 2 2

Dy 3 Dy 3 Dy Dy Dy(Dy) . cos (2 ) sin (2 )l l l z zm m l m l m m mm m  

 

The full cone angle is given by the expression Dy = 2 arctan(mDy/mzDy). The pitch angle of the 

helical part is determined by the propagation vector:  = 2  ≈ 59.4°, corresponding nearly to 

60°. The conical structure for Dy atoms (only two free parameters) breaks the 6-fold 

symmetry of the little groups of k1 and k2. The only symmetry operator of the original space 

group that remains in this spin configuration is the centre of symmetry in which the Dy atom 

is sited. It is then possible that the basis functions of the irrep 6 for Mn atoms are not 

adequate to construct a magnetic model explaining the experimental diffraction pattern. This 

is effectively the case. The Fourier coefficients of Mn atoms in the 6 irrep as obtained from 

the output of BASIREPS are: 

 
SYMM x,y,z                      Atom: Mn1_1     0.5000  0.0000  0.2506 

Sk(1): (u-r0.w+r0.p,v+r0.p,0)+i.r1.(-w+p,p,0) 

 

SYMM -y,x-y,z                   Atom: Mn1_2     0.0000  0.5000  0.2506 

Sk(2): (r0.v+p,-r0.u+r0.v+w,0)+i.r1.(v,-u+v,0) 

 

SYMM -x+y,-x,z                  Atom: Mn1_3    -0.5000 -0.5000  0.2506 

Sk(3): r0.(u-v+w,u+w-p,0)+i.r1.(-u+v-w,-u-w+p,0) 

  

Values of real constants r0, r1... 

    r0 =   0.500000 = cos( /3)    r1 =   0.866026 = sin( /3) 

 

  

Similar Fourier coefficients are obtained for the other three atoms of the other orbit related by 

the inversion centre at the origin. The number of free parameters without considering 

symmetry is: 6 atoms  6 Fourier components (3 real + 3 imaginary) =36 (see equation (58)).  

For the given orbit we have up to 8 free parameters (n  = 2, dim 6 = 2   2  n   dim 6 = 8, 

see equation (58)) for the most general magnetic model. If we consider the highest symmetry, 

the atoms of the other orbit have Fourier coefficients constrained to be the same (in-phase) or 

in anti-phase to those of the orbit given above. If we consider as completely independent the 

second orbit we have a total of 16 free parameters to handle. The Fourier coefficients can 

further be simplified if we select particular directions in the representation space (selection of 

free parameters). For instance, if we consider p = w = 0 we have: 
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 Sk(1)=(u, v, 0);  Sk(2)=(v, v-u, 0) exp{i /3};  Sk(3)=(u-v, u, 0) exp{-i /3} 

 

A similar set of Fourier coefficients is obtained for u = v = 0 and other cases can be found by 

establishing relations between coefficients. In all cases a magnetic moment configuration 

reminiscent of the 6-fold axis is obtained but none of them corresponds to the observed 

diffraction pattern. A reduction of symmetry is necessary for obtaining appropriate Fourier 

coefficients. An indication on how to handle this problem comes from the observation that in 

all this kind of compounds the observed Mn-Mn interactions are ferromagnetic. A spin 

configuration that tries to satisfy the requirement of ferromagnetic interaction implies Fourier 

coefficients identical for all six Mn atoms in the (6i) positions but affected by opposite phase 

factors  

  

 Sk(1, 2, 3)= ½ mMn (x + i y) exp{-2 i };  Sk(4,5,6)= ½ mMn (x + i y) exp{2 i } 

  

That gives only two free parameters for describing the helical part of the magnetic structure of 

the Mn atoms. We have used the same Cartesian frame that we discussed for Dy atoms. The 

magnetic moment of the Mn atoms can be described by the formula: 

 

1 2 2

2

Mn 3 Mn 3 Mn

, ,

(Mn ) (Mn ) cos{2 ( )} sin{2 ( )}li

l j j j j ze m l m l m
k R

k

k k k

m S x y z

 

with j =  for j = 1, 2, 3 and j = -   for j=4, 5, 6. The basis functions corresponding to the 

above Fourier coefficients can be obtained by mixing the appropriate representations of the 

ortho-hexagonal subgroup of P6/mmm, Cmmm (2a+b, b, c) for k = (0, 0, ) and making the 

constraint of equal moments for the Mn atoms. The use of this model gives a very good 

agreement with the experimental data. In Figure 19 we present the refinement of the powder 

diffraction pattern with the discussed model. Pictures of the magnetic structure are also 

shown.  

 

We give below the relevant part of the input file for FullProf corresponding to the description 

of the magnetic structure with two propagation vectors, using spherical components for the 

Fourier coefficients that allow an easy control of the perpendicular constraint of the real and 

imaginary parts. The total number of free parameters for the magnetic structure is 5. 

 

. . . . . . .  
!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:     4.82 

!------------------------------------------------------------------------------- 

DyMn6Ge6 magnetic 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   6   0   0 0.0 0.0 1.0  -1  -1  -1   0   0          0.000  -2   7  0 

! 

P 6 m m                  <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   3   1  12   1 

! 

SYMM   x, y, z 

MSYM   u, v, w, 0.00 

SYMM  -y, x-y, z 

MSYM   u, v, w, 0.00 

SYMM  -x+y, -x, z 

MSYM   u, v, w, 0.00 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rm      Rphi  Rtheta 

!     Im   Iphi   Itheta  beta11  beta22  beta33    MagPh 

Dy     JDY3  1 -2  0.00000 0.00000 0.00000 0.00000  0.33333   6.195   0.000  90.000 
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                      0.00    0.00    0.00    0.00     0.00   21.00    0.00    0.00 

     6.195  90.000  90.000   0.000   0.000   0.000  0.00000 

     21.00    0.00    0.00    0.00    0.00    0.00     0.00 

Dy     JDY3  1  1  0.00000 0.00000 0.00000 0.00000  0.33333   3.932   0.000   0.000 

                      0.00    0.00    0.00    0.00     0.00  161.00    0.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Mn1    MMN2  1 -2  0.50000 0.00000 0.25098 0.00000  1.00000   1.783   0.000  90.000 

                      0.00    0.00   81.00    0.00     0.00   31.00    0.00    0.00 

     1.783  90.000  90.000   0.000   0.000   0.000  0.55732 

     31.00    0.00    0.00    0.00    0.00    0.00    71.00 

Mn1    MMN2  1  1  0.50000 0.00000 0.25098 0.00000  1.00000  -1.149   0.000   0.000 

                      0.00    0.00   81.00    0.00     0.00  171.00    0.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Mn2    MMN2  1 -2 -0.50000 0.00000-0.25098 0.00000  1.00000   1.783   0.000  90.000 

                      0.00    0.00  -81.00    0.00     0.00   31.00    0.00    0.00 

     1.783  90.000  90.000   0.000   0.000   0.000 -0.55732 

     31.00    0.00    0.00    0.00    0.00    0.00   -71.00 

Mn2    MMN2  1  1 -0.50000 0.00000-0.25098 0.00000  1.00000  -1.149   0.000   0.000 

                      0.00    0.00  -81.00    0.00     0.00  171.00    0.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

  92.370       0.00000   0.60736   0.00000   0.00000   0.00000       0 

    11.00000     0.000    91.000     0.000     0.000     0.000 

!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 

   1.683215  -1.301411   0.378740   0.000000   0.023638   0.000000   0.000000    0 

     61.000    141.000    151.000      0.000     51.000      0.000      0.000 

!     a          b         c        alpha      beta       gamma      #Cell Info 

   5.208272   5.208272   8.152275  90.000000  90.000000 120.000000    

  111.00000  111.00000  131.00000    0.00000    0.00000  111.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 

  1.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.02495  0.03168 

     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00 

! Propagation vectors: 

   0.0000000   0.0000000   0.0000000          Propagation Vector  1 

    0.000000    0.000000    0.000000 

   0.0000000   0.0000000   0.1648251          Propagation Vector  2 

    0.000000    0.000000  121.000000 

. . . . . . . . .  

 

The refined values of the magnetic free parameters, and their standard deviations, given in the 

text and corresponding to the values of the above input file, are the following: 

 

 k1 = (0, 0, 0),    

   
1
(Mn) 1.149(64)kS  z  

   
1
(Dy) 3.932(87)kS  z  

 

 k2 = (0, 0, ),   ≈ 0.16483(17),   

   
2

1
(Dy) 6.195(73)

2
ikS   x  y  

   
2 1,2,3

1
(Mn ) 1.783(39) exp 2 0.5573(15)

2
i ikS   x  y     

    
2 4,5,6

1
(Mn ) 1.783(39) exp 2 0.5573(15)

2
i ikS   x  y    

  

It is easy to see that the magnetic moments of Mn or Dy atoms within a basal plane are all 

parallel between them (as a result of dominant ferromagnetic Mn-Mn and Dy-Dy 

interactions). The orientation of Mn moments is nearly antiparallel with that of Dy atoms. The 

Mn-Dy interactions must be mostly antiferromagnetic and a competition along the c-axis 

between first and second neighbours must be responsible of the incommensurability. The full 
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cone angle of the Dy sublattice is Dy = 2 arctan(6.195/3.932) ≈ 115.19° and that of the Mn 

sublattices is Mn = 2 arctan(1.783/1.149) ≈ 114.40°, quite close to that of Dy atoms. 

 

Notice that the refined phase  = 0.5573(15) = ½ + 0.0573(15) is not equal to what will be 

expected from the consideration that a 

common modulation wave embraces the whole 

structure c = ½ + k rMn = ½ + 0.16483  

0.25098 = ½ + 0.04137. The difference 

 ≈ 0.016 is higher than three standard 

deviations. This can be tested using the option 

JBT=5 that describes conical structures in real 

space (in terms of magnetic moments, cone 

angles and phases) using an underline Fourier 

coefficients of the form given by expression 

(34’) in which the explicit atom positions are 

part of the phases. If we fix the phase  = 0 

and refine the data we obtain a reasonable 

refinement with RMag=5.453% but with 

significant misfit in the lower angle part of the 

pattern (see figure 20, top). If we free the 

parameter we obtain  = 0.0158(16) and a 

better refinement RMag=4.746 % (see figure 20, 

bottom).  

In this kind of refinement (JBT=5), the free 

parameters are: the value of the moment of Dy and Mn atoms, refined to m(Dy)= 7.34(9) B 

and m(Mn)=2.11(4) B, respectively, the angle of each magnetic moment with the axis of the 

cone (half the angle of the cone) and a phase factor per atom. We have constrained the half 

 
Figure 19: Refined powder diffraction pattern of DyMn6Ge6 at 11 K with the model 

discussed in the text: double conical structure with a pitch angle (2 ) close to 60°. 

Asterisks signal impurity lines. The scheme of the magnetic structure on the left 

corresponds to a view along the c-axis whereas the right panel has the c-axis horizontal.  

 
Figure 20: Detail of the refined powder 

diffraction pattern of DyMn6Ge6 by 

fixing the phases of Mn atoms to =0 

(top) , and leaving free the phases 

(bottom)  using the option JBT=5 in 

FullProf (see text).  



 53 

angle of the cone of Dy and Mn atoms to have a difference of 180° (same angle but the cone 

is oriented in the opposite direction). The refined value of the half angle of the cone is 

57.5(6)°. The relevant part of input control file for FullProf, using only four free parameters, 

is given below (all the magnetic atoms must be given explicitly when JBT=5): 

 
. . . . . . . . . . . . . . . . .  

!------------------------------------------------------------------------------- 
!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:     4.75 
!------------------------------------------------------------------------------- 

DyMn6Ge6 magnetic 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   7   0   0 0.0 0.0 1.0   5   0   1   0   0          0.000  -1   7   0 

! 

P 6 m m                  <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   0   1   1   0 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Mom     Phic   Phase 

!   Phi & Theta  of Cone-axis + unused params 

Dy     JDY3  1  0  0.00000 0.00000 0.00000 0.00000  1.00000   7.343 -57.527   0.000 

                      0.00    0.00    0.00    0.00     0.00  121.00 -151.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Mn1    MMN2  1  0  0.50000 0.00000 0.25095 0.00000  1.00000   2.113 122.179   0.016 

                      0.00    0.00  111.00    0.00     0.00  131.00  151.00  541.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

Mn2    MMN2  1  0 -0.50000 0.00000-0.25095 0.00000  1.00000   2.113 122.179  -0.016 

                      0.00    0.00 -111.00    0.00     0.00  131.00  151.00 -541.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

. . . . . . . . . . . . . . .  

Mn6    MMN2  1  0 -0.50000-0.50000-0.25095 0.00000  1.00000   2.113 122.179  -0.016 

                      0.00    0.00 -111.00    0.00     0.00  131.00  151.00 -541.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

. . . . . . . . . . . . . . .  

 

From the refined magnetic structure we can see the presence of approximate invariance 

symmetry related to the presence of a 61 screw axis. If we consider that the propagation vector 

is rational and exactly equal to k = (0, 0, 1/6), the crystal and magnetic symmetry can be 

described by a common Shubnikov group. A simple 6-fold superstructure (a, b, 6c) allows to 

deduce as subgroups of G = P6/mmm, the groups H1 = P6122 and H2 = P61. By inspecting the 

scheme of the refined magnetic structure it is readily seen that the maximum symmetry 

corresponds to the Shubnikov group P612’2’. We know that the propagation vector is 

changing with temperature above Tt=100K (see reference [38]), however below this 

temperature the value of  is locked (within the resolution of the diffraction pattern we can 

consider that  = 1/6). With this assumption one can use the Shubnikov group P612’2’ (a, b, 

6c) for describing the symmetry. However if we start from this assumption from the 

beginning we have to face the fact that in this group we have a single site for Dy atoms and 

three sites for Mn atoms, in principle with independent values of their magnetic moments. 

The number of magnetic free parameters in P612’2’ (a, b, 6c) is 2 components for Dy atoms, 

which are in a special position with representative magnetic moment (u, 2u, w), plus three 

components for each Mn site (3 3=9). So, there are 11 free parameters. I we assume the same 

value of the magnetic moment for all Mn sites and the ferromagnetic coupling within planes 

we obtain a model with the same number of free parameters as that of the representation 

analysis: 2 parameters for Dy and 3 parameters describing all Mn atoms. These constraints are 

not imposed by symmetry, but it is a physically reasonable assumption. On the other hand, the 

Shubnikov analysis allows exploring the associated distortions of the nuclear structure by 

varying the positional parameters of the nuclear structure. We have not used this option here 

because the Q-range is limited. We have performed a refinement using FullProf in the 
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Shubnikov group approach (JBT = 10) with only five free magnetic parameters and obtained a 

comparable refinement (see figure 21).  

 

 

The complete part of input control file for FullProf of a mixed nuclear and magnetic phase is 

given below:  

 
!------------------------------------------------------------------------------- 

!  Data for PHASE number:   1  ==> Current R_Bragg for Pattern#  1:     3.16 

!------------------------------------------------------------------------------- 

DyMn6Ge6 

! 

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   8   0   0 0.0 0.0 1.0  10   0   0   0   0       5566.008   0   7   0 

! 

P 61 2 2             Magnetic symmetry below 

! Time Reversal Operations on Crystal Space Group 

  1  1  1  1  1  1 -1 -1 -1 -1 -1 -1 

!Atom   Typ    Mag Vek      X         Y         Z       Biso      Occ    N_type  Spc/Fftype /Line 

below:Codes 

!       Rx       Ry        Rz        Ix        Iy        Iz      MagPh  / Line below:Codes 

!      beta11   beta22   beta33   beta12   beta13   beta23  / Line below:Codes 

Dy     JDY3      1  0    0.00000   0.00000   0.00000   0.00000   0.50000    1    0 

                            0.00      0.00      0.00      0.00      0.00 

     3.56539   7.13079   3.92108   0.00000   0.00000   0.00000   0.00000 <-MagPar 

       11.00     12.00     21.00      0.00      0.00      0.00      0.00 

Mn1    MMN2      1  0    0.50000   0.00000   0.04181   0.00000   1.00000    1    0 

                            0.00      0.00     71.00      0.00      0.00 

    -0.32364  -1.91453  -1.13012   0.00000   0.00000   0.00000   0.00000 <-MagPar 

       31.00     41.00     51.00      0.00      0.00      0.00      0.00 

Mn2    MMN2      1  0    0.00000   0.50000   0.04181   0.00000   1.00000    1    0 

                            0.00      0.00     71.00      0.00      0.00 

    -0.32364  -1.91453  -1.13012   0.00000   0.00000   0.00000   0.00000 <-MagPar 

       31.00     41.00     51.00      0.00      0.00      0.00      0.00 

Mn3    MMN2      1  0    0.50000   0.50000   0.04181   0.00000   1.00000    1    0 

                            0.00      0.00     71.00      0.00      0.00 

    -0.32364  -1.91453  -1.13012   0.00000   0.00000   0.00000   0.00000 <-MagPar 

       31.00     41.00     51.00      0.00      0.00      0.00      0.00 

 
Figure 21: Refined powder diffraction pattern of DyMn6Ge6 at 11 K with the model based 

in the Shubnikov group P612’2’. In this approach we have constrained the magnetic 

moments of the Mn atoms in the same basal plane (same z-coordinate) to be 

ferromagnetically coupled. The obtained values, in B, of the magnetic moment components 

in the hexagonal unitary frame for Dy are: m(Dy) = (3.57(4), 7.14(8), 3.92(9) ); and for 

those of Mn atoms: m(Mn) = (-0.32(2), -1.92(4), -1.13(6)).  
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Ge1    GE        0  0    0.33333   0.66667   0.08333   0.00000   0.50000    0    0 

                            0.00      0.00      0.00      0.00      0.00 

Ge12   GE        0  0    0.66667   0.33333   0.08333   0.00000   0.50000    0    0 

                            0.00      0.00      0.00      0.00      0.00 

Ge2    GE        0  0    0.33333   0.66667   0.00000   0.00000   1.00000    0    0 

                            0.00      0.00      0.00      0.00      0.00 

Ge3    GE        0  0    0.00000   0.00000   0.05760   0.00000   1.00000    0    0 

                            0.00      0.00     81.00      0.00      0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

  2.5702       0.00000   0.60647   0.00000   0.00000   0.00000       0 

    61.00000     0.000   101.000     0.000     0.000     0.000 

!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 

   1.688325  -1.307224   0.379423   0.000000   0.024737   0.000000   0.000000    0 

    131.000    141.000    151.000      0.000    171.000      0.000      0.000 

!     a          b         c        alpha      beta       gamma      #Cell Info 

   5.208386   5.208386  48.914703  90.000000  90.000000 120.000000 

  111.00000  111.00000  121.00000    0.00000    0.00000  111.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 

  1.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.02495  0.03168 

     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00 
 

12.  Final remarks. 

 

We have presented in these notes the basics of the representational analysis of magnetic 

structures using several examples that illustrate the problems one can encounter when dealing 

with the analysis of powder neutron diffraction data. These notes do not contain a detailed 

description of the methods used for determining magnetic structures. The user may find in the 

web site of the FullProf Suite [28] a series of examples and tutorials that can be followed 

together with the present notes in order to get a deeper insight into the representational 

method.  We hope, in any case, that the readers will find the presented examples useful for 

their own research.  
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