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Incoherent and Coherent Scattering
• Origin incoherent scattering arises when there is a random variability in the • Origin – incoherent scattering arises when there is a random variability in the 

scattering lengths of atoms in your sample – can arise from the presence of 
different isotopes or from isotopes with non-zero nuclear spin combined with 
variation in the relative orientation of the neutron spin with the nuclear spin of 
the scattering center

• Coherent scattering – gives information on spatial correlations and collective
motion.
– Elastic: Where are the atoms? What are the shape of objects? 
– Inelastic: What is the excitation spectrum in crystalline materials – e.g. phonons? 

• Incoherent scattering gives information on single particles• Incoherent scattering – gives information on single-particles.
– Elastic: Debye-Waller factor, # H-atoms in sample, Elastic Incoherent Structure 

Factor – geometry of diffusive motion (continuous, jump, rotations) 
Inelastic:  diffusive dynamics  diffusion coefficients– Inelastic:  diffusive dynamics, diffusion coefficients.

• Good basic discussion: 
– “Methods of x-ray and neutron scattering in polymer science”, R.-J. Roe, Oxford 

U i it  P  ( il bl )
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University Press. (available)
– “Theory of Thermal Neutron Scattering”, W. Marshall and S. W. Lovesey, Oxford 

University Press (1971). (out of print)



Neutron Properties – H is our friend!

• Isotopic sensitivity of HIsotopic sensitivity of H
– H has a large incoherent neutron scattering cross-section
– H and D have opposite signed scattering lengths
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– Uncharged – penetrates deeply into materials
– unpaired electrons in matter (dipole-dipole scattering)



Quasi-elastic Neutron Scattering (Why 
Should I Care?)
A li bl  t  id   f i  • Applicable to wide range of science areas
– Biology – dynamic transition in proteins, hydration water
– Chemistry – complex fluids, ionic liquids, porous media, surface 

i t ti  t  t i t f  linteractions, water at interfaces, clays
– Materials science – hydrogen storage, fuel cells, polymers

• Probes true “diffusive” motions
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A Neutron Experiment
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 near 0  quasielastic



Quasi-Elastic Neutron 
Scattering • Neutron exchanges small amount of energy g gy

with atoms in the sample
• Harmonic motions look like flat background
• Vibrations are often treated as Inelastic • Vibrations are often treated as Inelastic 

Debye-Waller Factor
• Maximum of intensity is always at = 0

S l  h   f i  l  Q• Samples the component of motion along Q
• Low-Q – typically less than 5 Å-1

fk fk
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Experiment Design

•  is the microscopic cross section (bn/atom) 10-24 cm2

• n is the number density (atom/cm3)n is the number density (atom/cm )
•  is the macroscopic cross-section (cm-1)

n
The transmission, T, depends on sample thickness, t, as:

n

• Good rule of thumb is T = 0 9

 tT  exp
Good rule of thumb is T = 0.9

5 – 15 mmole H-atoms for 10 cm2 beam 
(BaSiS  HFBS  CNCS  DCS)
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(BaSiS, HFBS, CNCS, DCS)



An Example – Water

2223 1034.31002.6mole1gm1 



n 33 cmmolegm18cm
n

224 cm10802  cm10802

cm
34.5

 n
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QENS Spectra
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Incoherent Intermediate Scattering 
Function, S(Q,), and Molecular , ( , ),
Dynamics Simulations
• Intermediate Scattering Functiong

– time dependent correlation function
– incoherent scattering –> no pair correlations, self-correlation function

l l bl  f  t i  di t  i   M l l  D i  Si l ti– calculable from atomic coordinates in a Molecular Dynamics Simulation

         ititI 0expexp1 RQRQQ

– S (Q ) – the Fourier transform of I (Q t)

        
i

iiinc iti
N

tI 0expexp, RQRQQ

– Sinc(Q,) – the Fourier transform of Iinc(Q,t)

     dttitIS ii  


exp)1 QQ
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QENS and Molecular Dynamics 
Simulations

• Same atomic coordinates used in classical MD are all that is needed 
to calculate Iinc(Q,t)to calculate Iinc(Q,t)

1,3 diphenylpropane 
tethered to the pore 
surface of MCM-41surface of MCM 41
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The Elastic Incoherent Structure Factor 
(EISF)
• A particle (H-atom) moves out of 

volume defined by 2/Q in a time 
shorter than set by the reciprocal of shorter than set by the reciprocal of 
the instrument sensitivity, d(meV) 
– gives rise to quasielastic 
broadening. g

• The EISF is essentially the 
probability that a particle can be 
found in the same volume of space p
at some subsequent time.

• The ratio of the Elastic Intensity to 
the total Intensity 2 /Qthe total Intensity 2/Q
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QENS and Neutron Scattering 
Instruments

• Probe Diffusive Motions
– Length scales set by Q, 0.1 Å-1 < Q < 3.7 Å-1, 60 Å > d > 1.7 Å.

Ti  l  t b  th  idth f i t t  l ti  t i ll  t l t 0 1 V (f h )  – Time scales set by the width of instrument energy resolution, typically at least 0.1 meV (fwhm)  
but higher resolution -> longer times/slower motion

• Energy transfers ~ ± 2 meV (or less)
– High resolution requirements emphasizes use of cold neutrons (but long  limits Q)
– Incident neutron wavelengths typically 4 Å to 12 Å (5.1 meV to 0.6 meV)

Why a variety of instruments? (Resolutions vary from 1 eV to100 eV)• Why a variety of instruments? (Resolutions vary from 1 eV to100 eV)
– Terms in the resolution add in quadrature – typically primary spectrometer (before sample), 

secondary spectrometer (after the sample)
I t i  h l ti  t  t li l  i  t  fl  (id ll )– Improvement in each resolution term cost linearly in neutron flux (ideally)

– Optimized instrument has primary and secondary spectrometer contributions approximately 
equal
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– Factor of 2 gain in resolution costs at a minimum a factor of 4 in flux



Role of Instrumentation
• Currently about 25 neutron scattering instruments in the world useful for QNS Currently about 25 neutron scattering instruments in the world useful for QNS 

(approximately 5 in the U. S.)
• U.S. instruments – Opportunity is Good- Competition is Strong

– NIST Center for Neutron Research
• Disc Chopper Spectrometer
• High Flux Backscattering Spectrometer
• Neutron Spin Echo

Lujan Los Alamos National Laboratory– Lujan – Los Alamos National Laboratory
• Rebuild of QENS instrument from IPNS

– Spallation Neutron Source
• BaSiS – near backscattering spectrometer (3 eV)
• Cold Neutron Chopper Spectrometer (CNCS) (10 – 100 eV)
• Neutron Spin Echo (t to 1-2 sec)

• Trade-offs
– Resolution/count rate
– Flexibility
– Dynamic range

N t    Q
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– Neutron  vs Q
• large   high resolution -> long times/slow motions
• large limited Q-range, limited length scales



The High-Resolution Neutron 
Spectrometer Landscape

Backscattering

Small Molecule Diffusion

Cold Neutron Chopper
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BaSiS - SNS Near Backscattering
Spectrometer
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Restricted Diffusion – Tethered Molecules
S l i l 0Samples – typical 0.7 g 

240 K < T < 340 K

Simple Fit – Lorentzian + 

Pore Radius 
(nm)

Coverage 
(molecules/nm2)

1 63 0 85 (saturation)

Simple Fit Lorentzian  

1.63 0.85 (saturation)
2.12 1.04 (saturation)

2 96
0.60
0 752.96 0.75

1.61 (saturation)
MCM-41 (2.9 nm pore diameter) 
high DPP coverage
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Elastic Scans – Fixed Window Scans

Coverage Dependence Pore Size Dependence

     3exp0 22 uQIQI 

Onset of diff si e and Onset of diffusive and 
anharmonic motion
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What if I don’t have Molecular 
Dynamics or other Theory? 
Simple Analytical Model e g  

2r

Simple Analytical Model – e.g. 
Diffusion in a Sphere
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Volino and Dianoux, Mol. Phys. 41, 271-279 (1980).



Extend to a Sum over Spheres of 
Varying Size (15 H-atoms)y g ( )
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Si OSi O
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   QAQEISF 



Fit to data (HFBS – NCNR) 29.6 Å 
diameter pore, 320 K, Q = 1 Å-1

-1
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EISF – 29.6 Å radius DPP sample, 
saturation

Non zero asymptote f

Curvature determines Rmax

Non-zero asymptote 
implies immobile H-
atoms (on the time 
scale of this 

fm

instrument)

1-fm
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29.6 Å radius DPP sample, saturation
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Lorentzian (Q)

Non zero interceptNon-zero intercept
Implies 
restricted/confined 
diffusion
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DPP – 29.6 Å diameter pores – 370 K 
(BaSiS - SNS) – Beyond the EISF – Fitting 
the Model to the Full Data Set
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Detailed Fits
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Example 2: Dendrimers – Colloidal 
Polymer – pH responsive

Dendrimers bind to receptors on HIV virus 
preventing infection of T cells. Sharpharpm
C & E News 83, 30 (2005)

“Trojan horse” – folic acid adsorbed by 
cancer cell delivering the anti-cancer drug 
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as well 
James R. Baker Jr., Univ. of Michigan Health 
Sciences Press Release



SANS Results – Global Size Constant, 
Redistribution of Mass

Samples: 0.05 gm protonated
dendrimer in 1 ml deuterateddendrimer in 1 ml deuterated
solvent

Molecular Dynamics Simulations
AcidicBasic
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Methodology
• Determine center-of-mass translational motion with pulsed Determine center-of-mass translational motion with pulsed 

field-gradient spin echo NMR
– Could have been determined directly from QENS measurement but 

this tied down parameter setthis tied down parameter set
• Measure (dendrimer + deuterated solvent) – (deuterated

solvent) -> dendrimer signal
• Vary pH to charge dendrimer amines ( = 0 (uncharged),  = 

1 (primary amines charged),  = 2 (fully charged))
      int ,,, COM QSQSQS 
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Localized Motion of Dendrimer Arms

Q = 0.5 Å-1

Q = 1.3 Å-1

Localized motion modeled as Diffusion in a Sphere

R  2 8 Å  i d d tX. Li, et al, Soft Matter 7, 618- R ~ 2.8 Å,  independent

1.60 ± 0.03 10-10 m2/s    = 0
D    2.58 ± 0.03 10-10 m2/s    = 1

X. Li, et al, Soft Matter 7, 618
622 (2011)
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D    2.58 ± 0.03 10 m /s     1
3.11 ± 0.03 10-10 m2/s    = 2

Localized motion increases as amines are charged!
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y
http://www.ncnr.nist.gov/dave/



SUMMARY
• QENS is an excellent technique to measure diffusive dynamics• QENS is an excellent technique to measure diffusive dynamics

– Length scales/geometry accessible through Q-dependence
– Many analytic models form a framework for comparison

L   f ti  l  ( b i d < t < d (  f  NSE)– Large range of time scales ( sub-picosecond < t < nanosecond (sec for NSE)
– H-atom sensitivity 

• Instrument selection is a critical decision – the resolution must match the time scale 
of the expected motion

• World-class instrumentation is currently available in the U.S.

N t l ti  t  th  (M l l  D i  Si l ti )• Natural connection to theory (Molecular Dynamics Simulations)

• Software – DAVE at the NCNR at NIST – available from the NCNR Web site
– Need much closer coupling to theoretical modeling, especially molecular dynamics p g g, p y y

simulations – coherent QNS
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