
Scheduling and Tracing of Maintenance Tasks in Long Shutdowns at GSI

S.Reimann, P.Schütt

GSI Helmholtzzentrum für Schwerionenforschung - Overview

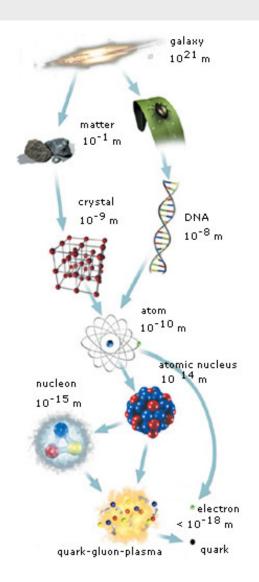
- Located in Darmstadt/Germany
- established in 1969
- Employees: 1350
- Guest Scientists: 1200
- 350 Ph.D. students
- Budget: 108 M€

- 2 Heavy Ion Accelerators (UNILAC, SIS18)
- 1 Experimental Storage Ring (ESR)
- The Fragment Separator (FRS)

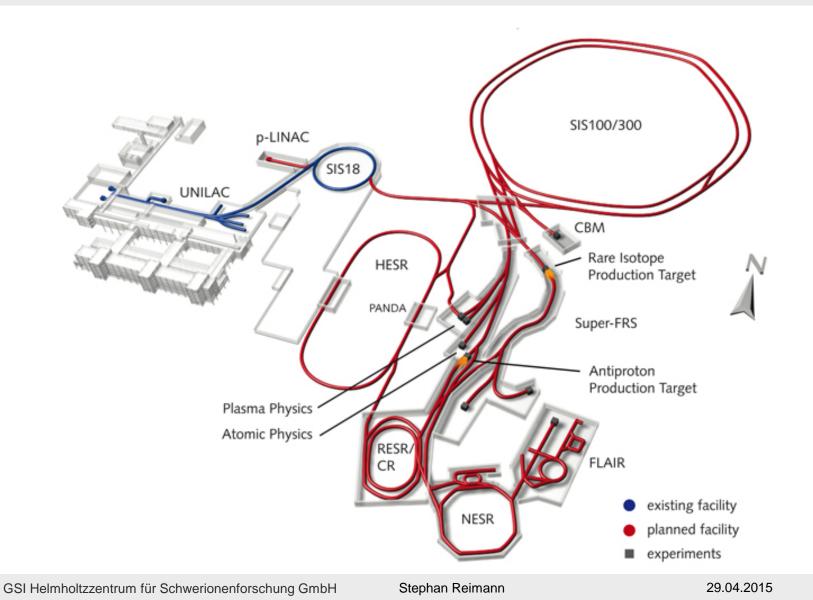
also known for

- super heavy elements 107-112 discovered at SHIP/GSI: Bohrium, Hassium, Meitnerium, Darmstadtium, Roentgenium und Copernicium
- PHELIX petawatt Laser
- heavy ion cancer therapy → technology transfer to Heidelberg, Marburg, Shanghai

GSI Helmholtzzentrum für Schwerionenforschung - Overview


- Maximum Energy
 - UNILAC: 11,4MeV/u
 - SIS18: 2GeV/u
- Accelerated Elements
 - everything from p⁺ to Uranium
 - many different isotopes and charge states
- 3 Ion Sources Terminals
 - 1. PIG Penning Ionization Gauge or MeVVa (High Current Injector)
 - 2. ECR Electron Cyclotron Resonance Source (High Charge State Injector)
 - 3. one of [MUCIS, CHORDIS, VARIS] (High Charge State Injector)

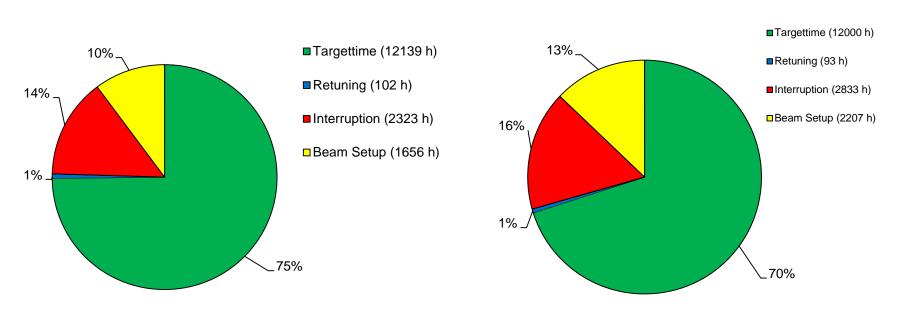
Research Program


"The research program of GSI spans over 17 decimal powers: it ranges from the modification of materials to the destruction of cancer cells, to the investigation of atoms, to the investigation of atomic nuclei as well as the Quark-gluon plasma"

- nuclear and particle physics
- atomic physics
- plasma physics
- biophysics and medical science
- materials research

The FAIR-Project

Implications


- maintenance of legacy machines, realizing the new project and maybe beam time at the same time, executed by the same persons
- beginning civil construction for FAIR
- machine upgrade for FAIR operations
- \rightarrow
- reduced standard operation \rightarrow reduced operation team
- more machine experiments and device tests
- insertion of new devices \rightarrow longer shutdowns

Operation Statistics / Reliability

GSI

beam time 2012

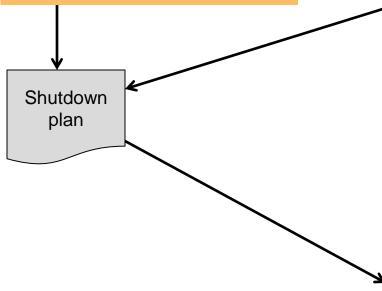
beam time 2014

Breakdown Statistics 2014

System	Duration/h	Number of Events	Share (h)
Power Supply	580	412	29,21%
Vacuum	438	119	22,03%
Beam Diagnostics	31	19	1,54%
Operating	38	38	1,93%
Interlock/ Safety System	38	36	1,93%
Ion Sources	143	53	7,20%
Misc.	186	89	9,35%
Infrastructure	40	16	2,01%
RF Systems	328	434	16,54%
Controls	164	70	8,25%
	1986	1286	100,00%

Standard Shutdown

- 4 maintenance periods per anno (duration: min. 2 weeks)
 - maintenance work
 - repairs
 - insertion of new devices
- if possible, all repairs will be shifted into the shutdown periods
- Prioritization and planning by machine coordinators
- Scheduling and tracing by shutdown coordinator (operations department)
- weekly meeting with shutdown coordinator, machine coordinators, the security responsible person for each machine and one contact person of each concerned department



Shutdown Coordination

preparation phase

prioritization, scheduling

- shutdown coordinator
- machine coordinators

weekly Shutdown Meeting

reporting, adjusting

- shutdown coordinator
- machine coordinators
- safety responsible persons
- involved executing departments
 - project responsible persons

The standard shutdown plan

- Offline-MS Project plan, one for each shutdown period
- on average 200-300 tasks per shutdown (150 per week)
- contains:
 - all tasks
 - logical and chronological dependencies
 - availability of power connections, cooling circuits, LAN, cranes, etc.
- does not contain:
 - planning of personnel resources
- the tasks are grouped per department
- granularity is a trade-off between "don't forget important steps" and "don't schedule every screw"

The Major Shutdown

	2014 201			5			2016			2017				
	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	BEA										•			
	MTI	Shutdown			BEAMT Sh			Shutdown						
UNILAC	ME	(8 mon	ths)		IME		(>1.5 years)						Commissioning	
	BEA													
SIS18/	MTI	Shutdo	wn											
ESR	ME	(> 2.5 y	ears)										Comm	nissioning

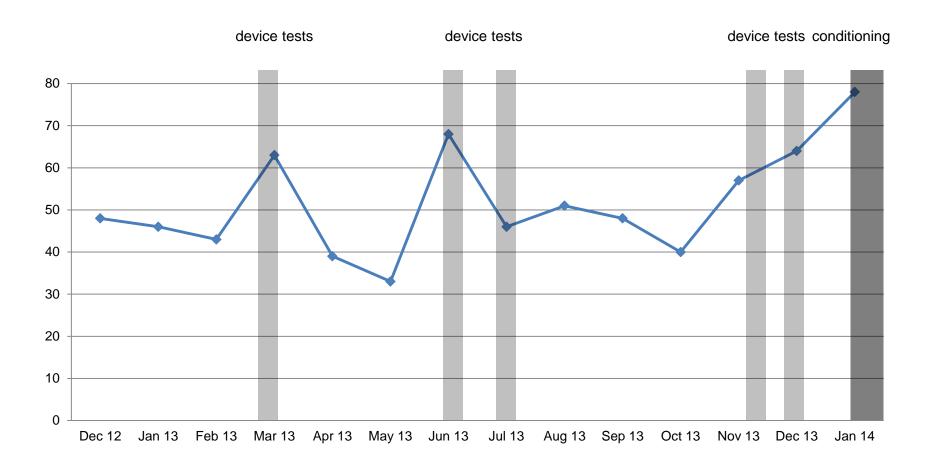
- min.1.5 years of UNILAC shutdown starting in 2016
- min. 2.5 years of SIS18/ESR shutdown since 2014
- 4 months of shutdown parallel to operations
- from 2016 at least 1.5 years without any operation
 - \rightarrow operators are delegated to other departments
 - \rightarrow reduced operations department \rightarrow shutdown department

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Stephan Reimann

Expectations und Questions

- What differences to standard shutdown can be expected?
 - factor of 50 more tasks (10000) ?
 - unmanageable dependencies?
 - never-ending shutdown meetings?
- What about the personnel planning?
 - Do we need a shutdown coordination office?
- How can we assure the availability of the whole facility at the end of the shutdown period?
- 4 months of shutdown parallel to operations?



- fortunately we had a long (1 year) shutdown in 2013
- 724 tasks / 61 weeks → 18 per week instead of 150 per week
 - more long term tasks
 - Iower granularity
 - nearly the same number of smaller tasks per year
- more delays \rightarrow many postponed tasks
- more time for re-conditioning needed → some departments misuse the beginning of the conditioning phase to finish the last shutdown tasks
- people tend to move things near the deadline

... the last minutes

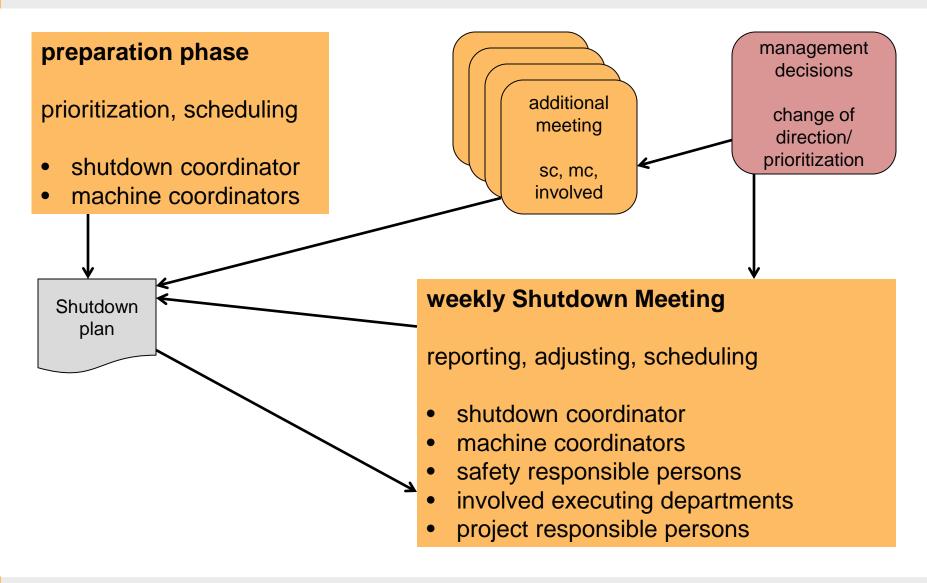
Finished Tasks per Month

Grouping the Tasks

- In shorter shutdowns we grouped by machine and below by department
 - so, department members can find their tasks fast and easy
 - leads to a clearly arranged project plan
 - no problem, when a department has only a hand full of projects
- In long shutdown 2013 we came to a limit, because some projects were shared all over the shutdown plan
 - jumping up and down in the plan
 - hard to follow the dependencies
- so we started to group the tasks of some bigger projects
 - clear chronological order per project
 - but departments have to check all projects, whether they are involved → no Problem, because they know their projects

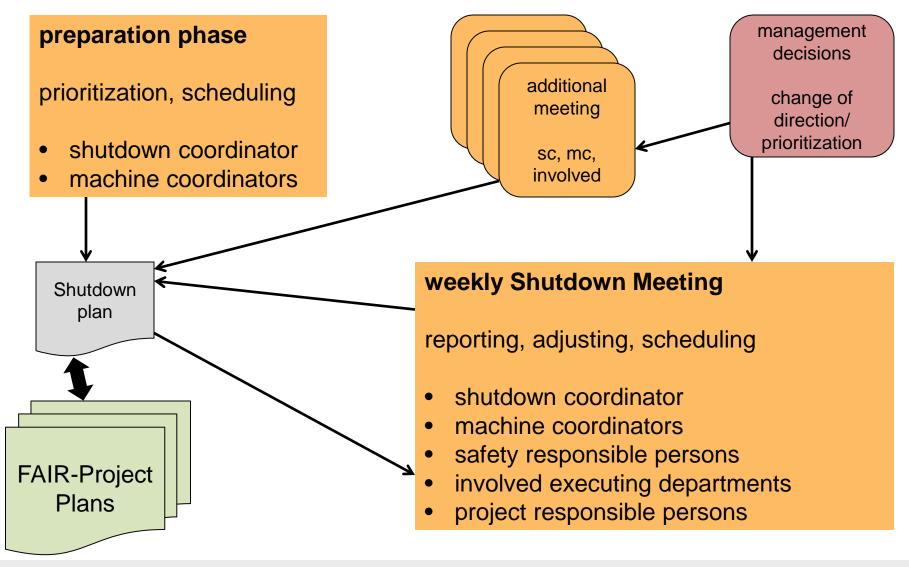
Personnel needs

- 1 main shutdown meeting per week is still ok
- 1-2 shutdown coordinators are also enough
- machine coordinators are more involved than in shorter shutdowns
- in some cases additional work package meetings of shutdown coordination, machine coordination and departments are needed



Summary of lessons learned

- testing periods are helpful not only to test devices and sustain availability but also to force the departments to meet the deadlines
- detailed planning of media + infrastructure availability is necessary
- flexibility in planning and/or good assumptions of how long a task will be processed
- grouping by project
- additional smaller project meetings on demand
- most of the time a long shutdown is less stressful to coordinate than a short one


Shutdown Coordination in long Shutdown 2013

Status Quo

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Status Quo

- additional planning of the construction work related to the link GSI/ FAIR (beam lines, infrastructure)
- hard constrains because of many fixed dates (coming from FAIR project plans)
- plan became less flexible
- at the moment ca. 600 tasks, but only 2015 is planned in detail
- challenging: UNILAC beam time parallel to shutdown from Jul - Nov 2015
 - but it is a reduced experiment program (UNILAC reaches not full performance)
 - only a few big tasks at SIS during the beam time
- results will maybe reported at ARW 2017

Thank you for paying attention

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Stephan Reimann

29.04.2015