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What is a crystal?

• Atoms (molecules) pack 

together in a regular pattern to 

form a crystal.

• Periodicity: we superimpose 

(mentally) on the crystal 

structure a repeating lattice or 

unit cell.

• A lattice is a regular array of 

geometrical points each of 

which has the same 

environment.Unit cells of oxalic acid dihydrate

Quartz crystals
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Why don’t the X-rays scatter in all directions?
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X-ray precession photograph

(Georgia Tech, 1978).

• X-rays and neutrons have 

wave properties.

• A crystal acts as a 

diffraction grating producing 

constructive and destructive 

interference.



The Bragg Equation

2 d sinθ = nλ

Reflection from a series of equally spaced planes:

4



Laue Equations

Si

Sa

a • S

a • (-Si)

a • S + a • (-Si) = a • (S – Si) = hλ

a • (S – Si) = hλ

b • (S – Si) = kλ

c • (S – Si) = lλ

Scattering from points

In three dimensions →
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Real and Reciprocal Space

a* • a = b* • b = c* • c = 1

a* • b = … = 0

Laue equations:

a • (So – Si) = hλ, or a • s = h

b • (So – Si) = kλ, or b • s = k

c • (So – Si) = lλ, or c • s = l

where

s = (So – Si)/λ = ha* + kb* + lc*
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Bragg Peak Intensity
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Relative phase shifts 

related to molecular 

structure.
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Two-theta
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θ-2θ Step Scan (1)
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θ-2θ Step Scan (2)
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θ-2θ Step Scan (3)
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Omega Step Scan

Omega

Mosaic 

spread

1. Detector stationary at 

2θ angle.

2. Crystal is rotated 

about θ by +/- ω.

3. FWHM is the mosaic 

spread.
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U is a rotation matrix relating the unit cell to the 

instrument coordinate system.

The matrix product UB is called the orientation 

matrix.

The Orientation Matrix
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Some history of single crystal neutron diffraction

• 1951 – Peterson and Levy demonstrate the feasibility of single crystal 

neutron diffraction using the Graphite Reactor at ORNL.

• 1950s and 1960s – Busing, Levy, Carroll Johnson and others wrote a suite of 

programs for singe crystal diffraction including ORFLS and ORTEP.

• 1979 – Peterson and coworkers demonstrate the single crystal neutron time-

of-flight Laue technique at Argonne’s ZING-P’ spallation neutron source. 14



Picker 4-Circle Diffractometer
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4-Circle Diffractometer: Euler Angle Rotations

Perspective view 

in horizontal plane

1. Rotate ω by θ so that 

the normal to the χ plane 

bisects 2θ.

Tops views

View normal to χ circle from 

source for steps 2 and 3.

2
3

2. Rotate φ so that the 

diffraction vector Shkl is in 

the plane of the χ circle.

3. Rotate χ so that Shkl is 

in the horizontal plane of 

the incident and diffracted 

beam.
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Kappa Diffractometer

Brucker AXS: KAPPA APEX II

• Full 360° rotations about ω and φ axes.

• Rotation about κ axis reproduces quarter 

circle about χ axis.
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Monochromatic diffractometer

Reactor

HFIR 4-Circle 

Diffractometer

• Rotating crystal

• Vary sin in the Bragg equation:

 nd sin2  nd sin2

 nd sin2
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Laue diffraction

Polychromatic “white” spectrum

I()


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Laue photo from white radiation

X-ray Laue photos taken 

by Linus Pauling
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Quasi-Laue Neutron Image Plate Diffractometer

Select D/ of 10-20%
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Pulsed Neutron Incident Spectrum

 = (h / m)•(t / L)
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Time-of-Flight Laue Technique
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SCD Instrument Parameters

Sample Environments

Hot-Stage Displex: 4-900 K

Displex Closed Cycle Helium Refrigerator: 

12–473 K

Furnaces: 300–1000 K

Helium Pressure Cell Mounted on Displex: 

0–5 kbar @ 4–300 K

Incident 

neutron 

beam

105 K liquid 

methane moderator, 

9.5 m upstream15 x 15 cm2

detectors

Sample 

vacuum 

chamber

Closed-cycle 

He refrigerator

Incident 

neutron 

beam

105 K liquid 

methane moderator, 

9.5 m upstream

105 K liquid 

methane moderator, 

9.5 m upstream15 x 15 cm2

detectors

Sample 

vacuum 

chamber

Closed-cycle 

He refrigerator

Moderator liq. methane at 105

Source frequency 30 Hz

Sample-to-moderator dist. 940 cm

Number of detectors 2

Detector active area 155 x 155 mm2

Scintillator GS20 6Li glass

Scintillator thickness 2 mm

Efficiency @ 1 Å 0.86

Typical detector channels 100 x 100

Resolution 1.75 mm

Detector 1:

angle 75°
sample-to-detector dist. 23 cm

Detector 2:

angle 120°
sample-to-detector dist. 18 cm

Typical TOF range 1–25 ms

wavelength range 0.4–10 Å

d-spacing range ~0.3–8 Å

TOF resolution, Δt/t 0.01

Detector distances on locus of constant 

solid angle in reciprocal space.

Now operating in Los Alamos.
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ISAW hkl plot
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Analysis of ZnMn2O4 by William Ratcliff II (NIST).

ISAW 3D Reciprocal Space Viewer
Diffuse Magnetic Scattering



SNAP

ORTEP of oxalic acid dihydrate from 
data measured on SNAP in December, 
2008.
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Topaz Detector Coverage

• Project Execution Plan 
requires a minimum of 2 
steradian (approx. 23 
detectors) coverage.

• Each detector active area is 
150 mm x 150 mm.

• Secondary flight path varies 
from 400 mm to 450 mm 
radius and thus cover from 
0.148 to 0.111 steradian 
each.
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Data Reduction

Ihkl = k t() f() e(,r) A() y() |Fhkl|
2 4 / sin2Q

k = scale factor

t()  = deadtime loss

f() = incident flux spectrum, obtained by measuring the incoherent 

scattering from a vanadium sample

e(,r) = detector efficiency calculated as a function of wavelength 

and position r on the detector for each Bragg peak since 

the slant path through the flat 6Li glass varies with r

A() = sample absorption; includes the wavelength dependence of 

the linear absorption coefficients

y() = extinction correction is evaluated during the least-squares 

refinement of the structure

Data reduction:  convert raw integrated intensities, Ihkl,

into relative structure factor amplitudes, |Fhkl|
2.
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Structure solution and Fourier syntheses
Measured 
intensity

Electron (X-
ray) or nuclear 
(neutron) 
density at 
point x,y,z in 
the unit cell

Phase angle

Neutron 
scattering 
length or 
X-ray form 
factor for 
jth atom

Sum over j 
atoms in 
the unit 
cell
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𝐼ℎ𝑘𝑙 ∝  𝐹ℎ𝑘𝑙  
2 

 

𝜌 𝑥𝑦𝑧 =
1

𝑉
 𝐹ℎ𝑘𝑙

ℎ𝑘𝑙

𝑒−2𝜋𝑖 (ℎ𝑥+𝑘𝑦+𝑙𝑧) 

 

𝐹ℎ𝑘𝑙 =  𝐹ℎ𝑘𝑙  𝑒
−𝑖𝜙 =  𝐹ℎ𝑘𝑙  cos𝜙 + 𝑖 𝐹ℎ𝑘𝑙  sin𝜙 = 𝐴 + 𝑖𝐵 

 

𝜙 = tan−1
𝐵

𝐴
 

  

𝐹ℎ𝑘𝑙 =  𝜌𝑥𝑦𝑧 𝑒
2𝜋𝑖(𝒔∙𝒓)𝑑𝒗 =

𝑐𝑒𝑙𝑙

 𝑏𝑗𝑒
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Structure Refinement
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GSAS, SHELX, CRYSTALS…

Nonlinear least squares programs.  Vary atomic 

fractional coordinates x,y,z and temperature factors U

(isotropic) or uij (anisotropic) to obtain best fit between 

observed and calculated structure factors.
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On-line Tutorials

• Th. Proffen, R. Neder, S. Billinge: http://www.totalscattering.org/teaching/

• Dissemination of IT for the Promotion of Materials Science (DoITPoMS):

http://www.doitpoms.ac.uk/tlplib/xray-diffraction/index.php

• Bragg’s Law (Stony Brook):
http://www.eserc.stonybrook.edu/ProjectJava/Bragg/index.html 

• X-ray 101 by Bernard Rupp: http://www.ruppweb.org/Xray/101index.html

• IPNS SCD tutorial by Paula Piccoli:
http://www.pns.anl.gov/instruments/scd/subscd/scd.shtml
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