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Neutrons and Neutron Sources

James Chadwick discovered the neutron in 1932.

In 1936 Mitchel & Powers and Halban & Preiswerk first demonstrated coherent
neutron diffraction in (Bragg scattering by crystal lattice planes) as an exercise
in wave mechanics.

The possibility of using the scattering of neutrons as a probe of materials
developed after 1945 with the availability of copious quantities of slow neutrons
from reactors. Fermi's group used Bragg scattering to measure nuclear cross-
sections at early Argonne reactors.

The neutron is a weakly interacting, non-perturbing probe with simple, well-
understood coupling to atoms and spins.

The scattering experiment tells you about the sample not the probe.




Neutrons and Neutron Sources-cont’'d

B A reactor moderates the neutrons produced in the fission chain reaction
resulting in a Maxwellian energy distribution peaked at T (300K).
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Development of Neutron Science Facilities
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How do we produce neutrons?

@ proton Fission
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Neutrons: Where do they come from?

® Fission:
n+2%J =n + n + fragments ~ 180 MeV/n (as heat)
i |

Sustain chain reaction

Available

Moderated by
D,0 (H;0)

to E ~ kgT (Maxwellian)




Neutrons: Where do they come from?

B Spallation:
p + heavynucleus = 20~30n + fragments

1GeV e.g. W, Pb, U

~ 30 MeV/n (as heat)
Compare Fluxes

Reactors
DR3 Risg 2 x 10" n/cm?/s
ILL Grenoble 1.5 x 105 n/cm?/s

Spallation sources
ISIS @ 160 kW average 1.2 x 103 n/cm?/s
peak 6 x 10" n/cm?/s

SNS @ 2 MW average 4 x 1013 n/cm?/s
peak 3 x 107 n/cm?/s




Neutrons: Where do they come from?

Measured Spallation Neutron Yield vs. Proton Energy for
Various Targets, J. Frazer, et al. (1965)
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Neutrons: Where do they come from?

B Low-energy (p,n) reactions, e.g.
p + °Be —> n + 20intno+1 avd
[> v +°B
(Most of the proton energy appears as heat.)
5-15 MeV ~ 1300 MeV/n @ E, = 13 MeV
(deposited in ~ 1.1 mm)
3.5x1073 n/p
Fluxes at moderator surface
LENS @ 30 kW time average 4 X 10" n/cm?-sec
@ 20Hz peak 1 X 10" n/cm?-sec

Global neutron yield for Be (p,n)

Y = 3.42x108(E, oy - 1.87)>%° n/piypoC




Types of Neutron Sources-cont’d

M Reactor e.g., HFR at ILL, Grenoble, France.
~1.5x10"° n/cm?/s (recently underwent major refurbishment)
Advantages

—  High time averaged flux.
—  Mature technology (source + instruments).
—  Very good for cold neutrons.

Drawbacks

—  Licensing (cost/politics).
—  No time structure.




Types of Neutron Sources
The Institut Laue-Langevin, Grenoble
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Types of Neutron Sources-cont’d
Source Spectra of the FRM-II Reactor
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Types of Neutron Sources-cont’'d
Low-Energy Neutron Sources

B Advantages of a Low-Energy Neutron Source.
Low cost of accelerator.
Low cost of operation.
Minimal shielding because of low proton energy.
Cold moderators easy.
Easily adaptable for testing, development and training.
Modest flux implies low activation of components.

B Disadvantages of a low-energy neutron source.
— Modest flux implies long experiment times.
— Optimal design provides only three neutron beams.




Types of Neutron Sources-cont’'d

The LENS Low-Energy Neutron Source, Indiana U.
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How Do Moderators Work?
Steady sources
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How Do Moderators Work?
Steady sources
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How Do Moderators Work?
Pulsed sources

Decoupler (e.g., Cd) Moderator (e.g., H 20)
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Types of Neutron Sources-cont’d

B Pulsed spallation sources e.g., IPNS, ISIS, LANSCE, SNS.
200 A, 0.8 GeV, 160 kW 1.4 mA, 1.0 GeV, 1.4 MW
ISIS 2x10'3 n/cm?/s average flux SNS
8x10"° n/cm?/s peak flux
Advantages
— High peak flux.
— Advantageous time structure for many applications.
— Accelerator based — politics simpler than reactors.
— Technology rapidly evolving.
Disadvantages
— Low time averaged flux.
— Not all applications exploit time structure.
— Rapidly evolving technology.




Spallation-Evaporation
Production of Neutrons

Recoiling particles
o remaining in nucleus
Original e
Nucleus E, \ Emerging “Cascade” Particles
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Excited that of the original proton
Nucleus A ® collision.)

Proton

@ Evaporating Particles
(Low energy, E ~ 1-10 MeV);
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Residual
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Types of Neutron Sources-cont’d

B CW spallation source e.g., SINQ at Paul Scherrer Institut (PSI).
0.85 mA, 590 MeV, 0.9 MW
1x10'% n/cm?/s average flux

Advantages

— High time averaged flux.

— Uses reactor type instrumentation (mature technology).
— Politically acceptable.

— piggy-backed on existing accelerator.

Disadvantages

— No time structure.
— high background feared but not realized.




Types of Neutron Sources-cont’'d

Principles of the Spallation Neutron Source SINQ
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Some History:
The Materials Testing Accelerator

B E. O. Lawrence conceived this project in the late 1940s as a means to
produce Pu-239 and tritium and, later, U-233. Despite its name, MTA
was never intended for materials research.

B Work went on at the site of the present Lawrence Livermore
Laboratory, where scientists accomplished substantial high-power
accelerator developments. Efforts continued until 1955 when intense
exploration efforts revealed large uranium ore reserves in the U.S. and
the project terminated. By that time the pre-accelerator had delivered
CW proton currents of 100 mA and 30 mA of deuterons. The work was
declassified in 1957.




History

The Materials Testing Accelerator:
Machine Parameters

B There was already by that time some information on the production of
spallation neutrons by 190-MeV deuteron-induced spallation on
Uranium, about 30% more than by protons of the same energy. This
guided the choice of accelerated particle type and beam energy. With
the anticipated required production rate, the parameters of the

accelerator were set:
— Deuterons.
— Particle energy — 500 MeV.
— CW operation — 320 mA (beam power 160 MW).




The Materials Testing Accelerator: Target

M Original ideas concerned a Uranium target.

B Subsequent development led to target systems alternatives
including moderated subcritical lattices (k < 0.9).

B Finally the chosen target system consisted of a NaK-cooled
Beryllium primary target, and depleted Uranium secondary target
for neutron multiplication, within a water-cooled depleted Uranium
lattice for breeding Plutonium.




MTA-cont'd

Cutaway View of Linear Accelerator — Looking from the Injector
End
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Earliest Pulsed Spallation Neutron Sources

Time-Average Pulsing Startup Date/Status
Facility Location Beam Power Frequency

(kW) (Hz)
ZING-P Argonne 0.1 30 1974-75/Shutdown
ZING-P’ Argonne 3 30 1977-80/Shutdown
KENS KEK, Japan 3.5 20 1980-2006/Shutdown
IPNS Argonne 7.0 30 1981 /Operating
ISIS Rutherford - 160 50 1985/Operating
Appleton Lab, UK
MLNSC Los Alamos 60 (upgrade 20 1985/Operating
(Lujan underway to (upgrade
Center) 160 kW) 30 Hz?)

Primary source pulse widths of all are less than 0.5 psec
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Pulsed Spallation Neutron Source
Construction, Proposals, and Studies

Name

Location

Proton Beam Power
(MW)

Pulsing
Frequency
(Hz)

Status

IPNS
Upgrade

Argonne

1.0

30

Study complete
terminated

SNS

Oak Ridge

20

60

Complete June

2006

AUSTRON

Austria

0.2 (includes
upgrades for beam
power up to 1 MW)

25
(upgrade
50 Hz)

Study complete —
Approval pending

ESS

Europe

5.0

50

Ongoing study

JSNS

JAEA,
Tokai-mura,
Japan

0.6 (potential for
upgrades to 5 MW)

25
(upgrade to
50 Hz)

Under Construction
First operation

2008

LPSS

Los Alamos

1.0 MW

60

Ongoing study

CSNS

Dongguan,
China

100 kKW (potential for
upgrade to ~1 MW)

25

Near commitment
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Anatomy of a Pulsed Spallation Neutron Source
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The Spallation Neutron Source

L

B The SNS construction project concluded ini 2006, shown in spring 2007.

B First operation April 2006, 800 kW in June 2009.

m At 1.4 MW it will be ~ 8x ISIS, the world’s leading pulsed spallation source.
B The peak neutron flux will be ~ 20 to 100 x ILL.

B SNS will be the world’s leading facility for neutron scattering.

M |t is a short distance from HFIR, a reactor with a flux comparable to ILL.




SNS Target-Moderator-Reflector System




SNS Moderator Intensities and Pulse Widths

SNS Moderator Intensities SNS Moderator Pulse Widths

Pulse FWHM, microseconds
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SNS Instruments

B ~20 instruments approved.
— Excellent progress with funding.
* DOE, including SING1 and SING2 Projects, foreign, and NSF
initiatives
B Working to enhance instrument technology
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End of Presentation

Thank you!




