Reliability and Uptime in Proton Therapy Accelerator and Beam Delivery Systems;
The Need for a Fresh Medical Device Design Methodology.

Presented by: Niek Schreuder

_Provision Center for Proton Therapy,
6450 Provision Cares Way, Knoxville,
TN 37909*_
Outline

• Current systems
• Fail Safe thinking – some misconceptions
• Lessons from the airline industry
• Case Studies
• Down-time Tracking + Management
• New Thinking
Disclaimers

• There is no compromise for

 a) Patient safety
 b) Personnel safety

• Nothing that I propose here should compromise safety

• There is no excuse for an improperly designed System.

• There is no excuse for an improperly tested / commissioned System
Misconceptions in Current Systems

• Incorrect Technical Approaches
 - Fail the system if anything goes wrong / out of tolerance.
 - Let the control systems make all the decisions.
 - Slowing things down improves safety.
 - Limiting functional capabilities improves safety.
 - Proton Therapy systems are more dangerous than X-Ray Systems.
 - The more checks, the more safe the system becomes.

• The safest system is one that does never treats a patient.
The Clinical Medical Physicist’s Perspective on Designing a Proton Therapy System
Misconceptions in Current Systems

• Incorrect Operational Approaches / Paradigms
 - The trained staff’s only objective is to harm the patients or damage the equipment.
 - More emphasis on protecting the equipment rather than finishing the treatment.
 - Proton Therapy systems are more dangerous than X-Ray Systems.
 - Untrained people are operating the systems.
 - Completing a treatment at the scheduled time is less important than fixing the system.
“Fail Safe” thinking

• Great idea but the focus should not be on “FAIL”

• Only “FAIL” the system after a treatment has been completed
 - Delivering a partial treatment is worse than delivering a treatment with a small uncertainty /risk

• Paradigm Shift
 - There are very few things in a radiation therapy system that can harm the patient

• Lets try to list those
 - Over dose – many ways to protect against this.
 - Too high beam current – operational parameters within certain windows.
 - Beam scanned to the wrong position – several redundancies can be implemented.

• Operational risks are much higher
 - wrong dose / # fractions delivered perfectly correct.
 - Treat wrong site / setup errors.
Learning From the Airline Industry

• Never Fail the plane in “Mid-Air”
 - “First land the plane” – get the passengers off – then take the plane to the hanger – fix it

• Preventative + Predictive maintenance

• Redundancies
 e.g. Manual / Pilot emergency landing at the nearest airport
 - the control systems did not prevent the pilot to land on the Hudson River

• Checklists rather than controls systems that are in full control

• Many more
The Radiation Therapy Reality

• Machines are operated by highly trained people

• Nobody wants to harm anybody

• It's very important (clinically and emotionally) to deliver treatments on time.

• Treatment deliveries must be delivered within certain tolerances
 - Systematics errors are bad
 - Random errors often cancel out

• Treatment plans are designed according to certain tolerances

• Fractionated treatments are more forgiving

• Operational risks are much higher
Challenge

• Design a traffic light

• The only way a traffic light can work is for the driver to obey the lights –
 - Red → STOP; Yellow → Clear the intersection; Green → Go

• What is required to drive a car
 - Learn to drive the car + 16 years old
 - Obtain Drivers license
 - Can be done in 3 months

• What is required to treat a patient
 - Rad Onc → 11 years of training + ABR
 - Medical Physicist → 7 years of training + ABR
 - RTT → 3 years of training + ASRT

 Much more that can go wrong
 Much more dangerous

 Systems Don’t allow any user autonomy –
 Safety systems are in control
Control systems are in Full control – Why not?

• Users stop thinking
 - The Computer must be correct (NY Accident)
 - Computers are always correct !!!
 - I cannot do anything anyhow – no user rights / permissions
 - Just going through the motions

• Allow overrides at the discretion of the trained user
 - Overrides expire automatically – time window depends on the risk
 - *This will allow to land the plane and take it to the hanger*
Limiting Capabilities improve safety

- **Allow only one motion at a time**
 - Current systems allow you to crash the systems –
 a) At slow speed
 b) One at a time

- **Multiple motions should be allowed**
 - Move as many things as the user can control
 - This will automatically attract undivided attention from the operator

- **IF the RTT Could move the Patient Positioner while the gantry is rotating this would not have happened**
- **Commercial linear Accelerators allow simultaneous motions**
- **Let the trained and responsible staff decide what is safe**
Slowing things down improve safety

• The user needs to multitask to get things done in time.

• Does other things instead of keeping an eye on the patient and equipment.

• Let the trained and responsible staff decide what is a safe speed of motion.

• **NOTE:** there is nothing wrong with sensible warnings and alerts, but disallowing things that are potentially safe and that will improve efficiencies is the problem
More Checks are More Safe?

- Checklists should not have more than 7 things to check.
- Rather focus on the 7 top and most important things than checking 25 less important things.
- Human nature states that “The more checks you have, the less important the initial checks / screening checks become.”
 - Someone will catch it at the bottom of the waterfall.
- The more unnecessary check there are, the more unnecessary failures can occur.
New Thinking

- FMEA must be done with the emphasis on completing a treatment
- Use a flagger – road works ahead
 - Something is not right
 - Take extra care
 - Cross check – not all the checks are in place
- Allow conditional overrides for all Interlocks that can be verified with at least one other method / tool
 - Visually / inspection
 - Mechanically
 - Optically
 - Audibly
New Thinking

• Modular Design Approaches
 - Faster / more efficient trouble shooting.

• Treatment rooms should be independent from each other
 - Software Upgrades are easier.

• Efficient Trouble shooting is as important as Reliability
 - Things will break – BUT - How quick can you recover
 - Efficient trouble shooting will reduce downtime
Use cases

• **X-Ray panels do not retract**
 • The protons never go through the patient
 • Shield the panel for flash beam

• **PPS goes unhealthy during a treatment**
 • Stop and verify that the patient is still in position
 • Appoint a flagger

• **Scan beam parameters are marginally out of tolerance**
 • Increase / override the tolerances to a next level
 • Tolerances reset automatically after the beam has beam delivered

• **Non Critical Inter system communication errors**
 • Verify that things are still good
 • Record data manually
 • Appoint a Flagger
Down-Time tracking / Management

- Technical Down-time vs Clinical Downtime
- A short technical down-time can easily lead to a large clinical downtime

 - Patient ready to treat → need to take patient off the table due to a problem
 - Fix the problem
 - Treatment start from scratch again → Large clinical down-time
The frequency of a problem is a bigger issue than the duration.
Ideal Definition → % of patients treated as scheduled.

Typical Definition → System is available as scheduled per the contractual agreements.

More than 98% uptime is desired

Less than 96% uptime – things become extremely painful

- Staff morale ↓
- Patient satisfaction ↓
- Clinical care is compromised
Conclusions

• Proton Therapy Systems are not more dangerous than X-Ray Therapy Systems.

• Proton Therapy Systems must be designed according to the same operational principles and safety guidelines as X-Ray Therapy Systems.

• Slowing things down and limiting functionalities does not improve safety.

• Completing a patient treatment must take priority over shutting the system down for repairs.

• Treating patients as scheduled is clinically and emotionally very important.