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Symmetry and magnetic structures
-An introduction to the application of 
Representational Analysis to Crystalline Solids

Part 1 – From space groups to irreducible 
representations

Andrew S. Wills
UCL Chemistry

Why use symmetry?

• Electronic structures are complex
• We rarely have as much information about them as we 

would like

– Experimentalists typically deal with under-defined 
problems (there are too many possible solutions)

– Useful to introduce a grand simplifying structure 
(makes rules, classes of behaviour, and simplifies...)
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Symmetry theory
(Representation Theory)
• Method for simplifying analysis of a problem in systems 

possessing some degree of symmetry. 

• What is allowed vs. what is not allowed
– And what might be allowed iff…

– Neumann's principle (the principle of symmetry)

• If a crystal is invariant with respect to certain symmetry elements, any 
of its physical properties must also be invariant with respect to the 
same symmetry elements

• Keyword: Invariance of the physical properties under 
application of symmetry operators.

• Symmetries in solids are subtle

– They have to be

• Look at what their job is!

– Takes time to learn what electronic structures are 
possible and what they involve:

• But, this language is one that we are used to from 
other contexts

Difficulties
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Overview of entire course
Part 1- Introductions
• Why do we need to invoke symmetry?

• Taking representation theory from point groups to crystalline solids
– Translational periodicity

– Increases complexity of the irreducible representations

– Rotation-translation operations

– The propagation vector, the k-vector

• Symmetries and changing language
– The little group of the propagation vector Gk

– Permutation representation

– Axial and polar vectors, representations

– Magnetic representation

• Landau theory
– Opening the door - a zeroth-order approximation

• -> Gives the language for understanding magnetic structures

Overview of entire course
Part 2- Magnetic structures

• What they are, how best to describe them

– Putting the ideas together
– Show some examples
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Overview of entire course
Part 3- Hands-on refinements of data

• Course is focused on FullProf
– (But I may show you some things with GSAS)

– Will cover using FullProf for searching for k-vectors, 
several examples of commensurate and 
incommensurate structures

Why should an experimentalist use 
symmetry?

• Magnetic structures are complex
• Information is destroyed in many ways
• The form factor: J(Q)
• FM⊥(Q) 
• Powder averaging
• Domain averaging (powder, single crystal)
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Magnetic structures

a) ferromagnetic   c) ferrimagnetic

  h) sine or cosine

 i) circular helix  j) elliptical helix

b) antiferromagnetic d) triangular e) canted f) umbrella

Why should an experimentalist use 
symmetry?

• Magnetic structures are complex
• Information is destroyed in many ways
• The form factor: J(Q)
• FM⊥(Q) 
• Powder averaging
• Domain averaging (powder, single crystal)

• Luckily, we know the detailed Hamiltonian…

→ UnderUnder--defined problemdefined problem
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Complex incommensurate magnetic ordering 
in Β-Mn1-xRux (x=0.12)

Symmetry theory – representation theory
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Used in spectroscopy

• Use to predict vibration 
spectroscopic transitions that can 
be observed 

• Ground state characterized by
• Excited state characterized by
• Transition operator characterised by 
• Transition integral

• The integrand must be invariant 
under application of all symmetry 
operations

IR, Raman active modes in CO2

IR active, change in 
dipole moment

Raman active, change in 
polarizability

dipole moment operator polarisability operator
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Used in molecular orbital theory - LCAO

• Molecular orbitals are linear combinations of 
atomic orbitals

• If the molecule has symmetry, group theory 
predicts which atomic orbitals can contribute to 
each molecular orbital

• -> Symmetry adapted LCAOs

MO-LCAO

Orbitals of 
central atom

SALCs of H 
atoms
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Phase transitions in solids

• Phase transitions often take place between 
phases of different symmetry

• This is a “spontaneous” symmetry-breaking 
process. 

• Transition are classified as either 1st order 
(latent heat) or 2nd order (or continuous)

• A simple example: Paramagnetic -> 
Ferromagnetic transition

“Time-reversal” is lost. 
Symmetry under reversal 
of the electric current

High symmetry phase, Group G0

Low symmetry phase, Group G1

Symmetry in molecules
- what do these look like ?
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Inversion point 

• Change coordinates of a point (x,y,z) to (-x,-y,-z)

Mirror planes
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Proper rotations

Fe(C5H5)2

5-fold axis

Signifies rotation of 2πk/n

Improper rotations

• Combination of 2 operations
1.Rotation Cn around an axis
2. Inversion operation

Td geometry
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Symmetry operations –
extension from molecules to crystals

• Crystals have translational symmetry

A glide plane is a reflection and a translation

In crystalline solids there are 2 extra kinds of 
rotational and translational symmetry operation
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Symmetry operations in solids

And …
there is a very special translational symmetry

• The unit cell

• (Perhaps one of the most misunderstood symmetries as 
things often go wrong when there are moments involved)
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Groups - putting these operations together
- point groups and space groups

G0

– a set of elements A,B,C…

– the product of 2 elements is a member of the group AB∈G
– the product is associative A(BC)=(AB)C

– there exists a unique identity (E)

– every element has a unique inverse 
AA-1=A-1A=E

– (The order of a group is simply the number of elements in a 
group)

• We will note the order of a group h.

Applying operations in sequence 
– the Multiplication table

• 4 different operations
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Example of applying symmetry operations 
- H2O modes

• A symmetry operation produces a linear 
transformation in the vector space, e.g. E

H2O (E)
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H2O (C2)

H2O (σxz)
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Applying operations in sequence 
– the Multiplication table

• 4 different operations

Matrix representatives and matrix
multiplications
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Block-diagonal matrices - Simplifying 
multiplication of matrix representatives

• Corresponding blocks are multiplied separately

Irreducible representations
• In matrix terms: 

– A representation is reducible if there is a similarity 
transformation (change of basis) that sends all the 
matrices D(g) to the same block-diagonal form
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Irreducible representations and character 
tables

• In a finite group, there is a limited number of IRs 
• IRs are described in character tables: 

– A table that list the symmetry operations horizontally, 
IRs labels vertically and corresponding characters

Great Orthogonality theorem
• For two given IRs Di and Dj, of dimension li and lj

respectively

*
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Consequences of the GOT
• If D is a reducible representation. 
• The number of times that a representation i 

appears in a decomposition is

D        3        0        1

What irreducible representations are about…
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Groups- and their irreducible representations

Irreducible representations
– a set of matrix representatives that have a 

homomorphism with the automorphism group of the 
object

• automorphism= this is the symmetry of the object, a way of 
mapping an object to itself that preserves its structure

• homomorphism=mapping between 2 algebraic structures, the 
algebraic structure of the group is preserved

– In point groups irreducible representations are order 1 
(A,B), 2 (E), 3 (T), e.g. T2g, Eg

– In space groups the rotational-translational operations 
lead to IRs of order up to 6

IRs- point groups and space groups

Irreducible representations
– “a set of matrices, each corresponding to a single 

operation of the group, that can be combined amongst 
themselves in a manner parallel to the group elements”

• (Cotton, Chemical Application of Group Theory) 

– Irreducible- these are building blocks of symmetries
– In point groups irreducible representations are order 1 

(A,B), 2 (E), 3 (T), e.g. T2g, Eg

– In space groups the rotational-translational operations 
lead to IRs of order up to 6

• Marked increase in the complexity of possible structures
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Irreducible Representations of Space Groups

Projection

• Projecting a vector of the vector space into the space of 
the IR gives the symmetry adapted basis vectors/modes

• More about this later…
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Pause!

Symmetry and magnetic structures
-An introduction to the application of 
Representational Analysis to Crystalline Solids

Part 2 – From irreducible representations to their 
basis vectors –combining different types of 
symmetry

Andrew S. Wills
UCL Chemistry
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• Understanding symmetry enables a better description and analysis
of electronic properties

• Symmetry formalisms (frameworks)

– Point groups and individual molecules

• Simple relationships between symmetry operations

– Expand this homomorphism

• Representations of symmetry types

• These representations define fundamental symmetry types 
(irreducible representations). Other symmetries can be built 
by adding these together.

Recap - Symmetry is a fundamental parameter in 
our understanding of physical phenomena

• Representations
– Basic symmetry description in chemistry and physics
– (Include antiunitary - time reversal - symmetry = 

corepresentational theory)
– Provide the most complete/ general description of 

symmetry in crystalline solids
– Used to describe the symmetries of

• Electronic structures

• Phonons

• Magnetic structures

• A common language to describe couplings

What language to use?
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1.Translational symmetry 
- Propagation vector, k

2.Space group
- parent symmetry
- compatibility with k

3. Atom position
4. Magnetic moment
5.The Hamiltonian

A focus on some symmetries

• Eigenfunctions of a periodic Hamiltonian have the form of 
Bloch waves:

• In general the moment of atom i in the lth unit cell is given 
by a Fourier sum:

• Once the moments in the primitive unit cell are defined, 
the k vector defines every other spin in the structure

The formalism of the propagation vector, k
Translational symmetry

-

-
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Definition of magnetic structures, phonons, 
atomic displacements, electronic orbitals

• A linear combination of plane waves (basis vectors, 
Fourier components, Bloch waves)
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The formalism of the 
propagation vector, k

•1 moment in the 
asymmetric unit (the 
primitive unit cell)

•Once k is defined, total 
degrees of freedom = 3

-

Space group G0, k-vector and Gk

Gk (the space group of the propagation vector)

– Need only consider the rotational part (h) of symmetry 
operation (g):

– a subset of space group elements A,B,C… that leave 
the k-vector invariant Gk∈G0

– i.e. defines those that are compatible with the 
translational symmetry of k

τr
rv

±=′ Rkki.e.
Reciprocal lattice vector
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• Go around reciprocal space for a crystal structure 
and see how Gk changes

– Example: G0=P222 (#16) with E, C2x, C2y, C2z

• For k=(0,0,0.5)   Gk=E, C2x, C2y, C2z

• For k=(0,0,0.51) Gk=E, C2z

• For k=(0,0,0)      Gk= E, C2x, C2y, C2z

Different types of k vector

• The different types of k vector form the points, lines 
and planes in the Brillouin zone

The Brillouin zone and different Gk, e.g. FCC

• The symmetry types of the different points in reciprocal space
• Different points, lines and planes have different compatible symmetry 

operations; different Gk

• (Care with axis system)
• Several notations exist, Kovalev, Miller and Love, etc

τr
rr

+=′ hkk
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The  star of the propagation vector
e.g. k=(0.5 0.5 0.5) in space group Fd3m, 

tikk

k

k
j eCm ⋅−∑= π

ν
ν

νψ 2

,

The space group G0

• G0 is the space group of the crystal structure a 
set of elements A,B,C…
– Group structure of symmetry operations

• the product of 2 elements is a member of the group A∈BG

• the product is associative A(BC)=(AB)C

• there exists a unique identity (E)

• every element has a unique inverse 

• AA-1=A-1A=E

– Group has irreducible representations

– Gk is also a space group
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• Constructed from the little space group Gk
• Character tables are not enough
• Source is important- calculated or tabulated

Irreducible Representations of 
Space Group Gk

• Define the basic symmetry types for a group of symmetry 
operations
– All other symmetries can be built from combination of IRs

–

• In molecules, point groups have IRs up to order 3
– A (1x1 matrices), E (2x2 matrices), T (3x3 matrices)

• In solids, space groups lead to IRs up to order 6
–

Summary - Irreducible representations (IRs)
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– What are we trying to do?

• Find out what types of structure are possible for moments at atomic positions

– How?

– Look at these symmetries in turn

• Permutation representation

– How the atoms are interchanged under the symmetry operations of Gk

• Axial vector representation

– How the magnetic moments 

– are rotated  under the 
– symmetry operations of Gk

Projection of basis vectors

BC
CB
AA

→
→
→

:1σ σ2 :
A → C
B → B
C → A

3+ :
A → B
B → C
C → A

χ(σ1) =1 χ(σ2) =1 χ(3+) = 0

The permutation representation Γperm

• Recap- a crystal structure is invariant under the symmetry 
operations of its point group. However, equivalent positions can
be interchanged, permuted

• Γperm describes how all the atoms are permuted
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Permutation representation Γperm

Symmetry of magnetic moments and 
displacement vectors under inversion

Polar

Axial

Polar vectors are reversed by inversion operation, axial vectors are not.



33

Symmetry of magnetic moments and 
displacement vectors under improper 
rotations
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Polar

Axial

Polar vectors are reversed by inversion operation, axial vectors
are not. Mathematically, we can deal with this by multiplying by
the determinant

Putting it all together- the magnetic 
(displacement) representation

• The permutation representation and the axial 
vector representation are independent

• And so are their characters

axialnpermutatiomagnetic Γ×Γ=Γ

axialnpermutatiomagnetic χχχ ×=
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Putting it all together- the magnetic 
(displacement) representation

• The magnetic representation can be decomposed 
into IRs of Gk

• The number of times IR Γν appears is given by

ν
ν

Γ=Γ ∑nmagnetic

∑
∈

ΓΓ=
k

mag
Ggk

g
Gn

n *)(
)(

1
ν

χχν

Putting it all together- decomposing the 
magnetic (displacement) representation

• The number of times IR Γν
appears is given by

• This depends on the 
atomic site and may look 
like

3212, 201 Γ+Γ+Γ=Γ amag

∑
∈

ΓΓ=
k

mag
Ggk

g
Gn

n *)(
)(

1
ν

χχν
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Basis functions

• Symmetry adapted functions that have the same 
symmetry at the IR- ‘associated’, non-unique

• Calculated using the projection operator

Basis vectors

• R3c
• kprimitive=(1/2, 1/2, 1/2); khexagonal=(0,0,3/2)
• Moment @ (0, 0, 0)
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Basis vectors

• Define a degree of freedom

– Follows the symmetry of the associated IR

– Can be used to classify symmetry

• Does not decrease their number!

– i.e. 3 moment degrees of freedom per atom

– n atoms will have 3n basis vectors

• Define symmetry as a linear combination, refine 
in terms of mixing (weighting) coefficients

Basis vectors
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• A purely imaginary basis vector is as real as a 
purely real one…

–

– They are equivalent

• A linear combination of basis vectors has the 
same symmetry

There is real and there is real...

• These have the symmetry of the IR that they are 
projected from

– Non-unique
– Visualisation of the degrees of freedom of the magnetic 

structure
– Classification of their symmetry by IR
– Structures are built from a linear combination of basis 

vectors

Projection of the basis vectors
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Projection of the basis vectors

• Landau Theory of a continuous transition

– The rule of a single (co)representation becoming 
critical

– This is an assumption

• In more complex Hamiltonians this rule may be relaxed

– Specific representations mix, perhaps to form 
corepresentations, perhaps corepresentations will mix

• Perhaps the transition is 1st order

– Weakly 1st order (structure follows Landau theory with 
minor change)

– Strongly first order (all bets are off!)

Filter 4- Phase transition theory
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An example of using basis functions
-symmetry types that are adapted to the problem…

The Dzyaloshinsky-Moriya effect in
Mn[N(CN)2]2 and Fe[N(CN)2]2 - canted ferromagnets

Pnnm
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The Dzyaloshinsky-Moriya effect in
Mn[N(CN)2]2 and Fe[N(CN)2]2 - canted ferromagnets

C.R Kmety et al, Phys. 
Rev. B 62, 5576  (2000).

Mn[N(CN)2]2 and Fe[N(CN)2]2
– possible magnetic structures

Space group Pnnm, k=(000), m1=(0 0 0) and m2=(.5 .5 .5)
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Mn[N(CN)2]2 and Fe[N(CN)2]2
– Linear combinations and possible magnetic 
structures 

Mn[N(CN)2]2 and Fe[N(CN)2]2
– possible magnetic structures

For D-M interaction to exist, the 
antiferromagnetic and 
ferromagnetic state must have 
the same symmetry, i.e.
Γ3 or Γ5
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Landau Theory

• Continuous transitions (2nd order) involve 
– only ‘one IR’ becoming critical
– no third order invariants

• Structure with mixed IRs
• Sequential transitions
• 1st order transition
• Higher order contributions in Landau theory
• Or a phase separated sample…

Landau Theory- When it doesn’t work it 
might still be useful :-)

• Irreducible representations still classify symmetry 
types

• The observation of several IRs involved in a 
magnetic transition (structure) gives you 
information about the energy drives

• The difference between weakly and strongly first 
order


