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= Description of magnetic structures. Fourier
formalism and group representation analysis.

= Magnetic structure factor. Determination of
magnetic structures using powder diffraction



A Tons with intrinsic magnetic moments

FORSCIENCE

Atoms/ions with unpaired electrons

Intra-atomic electron correlation
Hund’s rule;: maximum S/J

™

m =g, J (rare earths)

Ni2* m =gs S (transition metals)
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Paramagnetic state:
Snapshot of magnetic moment configuration
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S What is o magnetic structure?
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Ordered state: Anti-ferromagnetic
Small fluctuations (spin waves) of the static configuration

By ==J5 Si+9; Rl LY R\ Lo} R
<Si>¢0 \.\ \.\ J\.\ \.\ \.\
Magnetic structure: o e e w B

Quasi-static configuration of magnetic moments
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Ferro Antiferro
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Very often magnetic structures are complex due to :

- competing exchange interactions (i.e. RKKY)

- geometrical frustration

- competition between exchange and single ion anisotropies



ey Types of magnetic structures
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Amplitude-modulated or Spin-Density Waves

—o=———© —

—¢—¢ “«—— ¢ —¢> ©C <=¢— €

“Longitudinal”
—&-= ® -p—————C P> 0@ @———@
L)
o= © “0— - © —©= © -o—  ©
© © ¢
© © ¢
“"Transverse” ® c ¢
i)
© Py ¢

—



IC

+i

SN -

Types of magne

~
e

NEUTRONS
FOR SCIENCE




/[ {

NEUTRONS
FOR SCIENCE
The equivalent to crystallographic space groups
in magnetic crystallography are the so called
Shubnikov groups or Magnetic Space 6roups
Shubnikov groups are limited to:
Conical - Commensurate magnetic structures

- Real representations of dimension 1

(for higher dimensional representations it may exist
different Shubnikov groups of a different symmetry family
than that of the crystallographic group)

For incommensurate magnetic structures superspace
[formalism is also an option. Conventional descriptions of
i J;Jsuper'space in magnetism is still lacking.

=
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NETRONS Formalism of propagation.vectors
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Position of atom J in unit- ® ® © © °
cell I is given by:
L ® ) ©® C
R|j — R| + rj
C
where R, Is a pure lattice
®

translation
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Formalism of propagation.vectors

o

s
Ao

m, = {Z}:Skj exp{—27ikR, }
Kk

R,=R,+r;=la+Lb+l,c+xa+yb+zc

Necessary condition for real mj;

S =Sy




Nﬁgg Formalism of propagation: vectors
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A magnetic structure is fully described by:

- Wave-vector(s) or propagation vector(s) {k}.

- Fourier components Sy; for each magnetic atom j and k-vector
Sy; is a complex vector (6 components) I

MM A/
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#3d Formalism of propagation vec'rors a more

NEUTRONS

FOR SCIENCE gener'al formula 7"
K

| : index of a direct lattice point (origin of an arbitrary unit cell)
j : index for a Wyckoff site (orbit)
s: index of a sublattice of the j site

Necessary condition for real moments m ;= S_kjS — SkJS
General expression of the Fourier coefficients (complex vectors) for

an arbitrary site (drop of js indices ) when k and —k are not equivalent:

:%(Rk +1l, ) exp{-27ig }

Only six parameters are independent. The writing above is convenient
when relations between the vectors R and | are established (e.g. when
IR|=[1], or R.1=0)
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Single propagation vector.k =.(0,0
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m,, = {Z}:Skj exp{—-27ikR,} =S,
k

- The magnetic structure may be described within the
crystallographic unit cell
Magnetic symmetry: conventional crystallography plus
spin reversal operator: crystallographic magnetic groups
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(4 Single pr'opagcmon vector. k=1/2 H
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m,, = ZSKJ exp{—27ikR,} =S, (- 1)”(')

REAL Fourier coefficients = magnetic moments
The magnetic symmetry may also be described using
crystallographic magnetic space groups
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- k interior of the Brillouin zone (pair k, -k) ;
o L L. L
- Real S,, or imaginary component in the same
direction as the real one i

“@——— <0 <0

m; =S, exp(—271kR,)+S,; exp(271kR,)

J

1 .
S = > m,u exp(—27zig,; )

o

__Q.’., _o.’_,

-0—
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m, =m,u; cos 2z(kR, + ¢, )
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TS Fourier coeffucuen‘l's of
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. E"___%:’I_&:‘ ;% &_J#_iﬁ__ L % _||_/*‘_|| .
- k interior of the Brillouin zone L t 7

- Real component of S, perpendicular to the
Imaginary component

1 : :
S, = E[mujuj +im, Vv, |exp(—27ig )

m,; =m,u; cos2z( kR, + ¢, )+m,Vv, sin27(kR, + ¢, )



y /
o  Centred cells!
FOR SCIENCE . - : > - =, . o

= " T W ';g
B b ecrad Wy

m, = > S, exp{—27ikR, |
ik}

The k vectors are
referred fo the reciprocal
basis of the conventional
direct cell and for centred
cells may have values > 1/2

k=(1,0,0) or (0,1,0) ?
R,=R,+r;=la+Lb+l,c+xa+yb+zc

The translation vectors have fractional components
when using centred cells. The index j runs on the
atoms contained in a PRIMITIVE cell
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m;, = {Z};Skjs expi—27ikR, }
Kk

The program FullProf Studio performs the above sum and
represents graphically the magnetic structure.

This program can help to learn about this formalism because
the user can write manually the Fourier coefficients and see
what is the corresponding magnetic structure immediately.

Web site: http://www.ill eu/sites/fullprof/
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A representation of a group is a set of matrices satisfying the same
operation rules as the group elements

I'= {F(g) |g e G}’ '(9,9,) =1'(g)I'(9,)

Under the ordinary matrix product the given set constitutes an
isomorphic group (preserves the multiplication table).

A similarity transformation applied to all matrices provides an equivalent
representation (the matrix U is generally unitary: U1=U").

I'(g)=U I'(g)U *{with g e G}

A particular group has an infinite number of representations of arbitrary
dimensions. The most important representations are called "Irreducible
Representations” (Irreps). An arbitrary representation may be reduced to
"block-diagonal form" by an appropriate similarity transformation. Those

representations that cannot be reduced are the Irreps.
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Given the representation I'={D(E),D(A),D(B)...} of the group
G={E,A,B,...}, if we are able to find a similarity transformation U
converting all matrices to the same block-diagonal form, we obtain
an equivalent representation that can be decomposed as follows:

D'(g)=U D(g)U *{withgeG}=I"'=UTU™

D'\ (4) 0
N . D', (4)
D'(A)=U"'"D(AU = AP
0 D' (D)
D\(B) | 0
' — 77! T — btz(B)
D'(B)=U"'D(B)U = AT
0 D', (B)

Irreducible representations
I, ={D",(A),D",(B),...}
I, ={D’, (A), D%, (B),...}

'=suru"=r,er,®er,...

r'=>nr,
Dv
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We shall note the different irreducible representations with the
Index v and a symbol I" that may be used also for matrices. The
dimension of the representation I', is |,. The characters of a
representation (traces of the matrices) will be represented as »Y(g)

The great orthogonality theorem:

ST @) =" 6, 6,9,

9eG v
Particularized for the characters:
> 2 (@)x"(9)=n(G) s,

geG
Decomposition of a representation In Irreps:

r=Snr .
;nv . n, = (G)g;z(g)z (9)
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[/ 4 Basic functions of a representation
The elements of the symmetry groups act on position vectors. For
each particular problem we can select a set of physically relevant
variables ¢ {i =1, 2, ...p} spanning a working functional space W.
These functions constitute a basis of the W space.

The action of the operator associated to a symmetry operator when
applied to a function of position vectors is defined by the
expression:

O(9)e(r) =p(g 1) =¢'(r)

When using the functions ¢, (r), the action of the operator O(g)
gives rise to a linear combination, defining a representation of the

group G: O(g)g;(r)=¢'(r)= Zrij (9)ei(r)
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If we take another basis y related to the initial one by a unitary
transformation we may get the matrices of the I" representation in
block-diagonal form.

y;(r) :Zuij¢i (r)

The system of p y~functions splits in subsystems defining
iIrreducible subspaces of the working space W. If we take one
of these subspaces (labelled v), the action of the operator O(g)
on the basis functions is:

O(g)y; (r) =Zfﬁ(g)wi(r)

Here the functions are restricted to those of the subspace v
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Projection operators
There is a way for obtaining the basis functions of the Irreps for the

particular physical problem by applying the following projection
operator formula:

|4 14

v, =P o

(i=1..1)

1 *y
Z@;Fi[j](g) O(9) ¢

The result of the above operation is zero or a basis function of
the corresponding Irrep. The index [j] is fixed, taking different
values provide new basis functions or zero.
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Representations of the translation group

The translation group is Abelian so the Irreps are all one-dimensional.

Considering the properties of the translation operators and the Born-\Von Karman
periodic boundary conditions the representation matrix (a single number equal to its

character) is given by the expression:
O(t) =O(la, +1,a, +1;a;) = O(a,)* O(a,)" O(a,)"
O(a;)""" =0(a,)

O(t) — exp: —27i Pl - P, + Pl , 0<p,eZ<N. -1
Nl N2 N3

Thereare N =N, x N, x N, representations labelled by the
reciprocal space vector:

K= pl, pz’pg :&bl+&b2+&b3
Nl N2 N3 Nl N2 N3
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The matrix of the representation k corresponding to the translation t is then:

A pl pl, pl .
% (t) = expd—27i| P Polo | Pals 1L oot okt
(1) p{ ”[Nl N N]} pi-2mikt;

Where the k vectors in reciprocal space are restricted to the first Brillouin Zone.
It is clear that adding a reciprocal lattice vector H to k, does not change the matrix,
so the vectors k’=H+k and k are equivalent.

The basis functions of the group of translations must satisfy the equation:
Oty (r) =T ()y"(r) =exp{-27ik t} " (r)
The most general form for the functions ¥*(r) are the Bloch functions:
w* (r) = u, (r)exp{2rikr}, withu, (r £t) =u, (r)

This is easily verified by applying the rules or the action of operators on

RUNCtiONS 61y, (1) = (1) = uy () exp2aik(r ) =
= exp{—2i kt} u, (r)exp{27zik r} = exp{-2zi kthy“(r)
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NEUTROI
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( Diagram for arithmetic crystal class 2/mP)
P112/m (P2/m)-C2n" (10), P1124/m (P21/m)-C2n? (11), P112/a (P2/c)-C21° (13), P1124/a (P21/c)-C2n° (14)

Reciprocal-space group (P112/m )*, No. 10

The table with the k vectors.
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The k-vector Types of Group 71 [Immm]

The k-vector Types of Group 71 [Immm] Brilloui
rillouin zone

Brillouin zone ] ] ]
( Diagram for arithmetic crystal class mmml)

( Diagram for arithmetic crystal class mmml ) o5 o8
( c>b>a or c>a>b) Immm-D2y“” (71) to Imma-Dop“" (74)

(b>a>c or b>c>a) Immm-D22° (71) to Imma-D2i 22 (74) S
Reciprocal-space group (Fmmm )*, No.69 : ¢ <b <a orc <a <b

) _ . b eat<c” e <a”
Reciprocal-space group ( Fmmm )*, No.69 : b <a <c orb <c <a The table with the kK vectors.

The table with the kvectors.




The k-vector Types of Group 69 [Fmmm] The k-vector Types of Group 69 [Fmmm]

‘ Brillouin zone Brillouin zone
NI ( Diagram for arithmetic crystal class mmmF ) 3 > ~&‘~?§£{i‘ RS ’:\,_: ( Diagram for arithmetic crystal class mmmF )
FC (a2<bZ+c?, b2<c2+a?, and c?<a+b) Fmmm-D2n2 (69), Fddd-D2r2* (70) (c2>a2+b2) Fmmm-D2122 (69), Fddd-Dan2? (70)

Reciprocal-space group ( Immm )*, No. 71:( a*2<b*2+c*2, b*2<c*2+a*2 , and c*2<a*2+b*2) Reciprocal space group (Immm )*, No.71: c*2>a*2+b*2

The table with the kvectors.

The table with the k vectors.

The k-vector Types of Group 69 [Fmmm]
Brillouin zone
( Diagram for arithmetic crystal class mmmF )
(a2>b2+c?) Fmmm-D2p2 (69), Fddd-D22? (70)

Reciprocal-space group (Immm )*, No.71: a*2>b*2+c*2

The table with the kwectaors.
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The set of non-equivalent k vectors obtained by applying the rotational part of the
symmetry operators of the space group constitute the so called “start of K”

{k}={ky, hky, hk, hky, . F={k; Ky, ... K, }

The k; vectors are called the arms of the star. The number 1, is less or equal to
the order of the point group n(G,)

The set of elements geG leaving the k vector invariant, or equal to an equivalent
vector, form the group G,. Called the group of the wave vector (or propagation
vector group) or the “little group”. It is always a subgroup of G. The whole
space/point group can be decomposed in cosets of the propagation vector group:

I
G=G,+9,G, +..= > 09,G, k, =g,k
L=1

I
G, =Gy +hGy +..= D> h Gy, k =hk
L=1



Pgﬁsﬁgé The representations of 6, and &

Let us note the irreducible representations of G, as I'v of dimensionality |, .
The basis functions should be of the form: ;¥ (r)=u,;" (r) exp(2rikr) (i=1,... 1)

Under the action of the elements of G, the functions transform into each other with
the same k-vector.

Using the elements of G not belonging to G, one generates other sets of basis
functions: iKY (r); w2 (n); ... KLY (r) that constitute the basis functions of the
representations of the total space group.

These representations are labelled by the star of the k vector as: I'{k}vand are of
dimensionality I, x |, . Each irreducible “small representation” induces an irreducible
representation of the total space group. The induction formula is:

{k}v Fkv o The last symbol is 1 if the subscript
'—' M (g) (g'— 9 9wm ) 9.9 9um G, condition is true, otherwise is zero



FB¥ The representations of 6 and &

We need to know the Irreps of G, I'kv only for the coset representatives (with respect
to the translation group) of G,

G, =1T+9,T+9.T+...+9,T

For a general element of G, we have:

r(g)=r"({hit, + ) =@ 3{h|t,H =r""{3) T({hlt,})
r({hlt, +)=e*"" T{h|t,})
The matrices T'X" can be easily calculated from the projective (or loaded)

representations that are tabulated in the Kovalev book

I (9)=T" {1 t,}) =T}y () e >

proj

Alternatively they can be calculated using special algorithms (Zak’s method)
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According to the Landau theory of phase transitions, it is expected
that the configuration of the magnetic moments can be described in
terms of the basis functions of the Irreps of the propagation

vector group G, (subgroup of the SG formed by those elements that

leave K invariant). The Irreps of G, are tabulated or can be calculated
independently of the problem

But, knowing the classical Hamiltonian of the spin system,
the ground state (magnetic structure at T= O K) should
minimize the energy

H= > J7.S1.Sms +--O(S")

jhim>~ jla ~img
jla,img

The symmetry of the Hamiltonian may be higher than the
space group symmetry (e.g. isotropic exchange interactions)
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A reducible representation of the propagation vector group can be
constructed by selecting the atoms of a Wyckoff position and applying
the symmetry operators to both positions and axial vectors (spins).
This gives rise to the so called Magnetic Representation of dimension:
3n, (being n, the number of atoms in the primitive cell)

This representation can be decomposed in Irreps and the number of
times a particular Irreps, I, is included can be easily calculated

1_‘I\/Iag — 1_‘Perm ®FAxiaI — va Fv
Dv

The basis functions, for each Irrep and each sublattice of a Wyckoff site,
can be calculated by using the projection operator formula. The basis
functions are constant vectors of the form (1,0,0), (0.5, 1,0) ... with
components referred to the crystallographic unitary frame: {a/a, b/b, c/c}
attached to each sublattice.




S0l Relation of Fourier coefficients and basis
FOR SOENCE. functions of “Irreps™ <l -

Fourier coeff. Basis vectors

The coefficients C_, are the free parameters of the
magnetic structure (order parameters of the phase
transition in the Landau theory)

Indices:
K : reference to the propagation vector
v: reference to the irreducible representation 1"

n:indexrunningfromlupton,= T\ = va r
A :index running from 1 up to dim ("))
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= Magnetic scattering. Magnetic structure
factor. Determination of magnetic structures
using powder diffraction
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e Magnetic neutron sgﬂaw
1 ( ’
2 (Q)= 21yt (@ m- 2D pr(@)m,

=0.2696 1012 cm
f Q):jpm(r) exp(iQr) d°r

Only the perpendicular
component of m to Q=2rh
contributes to scattering

'~

1
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In the dipolar approximation:
Mn’: 3d° °D 5
10 Fms f (Q) =< Jo(Q) > +(1_§) < Jz(Q) >
N B
0.6 <ju>
<> International Tables of Crystallography,
041 Volume C,
. <>l ed. by AJC Wilson, Kluwer Ac. Pub.,
| 7 R 1998, p. 513
0.0 e
o 1 2 53 7 8
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Intensity (non-polarised neutrons)

Ih — NhN:_I_MJ_h °M1h

Magnetic interaction vector

M . =exM(h)xe=M(h)—e (e- M(h))

h — H + k < Scattering vector e =—
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Diffraction pattern of incommensurate magnetic structures

Portion of reciprocal space

@ O O ® : .

O. Q. O. Magnetic refle(.:tlons
O Nuclear reflections
O O O
h=H+k

O. OO O .\

® ® ® Magnetic reflections: indexed by a
O. O. O. set of propagation vectors {k}

H is a reciprocal vector of the crystallographic structure
Kk Is one of the propagation vectors of the magnetic structure
( K is reduced to the Brillouin zone)



e ‘ Magnetic structure of DyMn Geg l
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Conical structure with two propagation vectors

Nuclear contribution in blue



o Magnetic Powder. Diffracti
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Yei = Z 1. Q(T; —T,))+b
{h}

Ih — S(jLO)h Mm °M1h

Magnetic Interaction Vector: M,
Magnetic Structure Factor : M(h)

M., =exM(h)xe=M(h)—e (e-M(h))

h=H+Kk <« Scattering vector e :%




’ll The magnetic structuge. factor
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M(h)= p%oj f (h)TjZS: Sk exp{27zi [(H +k){S|t}. rj]}

J . index running for all magnetic atom sites in the magnetic
asymmetric unit (j =1,...n)

S . Index running for all atoms of the orbit corresponding to the
magnetic site  (s=1,... n;). Total number of atoms: N = X n;

{S \t}s Symmetry operators of the propagation vector group

Maximum number of parameters for a

general incommensurate structure: 6N



o Group Theory: Symmeicy Analysis
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Fourier coefficients as linear combinations of the
basis functions of the irreducible representation of
the propagation vector group G,

kjS ZC S::/; JS)

|

-~ pzn:Ojf h)T. ZC ZS (Js) exp{th r}
j=1




#dd The different ways of treating magnetic
S structures in-FullProf

(1) Standard Fourier (all kind of structures) coefficients refinement with
S, described with components along {a/a, b/b, c/c} (Jbt = 1,10),

or in spherical coordinates with respect to a Cartesian frame attached
to the unit cell (0bt = -1, -10).

(2) Time reversal operators, presently only for k=(0,0,0) (Jbt = 10 +
Magnetic symmetry keyword after the symbol of the SPG)

(3) Real space description of uni-axial conical structures (Jbt = 5)

(4) Real space description of multi-axial helical structures with elliptic
envelope (Jbt = -1, -10 + (More=1l & Hel = 2))

(5) Refinement of C; , coefficients in the expression: Sy, = ZC 2Sni (Js)
Jbt = 1 and Isy=-2



#4d The different ways of treating magnetic
NEUTRONS structures in-FullProf- = -
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(2) Time reversal operators, presently only for k=(0,0,0) (Jbt = 10 +
Magnetic symmetry keyword after the symbol of the space group)

Name : CuCr204

!
INat Dis Ang Prl Pr2 Pr3 rf Isy Str Furth ATZ pr More
3 0 0 0.0 0.01.0 0 0 1 0 611.77C 7 0

]

Fddd Magnetic symmetry below

! Time Reversal Operations on Crystal Space Group
1 -1 1-1 1

1Atom Typ Mag Vek X Y Z Biso Occ N type
Spc/
! Rx Ry Rz Ix Iy Iz MagPh / Line

below:Codes
! betall beta22 beta33 betal2 betal3 beta23 / Line below:Codes

Cu MCU2 1 0 0.12500 0.12500 0.12500 0.04112 0.12500 1 0
0.00 0.00 0.00 141.00 0.00

0.00000 -0.74340 0.00000 0.00000 0.00000 0.00000 0.00000 <-MagPar
0.00 191.00 0.00 0.00 0.00 0.00 0.00



#dd The different ways of treating magne'ric
FOR SOENCE structures in-£FullProf = -

Standard Fourier coefficients refinement:
A magnetic phase has Jbt = +/-1, +/-10

PO Seem (o (4-K)5H, 10,

The magnetic symmetry is introduced together with
explicit symmetry operators of the crystal structure.
The refined variables are directly the components of the

Skjs vectors. Not all components of Skjs are free (reason
of the phase factors) and a relation exist between Sy,

and S '
Kis Skjs =M js Skjlexp{_zmﬂq.}




#M standard Fourier components refinement

Ho2BaNiO5

INat Dis Mom Prl Pr2 Pr3,/Jb tr Furth
2 0 0 0.0 0.01.0 0 0

I -1

INsym Cen La

4
!
SYMM
MSYM
SYMM
MSYM
SYMM
MSYM
SYMM

MSYM
1

'Atom

!
Ho

1 1 1
g,z The symbol of the space group
B 0.0 is used for the generation of
u,v,w, 0.0 the parent reflections. In this
av o 0.0 case half reciprocal lattice is
gy generated
Typ Mag Vek X Y Z Biso Occ Rx Ry Rz
Ix Iy Iz betall beta22 beta33 MagPh
JHO3 1 0 0.50000 0.00000 0.20245 0.00000 0.50000 0.131 0.000 8.995

0.00 0.00 81.00 0.00 0.00 191.00 0.00 181.00

a b c alpha beta gamma

3.756032 5.734157 11.277159 90.000000 89.925171 90.000000

! Propagation vectors:
0.5000000 0.0000000 0.5000000 Propagation Vector 1
0.000000 0.000000 0.000000




#4¥ The different ways of treating magne'ric
FOR SCENCE structures in Ful/Prof

Coefficients of basis functions refinement:
A magnetic phase has Jbt = 1 and Isy=-2

= pzn:Oj f.(h)T. ZC Z SK(js) exp {Zﬂl[h r— @, }
=1

The basis functions of the Irreps (in kv
numerical form) are introduced together ZC Sni JS
with explicit symmetry operators of the

crystal structure.

The refined variables are directly the C %

coefficients C1, C2, C3,....
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Ho2BaNiO5
INat Dis Mom Prl Pr2 Pr3 Jb ‘ ATZ \ pr More
2 0 0.000 5 0
I -1 e—group symbol for hkl generaiidn
! Nsym Cen Laue Ireps N Bas
2 1 1 -1 2
! Real (0) -Imaginary(l) indicator for Ci
0O O
!
SYMM x,vy,z
BASR 1 0 O 0O 0 1
BAST 0O 0 O 0O 0 O
SYMM -x,y,-Z
BASR 1 0 O 0O 0 1
BAST 0O 0 O 0O 0 O
!
'Atom Typ Mag Vek X Y Z Biso Occ Cl1 Cc2 C3
! Cc4 C5 cé Cc7 Cc8 co MagPh

Ho JHO3 1 O 0.50000 0.00000 0.20250 0.00000 1.00000 0.127 8.993 0.000
0.00 0.00 81.00 0.00 0.00 71.00 181.00 0.00

! a b c alpha beta gamma
3.754163 5.729964 11.269387 90.000000 90.000000 90.000000
! Propagation vectors:
0.5000000 0.0000000 0.5000000 Propagation Vector 1



#4¥ Steps for magnetic structure determination

i using powder diffraction " -
, Peak positions of
Propagation vector(s) < magnetic reflections
k_Search Cell parameters
Symmetry Analysis Propagation vector
BasIreps, MODY, < Space Group
SARAhA Atom positions
Magnetic structure Integrated intensities
solution (Sim. Ann.) < Atomic components
FullProf of basis functions
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GUL for Baslreps.....

NEUTRONS
FOR SCIENCE
Baslreps Gui Interface
File Rum Results Help Exit
D= (=@ 2|8 2[w| x|
—8- Basireps (May-2004, JRC-LLB) :
Irreducible representations of Space Groups /\Norklng
: Basis functions of polar & axial vector propertie<-giell{Z94(]sY
Code of files ) ——
Code of files: |K'|'|:,
‘working Directons: |D:"-.D-:n:s'xEunferenn:esEDDE'\DrIandu_ﬁ.E.&'\Tﬁurial_KTbSF'l2 Browse. .. Space group
Title —>Title: |Magnetic structure of KTh3F12 / or generato s
Spacelroup [HiHall zpmbolz) || a4/ &~
ar generators separated by ' . .
. | Brillouin
k-vector > | Kiector  [1.00000 |0.00000 |0.00000 | Brilovin Zone Label: || <
Zone label
- alar Mecoor o #ial Wector
Axial/polar | /™ pslivect .
Hurnber of 'ﬂ't':'ﬂai. I_EE [ Explicit Sublattices [v Atoms in unit cell < Atoms In
Symbol ®/a wla 2/a Unlt CE“
Number of Atom #1 [Tb3+ 0.00000 0.00000 0.50000 ——
Atam # 2 Thd+ 0.00000 050000 025000 \
atoms | Ato_ms
positions




Nggg Output of BasIreps. ... .

FOR SCIENCE

Baslreps provides the basis functions (normal modes) of the
Irreducible representations
of the wave-vector group G,

My, = ZSkJSexp —Zﬂile}

kjS Z Cnﬂ,s ( JS)
Output of Baslreps = Basis Functions (constant vectors)

Syi (Js)
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NEUTRONS, ‘
o [=] 3
FQR SCJM % File Edit Actions Options ‘Window Help alilll
D& &| [rom =1 glal g o]~ s =|e)
====2 ;I

=> Atomic components of the BASIS FUNCTIONS using FPROJECTION OPERATORS:
Calculation for SITE number: 1
{Only non-null functions are written)

+++++++++H e
=> Basis functions of Representation IRrep( 1) of dimension 1 contained 3 times in GAMMA
+++++++++H e

SYMM X,¥.,Z -x+1l,-y,z2+1/2 x-1/2,-y+1/2,-= -x+1/2 ,yw+1/2,-=+1/2
Atoms: Mn 1 Mn 2 Mn 3 Mn 4
1:Re 1 0 0) ¢ -1 0 0) ¢ 1 0 0) ¢ -1 0 0)
2:Re 0 1 0y ¢ 0 -1 0y ¢ 0 -1 0) ¢ 0 1 Q)
3:Re ( 0 0 1) ¢ 0 0 1) ¢ 0 0 -1} 0 0 -1)

————— LINEAR COMBINATIONS of Basis Functions: coefficients u,v,w,p.q
General expressions of the Fourier coefficients ski{i) i=1,2,...nat

Fourier coefficient for SYMM xX,vy,=Z Atom: Mn 1 | 0.5000 0.0000 0.0000
Sk({ 1): (u, v, w)

Fourier coefficient for SYMM -x+1,-y,z+1l/2 Atom: Mn 2 0.5000 0.0000 0.5000
Sk( 2): (-u,-v, w )

Fourier coefficient for SYMM x-1/2,-y+1/2,-z Atom: Mq_3 0.0000 0.5000 0.0000
Sk( 3): ( u,-v,-w )

Fourier coefficient for SYMM -x+1/2,y+1/2,-z+1/2 Atom: Mn 4 0.0000 0.5000 0.5000
sk( 4): (-u, v,-w )

T o S o o S S o o O T S S S S e _ILI
4

[« |
| o =8 k|| EIE] & &kl ==

[ Line=437 | Col=63 [ Al=333 | Size=bzb | Files=3 | ‘Windows=3 |OWF |RAW [1253AM




V[ { Example of BasIreps output

NEUTRC g _ (O] x|
FOB SCI—EI c§| File Edit Actions Oprions  wWindow  Help _|E||5|
Dz | &| [rom = glal sl o] flEle)
=== ‘ ;I
X Y 2 for site: 1 [
-> Mn 1 : 0.5000 0.0000 0.0000 t o{x,v.E)
-> Mn 2 : 0.5000 0.0000 0.5000 p o (-x,-v,z+1/2) + (1 R ;0 )
—-> Mn 3 : 0.0000 0.5000 0.0000 : o {xHl/2,-yH1/2,-2z) + (-1 , O ;0 )
-> Mn 4 : 0.0000 0.5000 0.5000 : (-x+1/2,y+1/2,-z+1/2) + (O ;, 0 ;0 )

Representation number : 1 for Site: 1
Humber of basis functions: 3

————— Block-of-lines for PCR start just below this line
P -1 «<--Space group symbol for hkl generation
!' Hsym Cen Laue Ireps N _Bas
4 1 1 -1 3 f ” f
! Real (0) -Imaginary(l) indicator for Ci Format Or Fu Pro
0O 0 0O
SYMM x,vy,Z

BASR 1 0 0 0 1 0 k:(0,0,0),Vzl, n:1,2,3

BASI 0O 0 0 0O 0 0 0O 0 0 .
SYMM -x+1,-y,z+1/2 Z:]—’ J:]-’ 8:15213’4

BASR -1 O O 0 -1 0
BASI g 0 0 g 0 0 o 0 0
8YMM x-1/2,-y+1/2,-z

P( -
BASR 1 0 0 0 -1 0 V

BASI O 0 0O O 0 O O 0 0 S
SYMM -x41/2,y+1/2,-2z+1/2 nl

BASR -1 0 0 ©0 1 0 0 0 -1

BAST 0 0 0 0 0 0 0 0 0

KN

|| | W] k]| EE] & ok ==
[

[ LnesE [ Cal= A=000 | Size=107 | Files=2 | ‘Windows=2 |OWR [RAs [12:48 &M

=
=
[

=
=
[

=

=
|

[

a

=> Basis functions of Representation IRrep( 1) of dimension 1 contained 3 times in GAMMA
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Magnetic structure determination in
complex systems
Simulating Annealing (SAnn)




M gt is simulated An

FORSCIENCE.

Simulated Annealing:

The SA method is a general purpose optimisation technique
for large combinatorial problems introduced by:

Kirpatrick, Gelatt and Vecchi, Science 220, 671-680 (1983).
Minimize a cost function, energy E(w), with respect to
the configuration vector .

2aling?

Origin: Monte Carlo methods for simulating properties
of liquids (Metropolis algorithm)

Algorithm trying to mimic the process of annealing a sample to obtain
a good crystalline state (ground state):

A temperature schedule (starting high temperature + cooling rate)
IS needed.

Procedure to generate new configurations (Markov chains) and a
Boltzmann probability to explore the phase space (importance

sampling)



/[ § Simulated Annealing

AT R

4’; % 10 :ﬁ

The SA method applied to structural problems:

e J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal
and V. Caignaert, Nature 346, 343-345 (1990)

e J.M. Newsam, M.W. Deem and C.M. Freeman,
Accuracy in Powder Diffraction 1.
NIST Special Publ. No. 846, 80-91 (1992)

« J. Rodriguez-Carvajal, Physica B 192, 55-69 (1993)
(program MAGSAN)



NEUTRONS
FOR SCIENCE

Il sinulated Annealmg for magnehc_stgftur'es

Look directly for coefficients of the expansion:

Skjs = ZC:ASE{(J-S)
or components of Sknénd phases, explaining the
experimental data

Minimize a reliability factor with respect to the
“configuration vector”

mz\cl,cz,cg,c4,c5,...c >

CZ ‘Gobs h B falc (hr’m)‘
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FOR SCIENCE — e

The Simulated Annealing Algorithm

begin
Initialise (set to zero useful quantities, do preliminary calculations )
t=1
do
do
Perturb the system:
Wp1g > Dpews A:E(c‘)new)'E(c‘)old)
If A <0 then accept, else
if exp(-A/T,) > random[0,1] then accept
If accept then Update (replace wyy by @)

until equilibrium is approached closely enough )
T..1 = f(T,) (decrease temperature, usually T_.; =q T, q=0.9)
t=1+1

until stop criterion is true (maximum t, convergence, low % accepted...)
end
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FOR SCIENCE. —

‘ Simulated Annealing run of FullProf

il FullProf.2k_Multi_Pattern

FE 363 36 36 36 33 36 36 36 I 3636 36 33636 36 3 36336 I 363636 I 3636 I IE 6336 3636 336 36 3633 W

*% PROGEAM FullProf 2k (Version 2.40 - MavZ003-LLE JREC) ==
36 36 3 36 3 36 36 3 36 336 3 3 36 -3E 3536 36 336 3636 336 3 3636 3636 36 36 3 36 3E 3 36 36 3 3E 336 - 3E 36 36336 33 33
HMOTLTI —FATTEERH
Eietweld., Profile Matching & Integrated Inten=sity
Eefinement of X—ray and<or Neutron Data

(Multi Pattern: Windows—version)

]
R

St

=» START Date:10-.07-2003 Time =: 07:24:51.793
= HFeading control file = PCR
=» End of preliminary calculation=s |

= w*xxx SIMOLATED ANNEALING SEARCH FOR STARTIHG CONFIGURATION =*xx

= Initial configuration co=t: 40 .49

=r Initial configuration =state wector:
> Emom_HMnl EPhi_HMnl REPhi_Mnl EPhi_HMn:? EFhi_HMnZ

=3 1 2 3 4 5

= 2.314e 156 . 3578 152 2612 319.1841 73 4829

=» HT: 1 Temp: 10.00 (XAcc): 51.40 <Step::288 . 8000 <«<BE—-factor:: §53.

=» HT: 2 Temp: 9.00 (¥Ahcc): 47 .00 <Step::288.6956 <<R-factor:: &0.
» HT: 3 Temp: .10 (XAcc): 45.60 «Step::288.3760 «R-factor:: 45.
» HT: 4 Temnp: 7.29 (HAhcc): 3920 <Step::288.3134 <R-factor:>: 43.

=10l ]

BE33E6
6513
2823

Oe60 bl
r
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FOR SCIENCE .

R oS

Simulated Annealing run of FullProf

i FullProf.2k_Multi_Pattern

HT: 69 Temnp:
HT: 70 Temp:
HT: 71 Temp:
HT: 72 Temp:
HT: 73 Temp:

=
=
=
=
=

=:H

=r —» Configuration parameters |

=
=
=
=

=
=

=
=

KN

EST CONFIGU

Dol#¥: 1 RFZ

0.01 f
o.01 ¢
0.01 f
0.01 f
o.01 ¢

S
gl ol ol o

co) o 42 .40 <Stepr
o) 40 .60 <Step::
co) o 41 60 <Stepr:
o) 46 .60 <Stepr:
o) 35.80 <Stepr:

o
a
o
o
a

. 2036
L1972
1710
1551
.1404

{R—factor::
{R—factor::
{R—factor::
{R—factor::
{E—factor::

RATIONS FOUND BY Simulated Annealing FOR PHASE:

= 13.282

150 reflection=]):

Emom_Mnl EPhi_Mnl RPhi_Mnl RPhi_ MnZ? RPhi_Hn?

1
2.9250

END Date:
Data File=

FCR File

2

3 4

5

03,2323 324 .9417 217 .1961 144 8587

CPU Time:

10072003

— =imann
simann—t

42 510 =econds
0.810 minutes

Time => 07:25:40.413

=101 x|
3120 -
3079 B
13025
2982
2960
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Behavior of parameters in
Simulated Annealing runs

1.00 ‘*"1"'["1"'I"'I:’"‘I"'I"'I"'l"'l("‘l"'l"'l"'I"'I""1'"I"'I"'I'"I‘*"I"'I"'I"'I"':

osof T R - -

0.40 —<—Ph_Mn2a3

—=2—Ph_Mn2a4

~~

R

N

8 060}

S

N—r” 4
f ——©c—Ph_Mn2al 1
% —B=—Ph_Mn2a2

e

o

0.20 ¢

0.00 ....I....I....I....I....
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Average step ...
Corana algorithm

1.20 [T [ [ ' [ [ [

1.00 |

0.20 |

0.00 !



§4¥ Refinement of magnetic structures using

e neutron-powder diffraction™
Input
Magnetic structure Complete structural
Refinement < model should be
FullProf provided

Different runs of SAnn jobs may give you an idea of
the degeneracy of solutions for your particular problem.

In many cases the number of free parameters is too
much high to be refined by LSQ: try to reduce the
number of parameters or make soft constraints.

Use spherical components of Fourier coefficients in order to
have better control of the amplitude of the magnetic moment




