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Wilhelm Conrad Röntgen 1845-1923 

1895: Discovery of   

           X-Rays  



1901 W. C. Röntgen in Physics for the discovery of x-rays.  

1914 M. von Laue in Physics for x-ray diffraction from crystals.  

1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination. 

1917 C. G. Barkla in Physics for characteristic radiation of elements.  

1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy.  

1927 A. H. Compton in Physics for scattering of x-rays by electrons.  

1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.  

1962 M. Perutz and J. Kendrew in Chemistry for the structure of hemoglobin.  

1962 J. Watson, M. Wilkins, and F. Crick in Medicine for the structure of DNA.  

1979 A. McLeod Cormack and G. Newbold Hounsfield in Medicine for computed axial  

         tomography.  

1981 K. M. Siegbahn in Physics for high resolution electron spectroscopy.  

1985 H. Hauptman and J. Karle in Chemistry for direct methods to determine  

         x-ray structures.  

1988 J. Deisenhofer, R. Huber, and H. Michel in Chemistry for the structures 

         of proteins that are crucial to photosynthesis.  

2006 R. Kornberg in Chemistry for studies of the molecular basis of eukaryotic    

         transcription. 

2009 V.Ramakrishnan, T.A.Steitz and A.E.Yonath for studies of the structure and  

         function of the ribosome. 

 

Nobel Prizes for Research 

with X-Rays 







q~2π/length 

NSE                 FRET                      NMR 

0.5-50 nm length scale  

ps - µs time scale 

orientational average 

fixed defined position 

> µs timescale ps - ms timescale 

small proteins 

phosphoglycerate kinase  

dye 

dye 

Functional domain dynamics in proteins 



Neutron Advantages 

• Penetrating, but does no damage to sample 

• H/D contrast matching can be used to study 

macromolecules in solution, polymers, etc. 

• Strongly interacts with magnetic moments 

• Energies match those of phonons, magnons,rotons, 

etc.  



Awarded for “pioneering contributions to the development  
of neutron scattering techniques for studies of condensed matter”  

Nobel Prize in Physics, 1994 

Bertram N. Brockhouse Clifford G. Shull 

Development of  
neutron spectroscopy 

Development of the  
neutron diffraction technique 





Antiferromagnetic Structure of MnO 

(Shull and Wollan Phys. Rev. 83, 333 (1951) 

First Study of an Antiferromagnetic Structure  



Magnetic Structure of the Rare Earth Metals  
(W.C. Koehler (1965)) 



Science with X-Rays 

• Diffraction and crystal structures 

• Structure Factors of liquids and glasses 

• Structures of Thin Films 

• ARPES  

• EXAFS, XANES 

• Studies of Magnetism with resonant XMS 

• Inelastic X-ray scattering: phonons, electronic excitations 

• X-ray Photon Correlation Spectroscopy  

• Microscopy 

• Imaging/Tomography 



Why 

Synchrotron- 

radiation ? 

Intensity !!! 





• D.C. Phillips presents the  

   3-D structure of lysozyme  

   to the Royal Society in 1965 

 

 

• Linear polypeptide chain  

 

 

• Folded model of the same  
amino acid sequence 

 

 

•  July 2009: 
 58,588 structures in 

    Protein Data Bank 

A single protein structure used to be the project of a scientific lifetime 

 

      Synchrotron Radiation -  8301 structures solved in 2009 

Example 1: X-Ray Diffraction & structural biology 



Advantages of Neutrons and X-Rays 

 

• Penetrating/ Non Destructive N (X) 

• Right wavelength/energy  N,X 

• Magnetic probe N,X 

• Contrast matching N 

• Weakly interacting-Born approxn. N,X 

• Global Statistical information N,X 

• Buried Interfaces—depth dependence N,X 

 



Neutron and X-ray Scattering: 

“small” science at  big 

facilities! 



Historic accomplishments (Neutrons) 

 

 

•Antiferromagnetic Structures 

•Rare earth spirals and other spin structures  

•Spin wave dispersion 

•Our whole understanding of the details of exchange                       
interactions in solids 

•Magnetism and Superconductivity 

•Phonon dispersion curves in crystals; quantum crystals and               
anharmonicity 

•Crystal fields 

•Excitations in normal liquids 

•Rotons in superfluid helium 

•Condensate fraction in helium 



Recent Applications 

• Quantum Phase Transitions and Critical points 

• Magnetic order and magnetic fluctuations in the high-Tc cuprates 

• Gaps and low-lying excitations (including phonons) in High-Tc 

• Magnetic Order and spin fluctuations in highly-correlated systems 

• Manganites 

• Magnetic nanodot/antidot arrays 

• Exchange bias  

 



Applications in Soft Matter and 

Materials 

• Scaling Theory of polymers 

• Reptation in Polymers 

• Alpha and beta relaxation in glasses 

• Structures of surfactants and membranes 

• Structure of Ribozome 

• Excitations and Phase transitions in confined Systems (phase 
separation in Vycor glass; Ripplons in superfluid He films, etc.)  

• Momentum Distributions 

• Materials—precipitates, steels, cement, etc. 

 



Recent Applications (contd.) 

• Proton motion in carbon nanotubes 

• Protein dynamics 

• Glass transition in polymer films 

• Protonation states in biological macromolecules from 

nuclear density maps 

• Studies of protein diffusive motion in hydrated enzymes 

• Boson peaks in glasses 

• Phase diagrams of surfactants 

• Lipid membranes 



Applications of Surface/Interface 

Scattering 
• study the morphology of surface and interface roughness  

• wetting films 

• film growth exponents 

•  capillary waves on liquid surfaces (polymers, microemulsions, liquid 
metals, etc.) 

• islands on block copolymer films 

• pitting corrosion 

• magnetic roughness  

• study the morphology of magnetic domains in magnetic films. 

• Nanodot arrays 

• Tribology, Adhesion, Electrodeposition 

 



X-rays and neutrons are 

complementary to SPM’s 

• Yield GLOBAL statistical properties about 
assemblies of particles 

• Can be used to study BURIED interfaces or 
particles  

• Impervious to sample environmental 
conditions, magnetic fields, etc. 

• Can also be used to study single 
nanoparticles ( synchrotron nanoprobe) 



S.R. and neutron based research 

can help us to understand: 

• How the constituent molecules self-

assemble to form nanoparticles. 

• How these self-organize into assemblies 

• How structure and dynamics lead to 

function 

• How emergent or collective properties arise  





Brightness & Fluxes for Neutron & 

X-Ray Sources 
Brightness 
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Synchrotron- 

and Neutron 

Scattering  

Places 





The photon also has wave and 

particle properties 
   E=h =hc/ = hck 

   Charge = 0         Magnetic Moment = 0 

   Spin = 1                            

             E  (keV)                (Å) 

               0.8                      15.0 

               8.0                      1.5 

              40.0                      0.3 

             100.0                     0.125  

 













Intrinsic Cross Section: Neutrons 





Intrinsic Cross Section: 

X-Rays 
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Adding up phases at the detector of the 

 wavelets scattered from all the scattering 

centers in the sample: 



        q  =    kf  -  ki 

Wave vector transfer  is defined as 







X-rays 

 

d   =  r0
21 + Cos2(2) S(q) 

d                  2 

 

S(q) =  ij exp[-iq.(ri-rj)] 

 

{ri} == electron positions. 

 



  

Now, i exp[-iq.Ri]  =  N(q)   Fourier Transform of nuclear density   

[ sometimes also referred to as F(q) ] 

 

Proof: 

 

N(r) = i ( r - Ri) 

 

N(q) = ∫ N(r) exp[-iq.r] dr  = ∫  i ( r - Ri) exp[-iq.r] dr  

 

         = i exp[-iq.Ri]  

 

Similarly,  

 

i exp[-iq.ri]  =  el(q)   Fourier Transform of electron density 

 

So, for neutrons,  S(q) =    N(q) N
*(q)  

 

And, for x-rays, S(q) =    el(q) el
*(q)  

 

   

 

 

   



H has large incoherent  ( 10.2 x 10-24 cm2) 

 

  but small coherent  ( 1.8 x 10-24 cm2) 

 

D has larger coherent  ( 5.6 x 10-24 cm2) 

 

and small incoherent  ( 2.0 x 10-24 cm2) 

 

C, O have completely coherent ’s 

 

V is almost completely incoherent (coh ~ 0.02 x10-24 

cm2 ; incoh ~ 5.0 x10-24 cm2) 













Neutrons 

 

I(q) = d/d  = ∑K,K  bK bK S K K(q)  

 

 

X-Rays 

 

I(q) = ∑K,K (r0)
2 ZK ZK fK(q) f*K (q) [ (1 + cos2())/2] S K K(q)  

 

(K, K =   Different Atomic Species) 

 

S K K(q) = ∑l(K),m(K)exp{-i q.[R l(K) - R m(K)]} ---> Partial  

 

Structure Factor  

 

These can be unscrambled by simultaneous measurement of 

 

d/d for neutrons with different isotopes and/or X-rays. 

 

 

 

 

 



Diffraction from Crystals 

























qx

qy

qz























(S = 6) Ds = Surface fractal dimension. 

 If Ds =2,  S(q) ~ 1/q4 (Porod’s Law for 

smooth internal surfaces) 

If 2 < Ds < 3,  S(q) ~ 1/qn where 3< n <4  



ki 

kf q qz 

qx 

Scattering Geometry & Notation 

Wave-Vector:  q = kf – ki  

Reflectivity: 

qx= qy = 0 

qz= (4)sini  



Reflection of Visible Light 



Perfect & Imperfect „Mirrors“ 



Basic Equation: X-Rays 

 Helmholtz-Equation & Boundary Conditions             

2 E( r ) + k2 n2( r ) E ( r ) = 0 



 magnetic 

   part + 

 magnetic 

   part + 

Dispersion 
Absorption Minus!! 

Refractive Index: X-Rays & Neutrons 



Derivation of n for neutrons: 

 

Consider Schrodinger Eqn.  

 

 -(ћ2/2m)2 + (V -E)  =  0    E = (ћ2/2m)k0
2 

 

can be written: 

 

2 +[1 - (2m/ћ2 k0
2)V] k0

2  =  0 

 

V= (2ћ2/m)b N;         k0 = 2/ 

 

so: 

 

n2 = (1 - (2m/ћ2 k0
2)V) =  1 - (2b/) N 

 

2nd term <<1, so  n = 1 - (2b/2) N 

 

 

 



Electron Density 

Profile ! 

Refractive Index: X-Rays 

E = 8 keV        = 1.54 Å 



Reflected 

Amplitude 

Transmitted 

Amplitude 

Wave- 

Vectors 

Single Interface: Vacuum/Matter 

Fresnel- 

Formulae 



 cos i  (1– ) cos t  t=0 
Critical Angle: 

c  2 ~ 0.3° 

GRAZING ANGLES !!! 

Total External Reflection 



Total External  

Reflection 

Regime 

Fresnel Reflectivity:  RF(i) 



 

Reformulation for Interfaces 

The „Master Formula“ 

Electron Density Profile 

Fresnel-Reflectivity 

of the Substrate 



j  10 Å 

  1.54 Å 

Roughness Damps Reflectivity 
R(qz) = RFexp(-qz

22) 

 



Braslau et al. 

PRL 54, 114 (1985) 

Fresnel Reflectivity 

Measurement 

X-Ray Reflectivity: 

Water Surface 

Difference  

Experiment- 

Theory: 

Roughness !! 



Slicing of Density Profile 

 ~ 1Å 

Slicing 

& 

Parratt-Iteration 

Reflectivity 

from  

Arbitrary 

Profiles ! 

• Drawback: 

   Numerical Effort ! 

Calculation of Reflectivity 



Example: PS Film on Si/SiO2 

X-Ray Reflectivity (NSLS) 

  1.19Å    d  109Å 

Data & Fit  

Density Profile 



Grazing-Incidence-Diffraction 



ki 

kf Q Qz 

Qx 

Scattering Geometry & Notation 

Wave-Vector:  Q = kf – ki  

Reflectivity: 

Qx= Qy = 0 

Qz= (4)sini  



What do Specular and Off-

specular scattering measure? 

• Specular reflectivity measures variations 

in scattering density normal to surface 

(averaged over x,y plane) 

• Off-specular scattering measures (x,y) 

variations of scattering density, e.g. due to 

roughness, magnetic domains, etc. 



Almost all real surfaces are 

rough! 



Self-Affine Fractal Surfaces 

Let z(r) be height fluctuation about average 

surface at point r in 2D plane.  

R.m.s. roughness  is defined by  

2 =  [z(r)]2  

Consider quantity 

    G(R) =   [z(r) - z(r+R)]2 . 

For self-affine surfaces, 

   G(R) = AR2h        0<h<1   

h is called the roughness exponent. 

For real surfaces, there must be a cutoff length . 

  G(R) = 22( 1 - exp(-[R/ ]2h) 

This implies that the height-height correlation 

function 

C(R)= z(r)z(r+R) = 2exp(-[R/ ]2h 



AFM/FIB Studies-Electrodeposition 
M.C. Lafouresse et al., PRL 98, 236101 (2007) 

Cu Films 



Scattering from a Self-Affine 

Fractal Surface 

 
 

S(q
r
)  (Ar0

2 / qz
2 )e

qz
2 2

dXdYe
qz

2C(R)

e
i(qxXqyY )

SKS et al., Phys. Rev. B 38, 2297 (1988)  



Jun Wang et 

al., 

Europhys. 

Lett, 42 

 283-288 

 (1998) 

Mo layers 



Example of Diffuse Scattering of X-Rays 

from a single rough surface 



Multilayers 



Vector Diagram for Q in GISAXS 

Qy = (2/)Cos fSin  

 

Qx = (2/)(Cos f -Cos 1Cos ) 



Measurement of GISAXS 



X-Ray Reflectometers 

Laboratory 

Setup 

HASYLAB: CEMO 

Synchrotron 

Setup 



Synchrotron 

Setup (APS) 

Reflectivity from Liquids I 



























Magnetic Neutron Scattering 



Core level resonances 

2p3/2

2p1/2

EF

spin polarized
3d bands

e0

ef

f = f1 + if2 

Fe 

Kortright et al., Phys. Rev. B 65, 12216 (2000) 



NEUTRONS: 

 

R+ +( Qz) - R- - (Qz)        ~    M xy, (Qz) n (Qz)  

 

R + - (Qz)  =  R - + (Qz)  ~   M xy, (Qz) 
2 

 

 

X-RAYS: 

 

R+ ( Qz) - R-  (Qz)        ~    M  (Qz) n (Qz) 
 

 

 



l = 2  D  

    = (D )-1 

t =   R  s         

(hor., vert.) 
 

Coherence Lengths 



Photon Correlation Spectroscopy� 

QuickTime™ and a
Video decompressor

are needed to see this picture.

Brownian Motion of 100 particles 

QuickTime™ and a
Video decompressor

are needed to see this picture.

Speckles 

Intensity-intensity auto correlation 
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Diffraction Pattern 

QuickTime™ and a
Video decompressor

are needed to see this picture.



Photon Correlation Spectroscopy

sample detector
coherent

beam

X-ray speckle pattern from a static silica aerogel
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Finer sampling; 
larger array;  
smaller transform; 
“finite support” 
 
(area around specimen 
must be clear!) 

“Oversampling”: 
 
Non-crystals:  
pattern continuous, 
can do finer sampling 
of intensity 
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Reconstruction 

Equations can still not be solved analytically 

    Fienup iterative algorithm 
Reciprocal space      Real space  

•Positivity of 
electron 
density helps! 
 

Impose  
diffraction 
magnitudes 

Impose 
finite  
support 
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DIFFRACTION IMAGING BY J. MIAO ET AL 

• From Miao, Ishikawa, Johnson, 

Anderson, Lai, Hodgson PRL 

Aug 2002 

• SEM image of a 3-D  Ni 

microfabricated object with two 

levels 1 µm apart  

• Only top level shows to useful 

extent 

 
• Diffraction pattern taken at 

2 Å wavelength at SPring 8 

 

• 2-D reconstruction with 

Fienup-type algorithm 

• Both levels show because 

the depth of focus is 

sufficient 

• Resolution = 8 nm (new 

record) 



• Miao et al 3-D 

reconstruction of the 

same object pair 

• a and b are sections 

through the image 

• c is 3-D density 

• Resolution = 55 nm 

MIAO ET AL 3-D RECONSTRUCTIONS 



Imaging of individual nanoparticles at the APS 

I.K. Robinson, et al., Science 298 2177 (2003) 

170 nm silver cubes 

Coherent diffraction pattern 

from 170 nm Ag particle 

inversion of  

diffraction pattern 

‘lensless imaging’ 

Ross Harder, University of Illinois, Champaign 




















