

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Neutron Sources for Materials Research

National School on Neutron and X-ray Scattering

Oak Ridge

30 May-13 June 2009

John M. Carpenter IPNS, SNS 4 June 2009

Neutrons and Neutron Sources

- James Chadwick discovered the neutron in 1932.
- In 1936 Mitchel & Powers and Halban & Preiswerk first demonstrated coherent neutron diffraction in (Bragg scattering by crystal lattice planes) as an exercise in wave mechanics.
- The possibility of using the scattering of neutrons as a probe of materials developed after 1945 with the availability of copious quantities of slow neutrons from reactors. Fermi's group used Bragg scattering to measure nuclear crosssections at early Argonne reactors.
- The neutron is a weakly interacting, non-perturbing probe with simple, wellunderstood coupling to atoms and spins.
- The scattering experiment tells you about the sample not the probe.

Neutrons and Neutron Sources-cont'd

A reactor moderates the neutrons produced in the fission chain reaction resulting in a Maxwellian energy distribution peaked at T (300K).

Development of Neutron Science Facilities

Brugger Plot

Redrawn 2009

How do we produce neutrons?

Fission

- Chain reaction
- Continuous flow
- ~ 1 neutron/fission

Spallation

- No chain reaction
- Accelerator driven
- Pulsed operation
- ~ 30 neutrons/proton

Measured Spallation Neutron Yield vs. Proton Energy for Various Targets, J. Frazer, et al. (1965)

From Fraser et al., measurements at Brookhaven Cosmotron

Global neutron yield for Be (p,n)

 $Y = 3.42 \times 10^8 (E_{MeV} - 1.87)^{2.05} n/\mu \chi \rho o C$

Types of Neutron Sources-cont'd

Reactor e.g., HFR at ILL, Grenoble, France.

~1.5x10¹⁵ n/cm²/s (recently underwent major refurbishment)

Advantages

- High time averaged flux.
- Mature technology (source + instruments).
- Very good for cold neutrons.

Drawbacks

- Licensing (cost/politics).
- No time structure.

Types of Neutron Sources *The Institut Laue-Langevin, Grenoble*

Types of Neutron Sources-cont'd Source Spectra of the FRM-II Reactor

Types of Neutron Sources-cont'd

Low-Energy Neutron Sources

Advantages of a Low-Energy Neutron Source.

- Low cost of accelerator.
- Low cost of operation.
- Minimal shielding because of low proton energy.
- Cold moderators easy.
- Easily adaptable for testing, development and training.
- Modest flux implies low activation of components.
- Disadvantages of a low-energy neutron source.
 - Modest flux implies long experiment times.
 - Optimal design provides only three neutron beams.

Types of Neutron Sources-cont'd

The LENS Low-Energy Neutron Source, Indiana U.

protons

How Do Moderators Work?

Steady sources

98-6240 uc/vlb

How Do Moderators Work?

Steady sources

Cavity-type cold source

Hot source

98-6240 uc/vlb

How Do Moderators Work? Pulsed sources

Reflector (e.g., Be) (all around)

Decoupled, reflected pulsed-source moderator

Types of Neutron Sources-cont'd

Pulsed spallation sources e.g., IPNS, ISIS, LANSCE, SNS.

200 $\mu A,\,0.8$ GeV, 160 kW

ISIS 2x10¹³ n/cm²/s average flux SNS 8x10¹⁵ n/cm²/s peak flux

Advantages

- High peak flux.
- Advantageous time structure for many applications.
- Accelerator based politics simpler than reactors.
- Technology rapidly evolving.

Disadvantages

- Low time averaged flux.
- Not all applications exploit time structure.
- Rapidly evolving technology.

1.4 mA, 1.0 GeV, 1.4 MW

Spallation-Evaporation Production of Neutrons

Types of Neutron Sources-cont'd

CW spallation source e.g., SINQ at Paul Scherrer Institut (PSI).

0.85 mA, 590 MeV, 0.9 MW 1x10¹⁴ n/cm²/s average flux

Advantages

- High time averaged flux.
- Uses reactor type instrumentation (mature technology).
- Politically acceptable.
- piggy-backed on existing accelerator.

Disadvantages

- No time structure.
- high background feared but not realized.

Types of Neutron Sources-cont'd

Principles of the Spallation Neutron Source SINQ

Some History: The Materials Testing Accelerator

- E. O. Lawrence conceived this project in the late 1940s as a means to produce Pu-239 and tritium and, later, U-233. Despite its name, MTA was never intended for materials research.
- Work went on at the site of the present Lawrence Livermore Laboratory, where scientists accomplished substantial high-power accelerator developments. Efforts continued until 1955 when intense exploration efforts revealed large uranium ore reserves in the U.S. and the project terminated. By that time the pre-accelerator had delivered CW proton currents of 100 mA and 30 mA of deuterons. The work was declassified in 1957.

History

The Materials Testing Accelerator: Machine Parameters

- There was already by that time some information on the production of spallation neutrons by 190-MeV deuteron-induced spallation on Uranium, about 30% more than by protons of the same energy. This guided the choice of accelerated particle type and beam energy. With the anticipated required production rate, the parameters of the accelerator were set:
 - Deuterons.
 - Particle energy 500 MeV.
 - CW operation 320 mA (beam power 160 MW).

The Materials Testing Accelerator: Target

Original ideas concerned a Uranium target.

- Subsequent development led to target systems alternatives including moderated subcritical lattices (k < 0.9).</p>
- Finally the chosen target system consisted of a NaK-cooled Beryllium primary target, and depleted Uranium secondary target for neutron multiplication, within a water-cooled depleted Uranium lattice for breeding Plutonium.

MTA-cont'd

Cutaway View of Linear Accelerator – Looking from the Injector End

Earliest Pulsed Spallation Neutron Sources

Facility	Location	Time-Average Beam Power (kW)	Proton Energy (MeV)	Pulsing Frequency (Hz)	Startup Date/Status
ZING-P	Argonne	0.1	300	30	1974-75/Shutdown
ZING-P'	Argonne	3	500	30	1977-80/Shutdown
KENS	KEK, Japan	3.5	500	20	1980-2006/Shutdown
IPNS	Argonne	7.0	450	30	1981/Operating
ISIS	Rutherford -	160	800	50	1985/Operating
	Appleton Lab, UK				
MLNSC	Los Alamos	60 (upgrade	800	20	1985/Operating
(Lujan		underway to		(upgrade	
Center)		160 kW)		30 Hz?)	

Primary source pulse widths of all are less than 0.5 µsec

Pulsed Spallation Neutron Source Construction, Proposals, and Studies

Name	Location	Proton Beam Power (MW)	Proton Energy (GeV)	Pulsing Frequency (Hz)	Status
IPNS	Argonne	1.0	2.0	30	Study complete –
Upgrade					terminated
SNS	Oak Ridge	2.0	1.0	60	Complete June
					2006
AUSTRON	Austria	0.2 (includes	1.6	25	Study complete –
		upgrades for beam		(upgrade	Approval pending
		power up to 1 MW)		50 Hz)	
ESS	Europe	5.0	1.33	50	Ongoing study
JSNS	JAEA,	0.6 (potential for	3.0	25	Under Construction
	Tokai-mura,	upgrades to 5 MW)		(upgrade to	First operation
	Japan			50 Hz)	2008
LPSS	Los Alamos	1.0 MW	0.8	60	Ongoing study
CSNS	Dongguan,	100 kW (potential for	1.6	25	Near commitment
	China	upgrade to ~1 MW)			

Anatomy of a Pulsed Spallation Neutron Source

97-3792B.uc/dir

The Spallation Neutron Source

- The SNS construction project concluded in 2006, shown in spring 2007.
- First operation April 2006, 800 kW in June 2009.
- At 1.4 MW it will be ~ 8x ISIS, the world's leading pulsed spallation source.
- The peak neutron flux will be ~ 20 to 100 x ILL.
- SNS will be the world's leading facility for neutron scattering.
- It is a short distance from HFIR, a reactor with a flux comparable to ILL.

SNS Target-Moderator-Reflector System

98-6245 uc/vlb

SNS Moderator Intensities and Pulse Widths

Results for 2 MW beam power, 60 Hz pulsing frequency—2.08 x 10¹⁴ protons/pulse at 1. GeV.

98-6245 uc/vlb

SNS Instruments

- ~20 instruments approved.
 - Excellent progress with funding.
 - DOE, including SING1 and SING2 Projects, foreign, and NSF initiatives
- Working to enhance instrument technology
 - International engagement and interest in the instrument suite.
 - Continuing engagement with scientific community.

End of Presentation

Thank you!

