
Small Angle Scattering
of neutrons and x-rays

Volker UrbanVolker Urban
Oak Ridge National Laboratory

National School on Neutron and X-ray Scattering
May 30 – June 13, 2009



2 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

I am scattering like light…
Suzanne Vega – Small Blue Thing



Outline

• Applications – is SAS for you? • Applications – is SAS for you? 
• Comparison with microscopy and diffraction

B i  t  f th  t h i• Basic concepts of the technique
• At the beamline – SAS jargon
• Planning a SAS experiment and data reduction
• Break
• SAS data analysis and interpretation
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SAS of x-rays, neutrons, laser light 

• SAXS & SANS: structural information 1nm-1μm
X rays• X-rays
– Rotating anode / sealed tube: ~ 400 k$
– Synchrotron: high flux, very small beams

• Neutrons
– Isotope contrast, high penetration, magnetic contrast

L  Li ht tt i• Laser Light scattering
– Bench top technique, static and dynamic 

• Applications in … Applications in … 
– Important for polymers, soft materials, (biology)
– Particulate and non-particulate

Pretty much anything 1nm-1μm …really 
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– Pretty much anything 1nm-1μm
anything? 



SAS applications A to Z
Alzheimer’s disease, aerogel, alloys Magnetic flux lines, 

But what 
about SEM, 
TEM AFM

Alzheimer s disease, aerogel, alloys

Bio-macromolecular assemblies, bone

Colloids, complex fluids, catalysts

g ,
materials science

Nano-anything

Orientational order

TEM, AFM 
…?

Detergents, dairy (casein micelles) 

Earth science, emulsions

f

Orientational order

Polymers, phase behavior, porosity

Quantum dots (GISAXS)
Fluid adsorption in nanopores, fuel cells, 

food science (chocolate)

Gelation, green solvents

( )

Rubber, ribosome

Soft matter, surfactants, switchgrass

High pressure, high temperature…, 
hydrogen storage, helium bubble growth 
in fusion reactors

Time-resolved, thermodynamics

Uranium separation

V i l  i  Implants (UHDPE)

Jelly 

Kinetics (e g  of polymerization or protein 

Vesicles, virus 

Wine science 

Xylose isomeraseKinetics (e.g. of polymerization or protein 
folding), keratin

Liquid Crystals

Xylose isomerase

Yttrium-stabilized zirconia (YSZ)

Zeolites



SANS vs. Synchrotron SAXS

• SAXS & SANS
– nm scale structural analysis (~1nm-1μm)
– Non-destructiveNon destructive
– In-situ

• Synchrotron X-rays
High throughput– High throughput

– Time-resolution (ms – ps)
– Tiny beams – microfocus: e.g. scanning of cells

Neutrons• Neutrons
– ‘see’ light atoms: polymers, biology, soft condensed matter, hydrogen in metals
– Isotope labeling

High penetration– High penetration
• bulky specimens, e.g. residual stress in motor block
• complicated environments (P,T), e.g. 4He cryostat

– Magnetic contrast 
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Magnetic contrast 



Neutron Scattering and Microscopy

• Common features
– Size range 1nm-1μmg μ
– Contrast labeling options (stains / isotope labels)

• SAS practical aspects
N  i l l  ti  h  i t  – No special sample preparation such as cryo-microtome 

– Sample environments control (p, T, H)
– Non-destructive (exception: radiation damage in synchrotron beam)
– In-situ, time-resolved

• Fundamental difference
– “Real space” image with certain resolutionReal space  image with certain resolution
– Scattering pattern, averaged over volume

• Complimentarity
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Alzheimer’s Disease – β-Amyloid

• Among leading causes of death

• Miss-folded peptides form hierarchical ordered fibril structures & plaques

• Structure established using synthetic model peptides and complimentary
methods NMR, SANS, EM

• NMR
− β-fold

• SANS 
− Fiber shape
− Diameter
− 6 sheet stack

• EM 
− Overall 

morphologyp gy
− Twist

T.S. Burkoth et al. J. Am. Chem. Soc. 2000, 122, 7883-7889
30 nm



Microscopy : enlarged image

incident
beam

Sample
Image

f i iSample focusing optics

SAS : interference pattern
y

φ

x

φ
incident

beam

θ

DetectorSample

beam



Scattering and Diffraction 
(Crystallography)( y g p y)

• Strictly/historical: Scattering from individual electrons/nuclei, 
Diffraction through interference of primary wavesDiffraction through interference of primary waves

• Today’s common language: Diffraction from crystals, 
Scattering from anything else (less ordered) > the difference g y g ( )
is in the SAMPLE!

• Same basic physics: interactions of radiation with matter
– SAXS/WAXS, SAND/WAND 
– Instruments: resolution (D) / flux (S)
– Diffraction needs crystals, scattering does not.act o eeds c ysta s, scatte g does ot
– Analysis?!

• At small Q (small angles, large λ): observe “blobs” NOT 
S
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atoms – allows SLD contrast variation!



Diffraction (Crystallography)
here at Small Anglesg

Shear ordered charge g
stabilized colloidal dispersion

Scattering along Bragg-rods
of layered system 
> stacking sequence

Pl t G t V ld U i A hPlate Geometry - Versmold, Uni Aachen



Diffraction - Bragg’s Law

W  ith l th λ  fl t d b  t  f l tti  lWaves with wavelength λ are reflected by sets of lattice planes

θ θ

d θ θ

2θ = ϑ

Δ = 2d sin(θ)Phase shift = 2π Δ/λ

1/d = 2/λ sin(ϑ/2)
if Δ = n λ then reflection 
otherwise extinction nλ = 2d sin(θ)
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Scattering Vector – q 
aka momentum transfer, Q, h, k, s

Wave vector k:  |k| = k = 2π/λWave vector k:  |k|  k  2π/λ

ko
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⎞
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λdo
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q
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Neutron Scattering Intensity

• Incoming waves scatter off individual nuclei according to 
scattering length b (can be + or -).scattering length b (can be  or ).

• Interference of wavelets from distribution of nuclei (= 
structure) adds up to “net scattering” amplitude (Fourier 
t f  f t t )transform of structure).

• Measured intensity is the magnitude square of amplitude.
• Measured intensity is also the Fourier transform of pair 

correlation function P(r).

2

3))(()( ∫ •−−= rqi
s rderqI

rrr ρρ
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V



Absolute Intensity / Scattering Cross 
Section cm 1 ?Section – cm-1 ?

dI

Io

dI
dΩD

Ω
Σ

=
Ω d

dDTI
d
dI

o Ω
=

Ω
Σ

d
dI

DTId
d 1

[cm-1sterad-1]
ΩΩ dd

dI/dΩ = Scattered intensity per solid angle
Io = Primary beam intensity

ΩΩ dDTId o

T = Transmission (x-ray absorption, incoherent neutron scattering)
D = Thickness
dΣ/dΩ = Scattering cross section per unit volume [cm-1sterad-1]
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Contrast – Atomic Scattering Lengths

Element Neutrons X-rays Electrons 

Contrast Atomic Scattering Lengths

(10-12 cm) (10-12 cm)

1H -0.374 0.28 1

2H (D) 0.667 0.28 1

C 0 665 1 67 6C 0.665 1.67 6

N 0.940 1.97 7

O 0 580 2 25 8O 0.580 2.25 8

P 0.520 4.23 15
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SANS – Contrast Variation

Bile salt micelle
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Rubber (Polymer Network)

• Unique mechanical properties – “liquid” on local scale but long range structure 
memory

• Economic importance – Tires• Economic importance – Tires

??
• Blend “normal” H- and some 

% D-polyisoprene
Cross link to form r bber net ork• Cross-link to form rubber network

• Stretch rubber sample in the SANS beam and collect data



 

1.5

SANS of labeled 
stretched rubber

NIST NG7 data

small q larger q• Stronger anisotropy at 
smaller q (larger distances)

2.0

smaller q (larger distances)
• Ellipse > diamond transition 
at large deformation
• Warner-Edwards tube 
approach:

⎧
affinely deformed Gauss chain

2.6 
 

1
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2.9

qmax ~ 0.009 Å

22
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non-affine fluctuation contribution



 

1.5

SANS at increasing 
deformation

NIST NG7 data

small q larger q• Self-consistent tube model 

2.0

with deformation dependent 
tube width:

2.6 

2 9
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2.9

qmax ~ 0.009 Å

E. Straube et al., Macromolecules 27, 7681 (1994)
E. Straube et al., Physical Review Letters 74, 4464 (1995)



At the beamline 

Monochromatic 
y

Monochromatic 
beam (Δλ/λ) Pinhole 
camera (Δθ/θ) 

A  d t t
incident θ

φ

Area detector
beam

Sample Detector

x

Sample Detector

I(ϑ)

%D2O
 r6398 0
 r6412 3
 r6418 6
 r6424 8

If data isotropic:
azimuthal average I(ϑ)
(aka “radial average”)
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ϑ
( g )



Monochromator – Velocity Selector

10cm
(MDR-13, Mirrotron, Hungary)

Cold Thermal

mv
h

p
hλ ==

Cold Thermal
T (K) 20 300
v (m/s) 574 2224
E (meV) 1.7 25.9

Å

De Broglie:
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mvp
λ (Å) 6.89 1.78



SANS Instrument – a pinhole camera?

pinhole 
So it does take 
pictures?

object  Yes, but of what?

Of thOf the source 
aperture, not of the 
sample!

image
p
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Layout of a SANS instrument

“pinhole”

up to 80m, D11 ILL

Typical layout at a continuous (reactor) source
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SANS at a pulsed source

EQ-SANS, SNS
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SAXS at synchrotrons

ESRF  ID-2 High Brilliance 
B liBeamline

SAXS, WAXS, USAXS, ASAXS
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SANS guide hall (HFIR)SANS guide hall (HFIR)
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SANS guide hall (HFIR)
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Practical Considerations at SANS and 
SAXS User Facilities

• Thou shalt plan well thy experiment!
• What Q-range would I like, and what must I have?
• For how long should I measure my samples? – counting 

statistics
• How will I correct for backgrounds?
• How can I optimize my sample quality?
• Less is often more:  Do fewer things but those do right! g g

(especially with neutrons) 
• Ask your local contact / instrument scientist for advice 
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y
well ahead of time!



Data Reduction, Processing, 
Correction

• Normalization to monitor or time
• Backgrounds
• Transmission
• Azimuthal averaging
• Absolute intensity scale (cm-1) Absolute intensity scale (cm ) 
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Break
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Analysis of SAS data
here typical particulate solution scattering

• Δρ2 - Contrast = square of 
scattering length density 
diff  b t  ti l  d = Δρ2 n V2 P(q) S(q))(q

d
d
Ω
Σ

difference between particle and 
medium
– x-rays: electron density

 Δρ n V P(q) S(q))(q
dΩ

lim q,n → 0: 

– neutrons: isotope labeling, 
particularly H > D

P( ) Si  & h

= Δρ2 n V2)0( =
Ω
Σ q
d
d

• P(q) - Size & shape
• S(q) - Interaction

• n - Number density 
(concentration) 
V P ti l l• V - Particle volume 
(molecular mass)

Measure and subtract background very carefully!Measure and subtract background very carefully!
Do the absolute calibration – it’s worth the effort!



Alzheimer’s Disease – β-Amyloid

• Among leading causes of death

• Miss-folded peptides form hierarchical ordered fibril structures & plaques

• Structure established using synthetic model peptides and complimentary 
methods NMR, SANS, EM

• NMR
− β-fold

• SANS 
− Fiber
− Diameter
− 6 sheet stack

• EM 
− Overall 

morphologyp gy
− Twist

T.S. Burkoth et al. J. Am. Chem. Soc. 2000, 122, 7883-7889
30 nm



Analysis of SAS data

S(q) * P(q) is not always a useful approach!

• P(q)
– Guinier approximation → radius of gyration: Rgg

(modified Guinier for rods and sheets)
f f /

ggg RRqRRqqI
3
522 :sphere;13/)](ln[ =<∝

– Form factor fit / modeling
sphere, ellipsoid, rod, protein structure, fractal etc.

• S(q)• S(q)
– hard sphere potential, sticky sphere etc.
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SAS  Analysis –
A spacewalk of sorts
Fourier  Q  reciprocal space

Carl Meade and Mark Lee rehearse spacewalk contingency plans in 1994

Fourier, Q, reciprocal space
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mission. He's attached to the craft by both umbilical and tether lines.
Bruce McCandless II took the first untethered space walk in February 1984. Here 
we see him from Challenger, floating above Earth.



Sphere
precisely: monodisperse sphere of uniform 
d it  ith h  d th fdensity with sharp and smooth surface

1.0

0.8

0.6

P(
Q

)

0.4

0 2

100 Å
radius

0.2

0.0
0 40 30 20 10 0

37 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name
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Sphere
1.0

0.8

0 60.6

0.4

P(
Q

)

0.2
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0.01

2 3 4 5 6 7 8 9
0.1
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Sphere
precisely: monodisperse sphere of uniform 
d it  ith h  d th f

100

density with sharp and smooth surface
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Sphere + constant background
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Spheres of different sizes
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0.001 0.01 0.1
Q (Å-1)



Ellipsoid  
aspect ratio 1.2
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Q (Å-1)
Rg same as sphere for following objects



Ellipsoid
aspect ratio 1.5
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Circular Cylinder
with same Rg as the sphere
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“Long & thin” cylinder
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Disk
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Polymer coil
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Guinier Analysis 
size of any kind of object

• At small Q anything that could reasonably be considered an 
object follows Guinier approximationobject follows Guinier approximation.

ggg RRqRRqqI
3
522 :sphere;13/)](ln[ =<∝

• Modified Guinier approximations exist to determine cross 
ti l di  f d   thi k  f h t

ggg 3

sectional radius of rods or thickness of sheets
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Guinier Analysis  
size of any kind of object

0 1

0.0 Guinier analysis for compact particles
I0=1 ± 6.4344e-06
Rg=77.627 ± 0.0078715 Å

-0.2

-0.1
Q

)) 

 Sphere Data
 Guinier fit
 Guinier fit

Qmax*Rg=0.4301
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Ln
(P

(Q

-0.5

0.4

Guinier analysis for compact particles
I0=1.002 ± 0.00022913
Rg=78.747 ± 0.037728 Å
Qmax*Rg=1.2359

-0.6
250x10-6200150100500

Q2 (Å-2)

Qmax g

Å
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Precise Rg is 77.46 Å 



Guinier Analysis  
size of any kind of object

0 1

0.0 Guinier analysis for compact particles
I0=1.0048 ± 3.6871e-05
Rg=76.96 ± 0.034883 Å
Qmax*Rg=0.49062
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Q

)) 

 Rod Data
 Guinier fit
 Guinier fit

Qmax Rg 0.49062

0 4
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Guinier analysis for compact particles
I0=0.99866 ± 0.00072094
Rg=73.297 ± 0.1302 Å
Q *R =1 1402
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Qmax Rg 1.1402
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Precise Rg is 77.46 Å 
Q ( )



Modified Guinier Analysis  
for object extended in 1 dimension

-4.6  Rod Data
 Modified Guinier fit for rods
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Modified Guinier analysis for rodlike forms
IC=0.012324 ± 3.027e-05
Rc=9.0941 ± 0.01747 Å
Qmax*Rc=1.3143
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Rod radius = √2 * Rc = 12.9 Å,  exact radius = 13.3 Å 



Guinier Analysis  
size of any kind of object
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Precise Rg is 77.46 Å 
Q ( )



Pair correlation function and shape

D

P(r) : inverse Fourier transform of 
scattering function : Probability of 
fi di t f l th b t Dmax

r
finding a vector of length r between 
scattering centers within the 
scattering particle.
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Shape : Modeled as a uniform density distribution that best 
fits the scattering data.
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fits the scattering data.



SAS Form Factor Modeling 
of great use in biologyg gy
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SAS Form Factor Modeling 
of great use in biologyg gy
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Two-component Systems / Compound 
Objectsj
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Two-Component Systems
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Two-Component Systems
Rg as function of contrast
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Interparticle Structure Factor  S(Q)
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S(Q) and Pair Correlation Function
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S(Q) and Statistical Thermodynamics 
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Surface Scattering - Porod

B t f t l h i t f Q x 3 4
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But, fractal rough interfaces: Q-x , 3 < x < 4



Structural Hierarchy (particulate)

Structural information viewed on five length scales. Structural features at larger length scales are
observed at smaller Q.

Adapted from DW Schaefer MRS Symposium Proceeding 1987
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Scattering analysis that describes hierarchical structures: Mass Fractal (Teixeira), Unified
Fit (Beaucage) combine power law scattering ranges with Rg transitions



Non-particulate Scattering

64 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name



SAS Summary
• SAS applications are in the nm to μm range and 

otherwise only limited by  imagination.
• SAS is used alone  but often complementary to other • SAS is used alone, but often complementary to other 

methods, e.g. microscopy.
• Scattering is similar to diffraction (but different).
• SAS data analysis can be tough math, or make use of 

readily available approximations, models and 
software.software.

• SAS does not see atoms but larger interesting 
features over many length scales.

Å• Precision of structural parameters can be 1Å or 
better.
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