
Juan Rodríguez-Carvajal 
Institut Laue-Langevin 
Diffraction Group 

Introduction to Magnetic Structures 
 Symmetry, magnetic structure  

determination  



Outline 

  Description of magnetic structures. Fourier 
formalism and group representation analysis. 

 Magnetic structure factor. Determination of 
magnetic structures using powder diffraction 



Ions with intrinsic magnetic moments  

core 

Ni2+ 

Atoms/ions with unpaired electrons 

Intra-atomic electron correlation 

Hund’s rule: maximum S/J  

m = gJ J  (rare earths) 

m = gS S  (transition metals) 



What is a magnetic structure? 

Paramagnetic state:  

Snapshot of magnetic moment configuration 

Jij 

 S Sij ij i jE J  

0Si 



What is a magnetic structure?  

Ordered state: Anti-ferromagnetic  

Small fluctuations (spin waves) of the static configuration 

 S Sij ij i jE J  

Jij 
0Si 

Magnetic structure: 

Quasi-static configuration of magnetic moments 



Types of magnetic structures 

Ferro Antiferro 

Very often magnetic structures are complex due to :  
- competing exchange interactions (i.e. RKKY) 
- geometrical frustration 
- competition between exchange and single ion anisotropies 
-…………………….. 



Types of magnetic structures 

“Transverse” 

“Longitudinal” 

Amplitude-modulated or Spin-Density Waves 



Types of magnetic structures 

Spiral 

Cycloid 



Types of magnetic structures 

Conical 

The equivalent to crystallographic space groups 
in magnetic crystallography are the so called 
Shubnikov groups or Magnetic Space Groups 
 
Shubnikov groups are limited to: 
 
- Commensurate magnetic structures 
 

- Real representations of dimension 1 
 

(for higher dimensional representations it may exist 
different Shubnikov groups of a different symmetry family 
than that of the crystallographic group) 

 
For incommensurate magnetic structures superspace 
formalism is also an option. Conventional descriptions of 
superspace in magnetism is still lacking.  

 



Position of atom j in unit-

cell l is given by: 

 

 Rlj = Rl + rj  

 

where Rl is a pure lattice 

translation 

 

Formalism of propagation vectors 

Rl 

rj 

mlj 



 
 
 

k

k kRSm ljlj iexp 2


 jj kk- SS

Necessary condition for real mlj  
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Rl 
rj 
mlj 

Formalism of propagation vectors 



A magnetic structure is fully described by: 
 
- Wave-vector(s) or propagation vector(s) {k}. 
 

- Fourier components Skj for each magnetic atom j and k-vector  
  Skj is a complex vector (6 components) !!! 

 

Formalism of propagation vectors 



 
 
 

k

k kRSm ljsljs iexp 2


 jsjs kk- SSNecessary condition for real moments   mljs  

Formalism of propagation vectors: a more 
general formula 

l : index of a direct lattice point (origin of an arbitrary unit cell) 
j : index for a Wyckoff site (orbit) 
s: index of a sublattice of the j site 

General expression of the Fourier coefficients (complex vectors)  for 
an arbitrary site (drop of js indices ) when k and –k are not equivalent: 

1
( )exp{ 2 }

2
k k k kS R Ii i   

Only six parameters are independent. The writing above is convenient 
when relations between the vectors R and I  are established (e.g. when 
|R|=|I|, or R . I =0)  



 
 

2k k

k

m S kR Slj j l jexp i  

• The magnetic structure may be described within the  
   crystallographic unit cell 
•  Magnetic symmetry: conventional crystallography plus 
   spin reversal operator: crystallographic magnetic groups  

Single propagation vector k = (0,0,0) 



 
 

 
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2k k

k

m S k R S
n l

lj j l jexp i -1  

REAL Fourier coefficients  magnetic moments 
The magnetic symmetry may also be described using 
crystallographic magnetic space groups   

Single propagation vector k=1/2 H 



1
2

2
k kS uj j j jm exp( i )  

- k interior of the Brillouin zone (pair k, -k) 
 
- Real Sk, or imaginary component in the same 
direction as the real one 

2 2k -km S kR S kRlj j l j lexp( i ) exp( i )   

km u kRlj j j l jm cos2 ( )  

Fourier coefficients of sinusoidal structures 



1
2

2
k k

S u vj uj j vj j jm im exp( i )     

- k interior of the Brillouin zone 
- Real component of  Sk perpendicular to the 
imaginary component 

k km u kR v kRlj uj j l j vj j l jm cos2 ( ) m sin2 ( )      

Fourier coefficients of helical structures 



Centred cells! 

k=(1,0,0) or (0,1,0) ? 

 
 
 

k

k kRSm ljlj iexp 2
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The translation vectors have fractional components 
when using centred cells. The index j runs on the 
atoms contained in a PRIMITIVE cell 

The k vectors are 
referred to the reciprocal 
basis of the conventional 
direct cell and for centred 
cells may have values > 1/2 



 
 
 

k

k kRSm ljsljs iexp 2

Magnetic structures 
Magnetic moment of each atom: Fourier series 

The program FullProf Studio performs the above sum and 
represents graphically the magnetic structure. 
This program can help to learn about this formalism because 
the user can write manually the Fourier coefficients and see 
what is the corresponding magnetic structure immediately. 

Web site: http://www.ill.eu/sites/fullprof/ 



Introduction to Group representation theory 

A representation of a group is a set of matrices satisfying the same 
operation rules as the group elements 
 
 
 
Under the ordinary matrix product the given set constitutes an 
isomorphic group (preserves the multiplication table). 
 
A similarity transformation applied to all matrices provides an equivalent 
representation (the matrix U is generally unitary: U-1=U†). 
 
 
A particular group has an infinite number of representations of arbitrary 
dimensions. The most important representations are called “Irreducible 
Representations” (Irreps). An arbitrary representation may be reduced to 
“block-diagonal form” by an appropriate similarity transformation. Those 

representations that cannot be reduced are the Irreps.   

  1 2 1 2( ) | , ( ) ( ) ( )g g G g g g g       

 1( ) ( )g U g U with g G   



Group theory: Irreducible representations 

 1 1'( ) ( ) 'D g U D g U with g G U U     

 Irreducible representations 

Γ1 ={D'1(A),D'1(B),…} 

Γ2 = {D'2 (A), D'2 (B),…} 

Given the representation Γ={D(E),D(A),D(B)…} of the group 

G={E,A,B,…}, if we are able to find a similarity transformation U 

converting all matrices to the same block-diagonal form, we obtain 

an equivalent representation that can be decomposed as follows: 

1

1 2 3' ...

'

U U

n 






      

  



Formulas of the group representation theory 

( )
( ) ( )ij lm il jm

g G

n G
g g

l

 





  


  

We shall note the different irreducible representations with the 

index  and a symbol  that may be used also for matrices. The 

dimension of the representation  is l. The characters of a 

representation (traces of the matrices) will be represented as (g) 

 

The great orthogonality theorem: 

( ) ( ) ( )
g G

g g n G 

  



Particularized for the characters: 

*1
, ( ) ( )

( ) g G

n n g g
n G



  


 
 

    

Decomposition of a representation in Irreps: 



Basic functions of a representation   

1( ) ( ) ( ) '( )r r rO g g   

The elements of the symmetry groups act on position vectors. For 

each particular problem we can select a set of physically relevant 

variables i {i =1, 2, …p} spanning a working functional space W. 

These functions constitute a basis of the W space. 

When using the functions i (r), the action of the operator O(g) 

gives rise to a linear combination, defining a representation of the 

group G:  

The action of the operator associated to a symmetry operator when 

applied to a function of position vectors is defined by the 

expression: 

( ) ( ) '( ) ( ) ( )r r rj ij i

i

O g g    



Basic functions of irreducible representation   

If we take another basis  related to the initial one by a unitary 

transformation we may get the matrices of the  representation in 

block-diagonal form. 

1

( ) ( ) ( ) ( )r r
l

j ij i

i

O g g


 


 

( ) ( )r rj ij i

i

U 

The system of p -functions splits in subsystems defining 

irreducible subspaces of the working space W. If we take one 

of these subspaces (labelled ), the action of the operator O(g) 

on the basis functions is: 

Here the functions are restricted to those of the subspace  



Basis functions of Irreps: Projection operators 

Projection operators 

There is a way for obtaining the basis functions of the Irreps for the 

particular physical problem by applying the following projection 

operator formula: 

*

[ ]

1
( ) ( )

( )

( 1,... )

i i j

g G

P g O g
n G

i l

  



  


  





The result of the above operation is zero or a basis function of 

the corresponding Irrep. The index [j] is fixed, taking different 

values provide new basis functions or zero. 



Representations of the translation group (1) 

Representations of the translation group 
The translation group is Abelian so the Irreps are all one-dimensional. 

Considering the properties of the translation operators and the Born-Von Karman 

periodic boundary conditions the representation matrix (a single number equal to its 

character) is given by the expression: 
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1 1 2 2 3 3 1 2 3
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3 31 1 2 2

1 2 3
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   
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   
         

   

There are    representations labelled by the 

reciprocal space vector: 
1 2 3N N N N  

3 31 2 1 2
1 2 3

1 2 3 1 2 3

, ,k b b b
p pp p p p

N N N N N N

 
    
 



Representations of the translations group (2) 

The matrix of the representation k corresponding to the translation t is then: 

 3 31 1 2 2

1 2 3

( ) exp 2 exp 2k
t k t

p lp l p l
i i

N N N
 

   
        

   

 ( ) ( ) ( ) ( ) exp 2 ( )k k k k
t r t r k t rO i      

The basis functions of the group of translations must satisfy the equation: 

( ) ( )exp{2 }, ( ) ( )k

k k kr r kr r t ru i with u u   

The most general form for the functions              are the Bloch functions: ( )k
r

( ) ( ) ( ) ( )exp{2 ( }

exp{ 2 } ( )exp{2 } exp{ 2 } ( )

k k

k

k

k

t r r t r t k r t)

kt r k r kt r

O u i

i u i i

  

   

     

   

This is easily verified by applying the rules or the action of operators on 

functions  

Where the k vectors in reciprocal space are restricted to the first Brillouin Zone. 

It is clear that adding a reciprocal lattice vector H to k, does not change the matrix, 

so the vectors k’=H+k and k are equivalent. 









The star of the vector k and the little group 

The set of non-equivalent k vectors obtained by applying the rotational part of the 

symmetry operators of the space group constitute the so called “start of k”  

1 1 1 2 1 3 1 1 2{ } { , , , ,...} { , ,... }k k k k k k k k
kl

h h h 

The ki vectors are called the arms of the star. The number lk is less or equal to 

the order of the point group n(G0)  

The set of elements gG leaving the k vector invariant, or equal to an equivalent 

vector, form the group Gk. Called the group of the wave vector (or propagation 

vector group) or the “little group”. It is always a subgroup of G. The whole 

space/point group can be decomposed in cosets of the propagation vector group: 

2
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k k k

k k k
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k k

k
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l
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



    

    







The representations of Gk and G 

Let us note the irreducible representations of Gk as  k of dimensionality l .  

The basis functions should be of the form: i
k (r)=uki

 (r) exp(2ikr)  (i=1,… l) 

 

Under the action of the elements of Gk the functions transform into each other with 

the same k-vector.  

 

Using the elements of G not belonging to Gk one generates other sets of basis 

functions:   i
k

1
 (r); i

k
2
 (r); … i

k
L
 (r) that constitute the basis functions of the 

representations of the total space group.  

These representations are labelled by the star of the k vector as: {k} and are of 

dimensionality l lk . Each irreducible “small representation” induces an irreducible 

representation of the total space group. The induction formula is: 

1

{ } 1

, ( ) ( )
k

k k

L M
Li Mj ij L M g g g G

g g g g   




   The last symbol is 1 if the subscript 

condition is true, otherwise is zero 



The representations of Gk and G 

We need to know the Irreps of Gk k only for the coset representatives (with respect 

to the translation group) of Gk 

2

( ) ({ | }) ({1| }{ | }) ({1| }) ({ | })

({ | }) ({ | })

k k k k k

k k t k

t t t t t t

t t  t

h h h

i

h h

g h h h

h e h

    

  

        

   

2 31k nG g g g    

For a general element of Gk we have: 

The matrices k can be easily calculated from the projective (or loaded) 

representations that are tabulated in the Kovalev book 

2
( ) ({ | }) ( )

k tk k
t  hi

h projg h h e
   

    

Alternatively they can be calculated using special algorithms (Zak’s method) 



According to the Landau theory of phase transitions, it is expected 
that the configuration of the magnetic moments can be described in 
terms of the basis functions of the Irreps of the propagation 
vector group Gk (subgroup of the SG formed by those elements that 
leave k invariant). The Irreps of Gk are tabulated or can be calculated 
independently of the problem 

Group theory: Representation analysis 

,

,

... ( )n

jl im jl im

jl im

H J S S O S

 
 

 

But, knowing the classical Hamiltonian of the spin system, 
the ground state (magnetic structure at T= 0 K) should 
minimize the energy 

The symmetry of the Hamiltonian may be higher than the 
space group symmetry (e.g. isotropic exchange interactions) 



A reducible representation of the propagation vector group can be 
constructed by selecting the atoms of a Wyckoff position and applying 
the symmetry operators to both positions and axial vectors (spins).  
This gives rise to the so called Magnetic Representation of dimension: 
3na (being na the number of atoms in the primitive cell)  

Mag Perm Axial n 


     

This representation can be decomposed in Irreps and the number of 
times a particular Irreps,       , is included can be easily calculated  



Group Theory: Representation Analysis 

The basis functions, for each Irrep and each sublattice of a Wyckoff site, 
can be calculated by using the projection operator formula. The basis 
functions are constant vectors of the form (1,0,0), (0.5, 1,0) … with 
components referred to the crystallographic unitary frame: {a/a, b/b, c/c} 
attached to each sublattice. 



 k

k
S Sjs n n

n

C js 

 



The coefficients           are the free parameters of the 

magnetic structure (order parameters of the phase 

transition in the Landau theory) 

nC



Indices: 

k : reference to the propagation vector 

 : reference to the irreducible representation 

n : index running from 1 up to n   
 : index running from 1 up to  

Mag n 


  


dim( )

Relation of Fourier coefficients and basis 
functions of Irreps  

Fourier coeff. Basis vectors 
 



Outline 

  Description of magnetic structures. Fourier 
formalism and group representation analysis. 

  Magnetic scattering. Magnetic structure 
factor. Determination of magnetic structures 
using powder diffraction 



Magnetic neutron scattering 

   
 

 2

1

2

Q m Q
a Q Q m Q mM er f p f

Q
 

 
   

 

    3exp( )Q r Q r rmf i d 
m 

m 

Q=Q e 
Only the perpendicular 

component of m to Q=2h  

contributes to scattering 

p=0.2696 10-12 cm 



Magnetic form factor 

In the dipolar approximation: 

International Tables of Crystallography, 

Volume C, 

 ed. by AJC Wilson, Kluwer Ac. Pub., 

1998, p. 513 

 )()
2

1()()( 20 Qj
g

QjQf
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hhhhh MM   *NNI

hM e M(h) e M(h) e (e M(h))      

k Hh   Scattering vector 

Intensity (non-polarised neutrons) 

Magnetic interaction vector 

h
e

h


Magnetic Bragg scattering 



Magnetic reflections:   indexed  by a 

set of propagation vectors {k} 

H   is a reciprocal vector of the crystallographic structure 

k    is one of the propagation vectors of the magnetic structure  

     ( k is reduced to the Brillouin zone) 

h = H+k 

Portion of reciprocal space  

Magnetic reflections 

Nuclear reflections 

Diffraction pattern of incommensurate magnetic structures 



Nuclear contribution in blue 

Magnetic structure of DyMn6Ge6 

Conical structure with two propagation vectors 

k=(0,0,0) 

k= =(0,0,)=(0,0, 0.165) 



h
M e M(h) e M(h) e (e M(h))      

k Hh 
h

e
h



( )h h

{h}

ci i iy I T T b   

 Scattering vector 

( ) *

h h h hM MI S jLO   

Magnetic Interaction Vector: 

Magnetic Structure   Factor : 
h

M

M(h)

Magnetic Powder Diffraction 



       
1

2kM h h S H k t r
n

j j j js js
j s

p O f T exp i S


  
  

j :  index running for all magnetic atom sites in the magnetic 

asymmetric unit (j =1,…n ) 

s :  index running for all atoms of the orbit corresponding to the 

magnetic site j (s=1,… nj). Total number of atoms: N = Σ nj 

 t
s

S  Symmetry operators of the propagation vector group 

The magnetic structure factor 

Maximum number of parameters for a 
general incommensurate structure: 6N 



 js n n

n

C js 

 


 k

k
S S

Fourier coefficients as linear combinations of the 

basis functions of the irreducible representation of 

the propagation vector group Gk 
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n

j j j n n s j

j n s

p O f T C js exp i 

 






   

Group Theory: Symmetry Analysis 



The different ways of treating magnetic 
structures in FullProf 

 js n n

n

C js 

 


 k

k
S S

(1) Standard Fourier (all kind of structures) coefficients refinement with 
Sk described with components along {a/a, b/b, c/c} (Jbt = 1,10), 

or in spherical coordinates with respect to a Cartesian frame attached 
to the unit cell (Jbt = -1, -10). 

 
(2) Time reversal operators, presently only for k=(0,0,0) (Jbt = 10 + 

Magnetic symmetry keyword after the symbol of the SPG) 

 
(3) Real space description of uni-axial conical structures (Jbt = 5) 

 

(4) Real space description of multi-axial helical structures with elliptic  
envelope (Jbt = -1, -10 + (More=1 & Hel = 2)) 

 

(5) Refinement of        coefficients in the expression: nC



Jbt = 1 and Isy=-2 



The different ways of treating magnetic 
structures in FullProf 

 
(2) Time reversal operators, presently only for k=(0,0,0) (Jbt = 10 + 

  Magnetic symmetry keyword after the symbol of the space group) 
 

 

Name:CuCr2O4 

! 

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   3   0   0 0.0 0.0 1.0  10   0   0   1   0        611.770   0   7   0 

! 

F d d d              Magnetic symmetry below 

! Time Reversal Operations on Crystal Space Group 

  1 -1  1 -1  1 

!Atom   Typ    Mag Vek      X         Y         Z       Biso      Occ    N_type  

Spc/ 

!       Rx       Ry        Rz        Ix        Iy        Iz      MagPh  / Line 

below:Codes 

!      beta11   beta22   beta33   beta12   beta13   beta23  / Line below:Codes 

Cu     MCU2      1  0    0.12500   0.12500   0.12500   0.04112   0.12500    1    0 

                            0.00      0.00      0.00    141.00      0.00 

     0.00000  -0.74340   0.00000   0.00000   0.00000   0.00000   0.00000 <-MagPar 

        0.00    191.00      0.00      0.00      0.00      0.00      0.00 

 . . . . .  

 



       
1

2k kM h h S H k t r
n

j j j js j js
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p O f T exp i S


   
  

Standard Fourier coefficients refinement: 
A magnetic phase has Jbt = +/-1, +/-10 

The magnetic symmetry is introduced together with 

explicit symmetry operators of the crystal structure. 

The refined variables are directly the components of the 

Skjs vectors. Not all components of Skjs are free (reason 

of the phase factors) and a relation exist between Skj1 

and Skjs 

The different ways of treating magnetic 
structures in FullProf 
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Ho2BaNiO5 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   2   0   0 0.0 0.0 1.0   1  -1  -1   0   0          0.000   1   5   0 

I -1                     <-- Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   4   1   1   1              

! 

SYMM  x,y,z 

MSYM  u,v,w, 0.0 

SYMM  -x,y,-z 

MSYM  u,v,w, 0.0 

SYMM  -x,-y,-z 

MSYM  u,v,w, 0.0 

SYMM   x,-y, z 

MSYM  u,v,w, 0.0 

! 

!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      Rx      Ry      Rz 

!     Ix     Iy     Iz    beta11  beta22  beta33   MagPh 

Ho   JHO3  1  0  0.50000 0.00000 0.20245 0.00000 0.50000   0.131   0.000   8.995 

                    0.00    0.00   81.00    0.00    0.00  191.00    0.00  181.00 

. . . . . . . . . . . . . 

!     a          b         c        alpha      beta       gamma 

   3.756032   5.734157  11.277159  90.000000  89.925171  90.000000 

. . . . . . . . . . . . . 

! Propagation vectors: 

   0.5000000   0.0000000   0.5000000          Propagation Vector  1 

    0.000000    0.000000    0.000000  

Standard Fourier components refinement 

The symbol of the space group 
is used for the generation of 
the parent reflections. In this 
case half reciprocal lattice is 
generated 



Coefficients of basis functions refinement: 
A magnetic phase has Jbt = 1 and Isy=-2 

The basis functions of the Irreps (in 

numerical form) are introduced together 

with explicit symmetry operators of the 

crystal structure. 

The refined variables are directly the 

coefficients  C1, C2, C3, …. 
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The different ways of treating magnetic 
structures in FullProf 



Ho2BaNiO5    (Irep 3 from BasIreps) 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   2   0   0 0.0 0.0 1.0   1  -1  -2   0   0          0.000   1   5   0 

I -1                     <--Space group symbol for hkl generation 

! Nsym   Cen  Laue Ireps N_Bas 

     2     1     1    -1     2 

! Real(0)-Imaginary(1) indicator for Ci 

  0  0 

! 

SYMM x,y,z 

BASR   1  0  0    0  0  1 

BASI   0  0  0    0  0  0 

SYMM  -x,y,-z 

BASR   1  0  0    0  0  1 

BASI   0  0  0    0  0  0 

! 

!Atom Typ  Mag Vek    X      Y      Z       Biso   Occ      C1      C2      C3 

!     C4     C5     C6      C7      C8      C9     MagPh 

Ho    JHO3  1  0  0.50000 0.00000 0.20250 0.00000 1.00000   0.127   8.993   0.000 

                     0.00    0.00   81.00    0.00    0.00   71.00  181.00    0.00 

. . . . . . . . . . . . . . . .  

!     a          b         c        alpha      beta       gamma        

   3.754163   5.729964  11.269387  90.000000  90.000000  90.000000     

. . . . . . . . . . . . . . . . . . 

! Propagation vectors: 

   0.5000000   0.0000000   0.5000000          Propagation Vector  1 

   

Basis functions coefficients refinement 



Symmetry Analysis 
BasIreps, MODY, 

SARAh 

     Propagation vector 

 Space Group 

     Atom positions 

Magnetic structure 
solution (Sim. Ann.)  

FullProf 

     Integrated intensities 

 Atomic components 

     of basis functions 

Propagation vector(s) 
k_Search 

Step 

      Peak positions of  

  magnetic reflections 

      Cell parameters 

Input 

Steps for magnetic structure determination 
using powder diffraction 



Code of files 

Working  

directory 

Title 

Space group 

symbol  

or generators 

Brillouin 

Zone label  
k-vector 

Axial/polar 

Number of  

atoms 
Atoms 

positions 

Atoms in 

Unit Cell 

GUI for BasIreps 



BasIreps provides the basis functions (normal modes) of the 

irreducible representations  

of the wave-vector group Gk 
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Output of BasIreps  Basis Functions (constant vectors) 
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Output of BasIreps 



Example of BasIreps output 



k=(0,0,0), =1, n=1,2,3 

=1, j=1, s=1,2,3,4 

Format for FullProf 

 jsn





k
S

Example of BasIreps output 



Magnetic structure determination in 
complex systems 

Simulating Annealing (SAnn) 



 

 

 

 

 
Simulated Annealing:  
The SA method is a general purpose optimisation technique 
for large combinatorial problems introduced by: 

                   Kirpatrick, Gelatt and Vecchi, Science 220, 671-680 (1983).  

Minimize a cost function, energy E(), with respect to 

the configuration vector . 

Origin: Monte Carlo methods for simulating properties 
of liquids (Metropolis algorithm) 

Algorithm trying to mimic the process of annealing a sample to obtain 

a good crystalline state (ground state):  

A temperature schedule (starting high temperature + cooling rate) 

is needed. 

Procedure to generate new configurations (Markov chains) and a 

Boltzmann probability to explore the phase space (importance 

sampling)  

What is Simulated Annealing? 



The SA method applied to structural problems: 

 

• J. Pannetier, J. Bassas-Alsina, J. Rodríguez-Carvajal 

  and V. Caignaert, Nature 346, 343-345 (1990) 

 

• J.M. Newsam, M.W. Deem and C.M. Freeman,  

  Accuracy in Powder Diffraction II.  

  NIST Special Publ. No. 846, 80-91 (1992) 
 

• J. Rodríguez-Carvajal, Physica B 192, 55-69 (1993) 
   (program MAGSAN) 

   

Simulated Annealing  



 

 

 

 

 
Look directly for coefficients of the expansion:  

 

or components of Sk and phases, explaining the 
experimental data 

•Minimize a reliability factor with respect to the     
“configuration vector” 
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Simulated Annealing for magnetic structures 



begin 

 Initialise (set to zero useful quantities, do preliminary calculations ) 

 t = 1 

 do 

  do 

     Perturb the system: 

    old  new, D=E(new)-E(old) 

    if D  0 then accept, else 

    if exp(-D/t) > random[0,1] then accept 

    if accept then Update (replace old by new) 

  until equilibrium is approached closely enough (Ncyc) 

  Tt1 = f(Tt) (decrease temperature, usually Tt1 = q Tt, q0.9) 

  t = t + 1 

 until stop criterion is true (maximum t, convergence, low % accepted...) 

end 

The Simulated Annealing Algorithm 



Simulated Annealing run of FullProf  



Simulated Annealing run of FullProf  
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Magnetic structure 
Refinement  
FullProf 

      Complete structural  
  model should be 
    provided 

Input 

In many cases the number of free parameters is too 
much high to be refined by LSQ: try to reduce the 
number of parameters or make soft constraints. 

Use spherical components of Fourier coefficients in order to 
have better control of the amplitude of the magnetic moment 

Different runs of SAnn jobs may give you an idea of 
the degeneracy of solutions for your particular problem. 

Refinement of magnetic structures using 
neutron powder diffraction 


