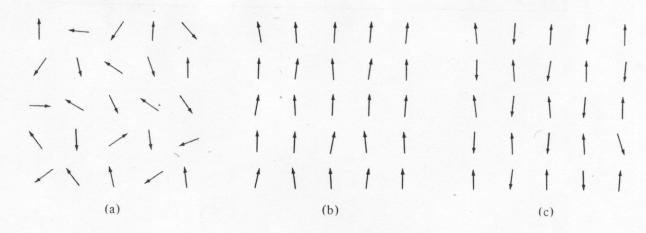
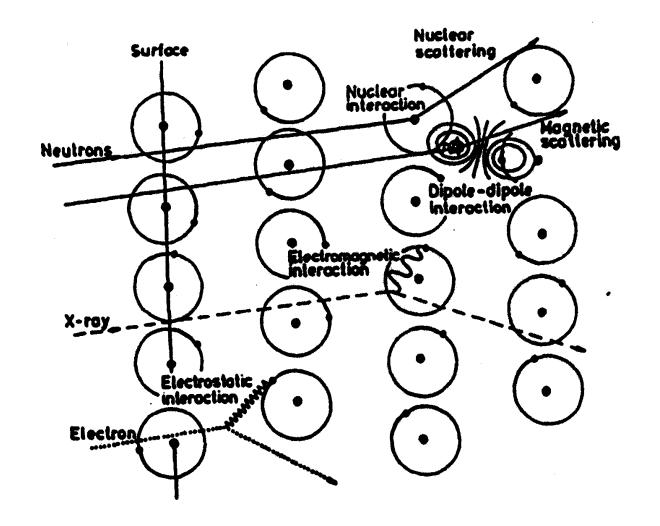

Magnetic Neutron Scattering

Bruce D. Gaulin


- Magnetism and Neutron Scattering A Killer Application
- Magnetism in Solids
- Bottom lines on magnetic neutron scattering
- Examples

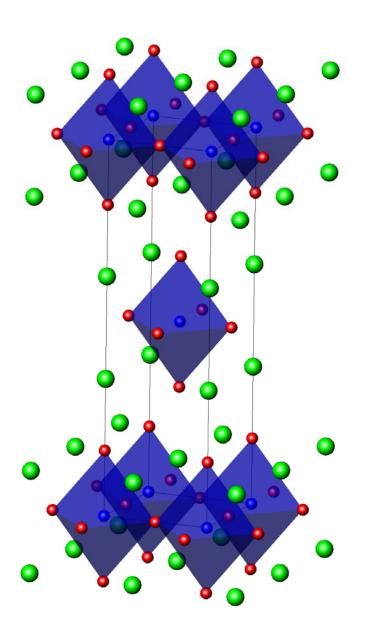
C. G. Shull et al, 1951


Magnetic Structure of MnO

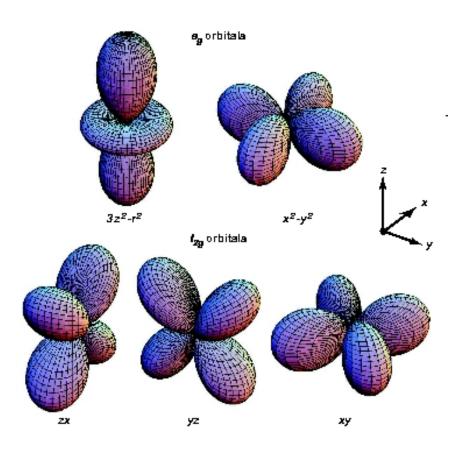
Paramagnet $T>T_C$

 $T < T_C$

Ferromagnet Antiferromagnet $T < T_N$

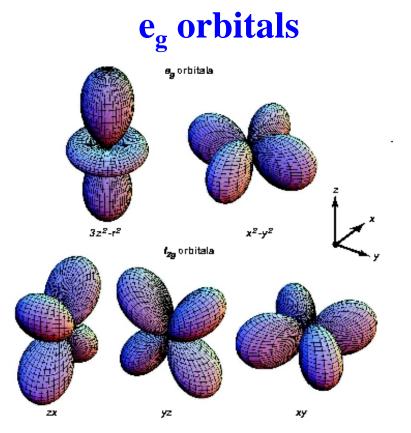

Magnetic Neutron Scattering directly probes the electrons in solids

Killer Application: Most powerful probe of magnetism in solids!

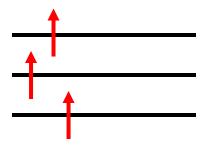

	1	,																				
H ¹ 1/2 99.98 2.792	TABLE 1 Nuclear Magnetic Resonance Data For every element the most abundant magnetic isotope is shown. After Varien Associates NMR Table 4th ed. 1984															He ³ 1/2 10 ⁻⁴ -2.127						
3/2 92.57 3.256	Be¹ 3/2 100. -1.177		811 C13 N14 O17 F19 3/2 1/2 1 5/2 1/2 81.17 1.108 99.64 0.04 100. 2.688 0.702 0.404 -1.803 2.627															2 0.	Ne ²¹ 3/2 0.257 -0.662			
Na ²³ 3/2 100. 2.216	Mg ²⁵ 5/2 10.05 0.855	ь	5/2 1/2 3/2 3/2 100. 4.70 100. 0.74 75.4 3.639 0.565 1.131 0.643 0.821															Ar				
K ³⁹ 3/2 93.08 0.391	Ca ⁴³ 7/2 0.13 -1.315	\$c ⁴⁵ 7/2 100. 4.749	Ti ⁴⁷ 5/2 7.75 0.787		2 3/ 100 9.	2 54	Mn ⁵⁵ 5/2 100. 3.461	1/2 2.2 0.0	2 7/ 245 10	2 0.	M⁴¹ 3/2 1.25 0.746	Cu ⁴ 3/2 69.0 2.22	5/ 9 4.	2 3 12 6	/2 0.2 .011	9/2 7.61		75 2 00. 435	1/2 7.50		2 57	Kr ⁸³ 9/2 11.55 -0.967
Rb 85 5/2 72.8 1.348	Sr⁸⁷ 9/2 7.02 1.089	γ ⁸⁹ 1/2 100. 0.137	Zr ⁹¹ 5/2 11.23 1.298	2 9/2 .23 100.		Me ⁴⁵ Tc 5/2 15.78 0.910		Ru 5/2 16. -0.0	2 1/ .98 10	2 0.	Pd ¹⁰⁵ 5/2 22.23 -0.57	Ag ¹ 1/2 51.3 -0.11	1/ 5 12	2 9 2.86 9	/2 5.84 .507	Sa ¹¹ 1/2 8.68 -1.84	5/ 57	121 2 .25 342	Te ¹²⁵ 1/2 7.03 -0.882	5/2 5/2 100 2.7	2).	Xe ^{12†} 1/2 26.24 -0.773
Cs ¹³³ 7/2 100. 2.564	Ba ¹³⁷ 3/2 11.32 0.931	La¹³⁹ 7/2 99.9 2.761	Hf ¹⁷⁷ 7/2 18.39 0.61	7/ 10	2 1/ 0. 14	2	Re ¹⁸⁷ 5/2 52.93 3.176	0s 3/2 16. 0.6	2 3/ 1 61	2 .5	Pt1*5 1/2 33.7 0.600	Au ¹ 3/2 100 0.14	1/	2 1 3.86 7	/2 /2 0.48 .612	Pb ²⁶ 1/2 21.1: 0.58	9/	2	Po	At	1	Rn
Fr	Ra	Ac	7/	7/2 5/2 — 100.		Nd ¹⁴ 7/2 12.2			Sm ¹⁴⁷ 7/2 15.07	5/2 52.2	3/3 3 15	2 .64	Tb ¹⁵⁰ 3/2 100.	Dy ¹⁶³ 5/2 24.97	2 7/2 .97 100.		7/2 1/ 22.82 10				7/2 97.40	
				0.16 3.92 Th Pa		-1.25 U N			-0.68 Pu	1.52 Am	1 -0. Cn	_	1.52 8k	-0.53 Cf	+-	3.31 C		-0.2 Md	0 -0 N	.677	2.9 Lr	-

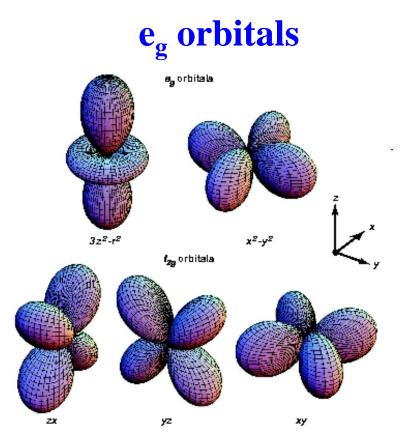
4f

5f

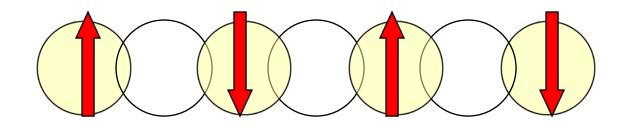


$\mathbf{e}_{\mathbf{g}}$ orbitals

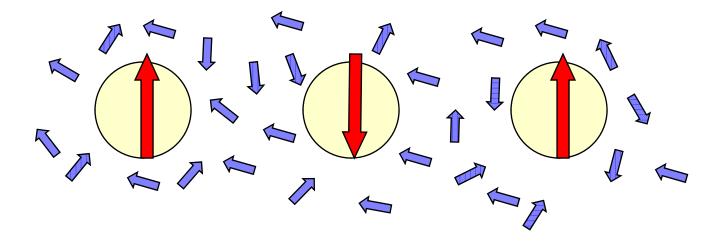

 t_{2g} orbitals



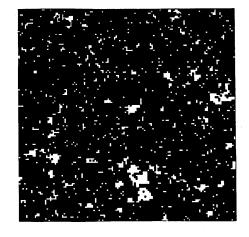
 t_{2g} orbitals

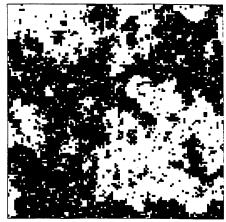


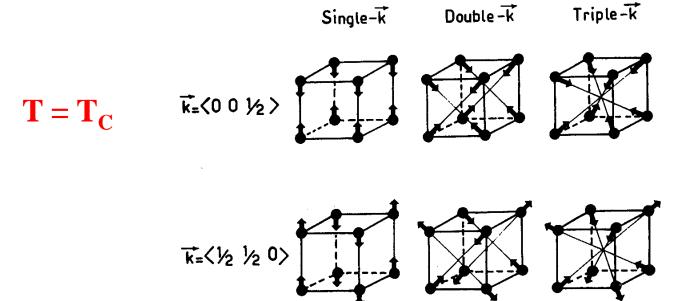
 $3d^9 : Cu^{2+}$



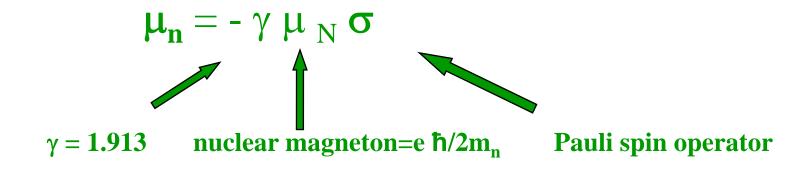
 t_{2g} orbitals


Superexchange Interactions in Magnetic Insulators


$$\boldsymbol{H} = \boldsymbol{\Sigma_{i,j}} \; \mathbf{J_{ij}} \; \mathbf{S_i} \; \mathbf{S_j}$$


RKKY exchange in Itinerant Magnets (eg. Rare Earth Metals)

$$T = 0.9 T_C$$



$$T = 1.1 T_C$$

Magnetic Neutron Scattering

Neutrons carry no charge; carry s=1/2 magnetic moment

Only couple to electrons in solids via magnetic interactions

How do we understand what occurs when a beam of mono-energetic neutrons falls incident on a magnetic material?

Calculate a "cross section":

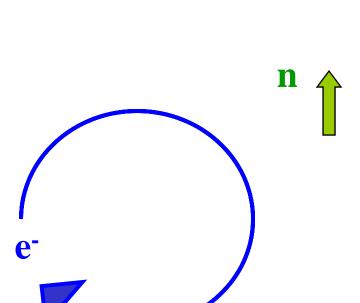
What fraction of the neutrons scatter off the sample with a particular:

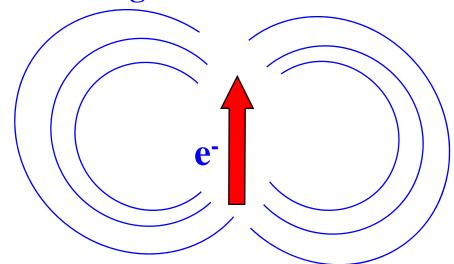
- a) Change in momentum: $\kappa = \mathbf{k} \mathbf{k}'$
- b) Change in energy: $\hbar \omega = \hbar^2 k^2 / 2m \hbar^2 k^2 / 2m$
- Fermi's Golden Rule
 1st Order Perturbation Theory

$$d^2\sigma/d\Omega dE' : \mathbf{k}, \sigma, \lambda \rightarrow \mathbf{k}', \sigma', \lambda'$$

$$= \mathbf{k}'/\mathbf{k} \ (\mathbf{m}/2\pi \ \hbar^2)^2 \ | < \mathbf{k}' \sigma \ \hat{\lambda}' \ | \ V_M \ | \ \mathbf{k} \ \sigma \ \lambda \ > |^2 \ \delta \ (E_\lambda - E_\lambda' + \hbar \omega)$$

kinematic


interaction matrix element


energy conservation

Understanding this means understanding:

 V_M : The potential between the neutron and all the unpaired electrons in the material

$$V_{\mathbf{M}} = -\mu_{\mathbf{n}} \mathbf{B}$$

Magnetic Field from spin $\frac{1}{2}$ of Electron: B_S

 $\label{eq:magnetic Field} Magnetic Field \\ from Orbital Motion of Electrons: B_L$

The evaluation of $|\langle \mathbf{k}' \sigma' \lambda' | V_M | \mathbf{k} \sigma \lambda \rangle|^2$ is somewhat complicated, and I will simply jump to the result:

$$d^2\sigma/d\Omega \ dE' = (\gamma \ r_0)^2 \ k'/k \ \Sigma_{\alpha \beta} \ (\delta_{\alpha \beta} - \kappa_{\alpha} \ \kappa_{\beta})$$

$$\times \Sigma_{\text{All magnetic atoms at d and d}} F_{\text{d}}^*(\kappa)F_{\text{d}}(\kappa)$$

×
$$\sum_{\lambda\lambda'} p_{\lambda} < \lambda \mid \exp(-i\kappa \mathbf{R}_{d'}) S^{\alpha}_{d'} \mid \lambda' > < \lambda' \mid \exp(i\kappa \mathbf{R}_{d}) S^{\beta}_{d} \mid \lambda >$$

$$\times \delta (E_{\lambda} - E_{\lambda}' + \hbar \omega)$$

With
$$\kappa = \mathbf{k} - \mathbf{k}'$$

This expression can be useful in itself, and explicitly shows the salient features of magnetic neutron scattering

We often use the properties of $\delta (E_{\lambda} - E_{\lambda}' + \hbar \omega)$ to obtain $d^2\sigma/d\Omega dE'$ in terms of *spin correlation functions*:

$$\begin{split} & d^2\sigma/d\Omega \; dE' \; = (\gamma \; r_0)^2/(2\pi\hbar) \quad k'/k \; \; N\{1/2 \; g \; F_d(\kappa)\}^2 \\ & \times \; \; \Sigma_{\alpha \; \beta} \; \left(\delta_{\alpha \; \beta} - \kappa_{\alpha} \; \kappa_{\beta}\right) \; \Sigma_l \; exp(i\kappa \cdot \mathbf{l}) \\ & \times \; \; \int \langle \exp(-i\kappa \cdot \mathbf{u}_0)) \exp(i\kappa \cdot \mathbf{u}_l(t)) \rangle \\ & \times \; \; \langle S_0^{\; \alpha}(0) \; S_l^{\; \beta}(t) \rangle \; exp(-i\omega \; t) \; dt \end{split}$$

Dynamic Spin Pair Correlation Function

Fourier tranform: $S(\kappa, \omega)$

Bottom Lines:

- Comparable in strength to nuclear scattering
- $\{1/2 \text{ g } F(\kappa)\}^2$: goes like the magnetic form factor squared
- $\Sigma_{\alpha\beta}$ ($\delta_{\alpha\beta} \kappa_{\alpha} \kappa_{\beta}$) : sensitive only to those components of spin $\bot \kappa$
- Dipole selection rules, goes like: $< \lambda' | S^{\beta}_{d} | \lambda > ;$

where
$$S^{\beta}=S^{x}$$
, S^{y} (S^{+} , S^{-}) or S^{z}

Diffraction type experiments:

Add up spin correlations with phase set by $\kappa = k - k$

$$\Sigma_1 \exp(i\kappa \cdot \mathbf{l}) < S_0^{\alpha}(0) S_1^{\beta}(t) > \text{ with } \mathbf{t} = \mathbf{0}$$

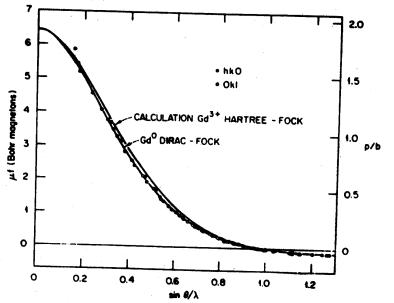
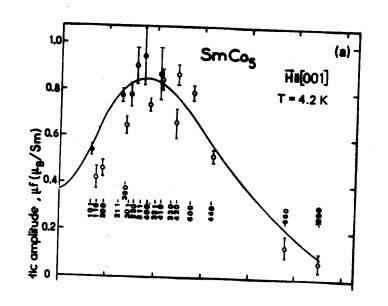
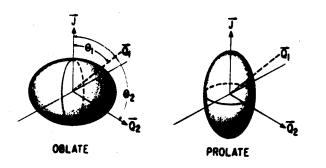




Fig. 13. Comparison of the experimental ¹⁴⁰Od form factor at 96 K as measured by Moon *et al.* ⁴⁷ with nonrelativistic Hartree-Fock and relativistic Dirac-Fock calculations by Freeman and Desclaux. ³⁶

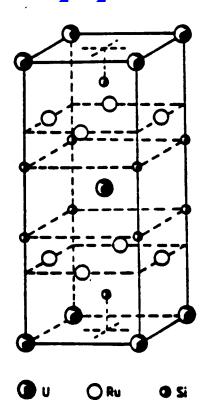
Magnetic form factor, F(κ), is the Fourier transform of the spatial distribution of magnetic electrons –

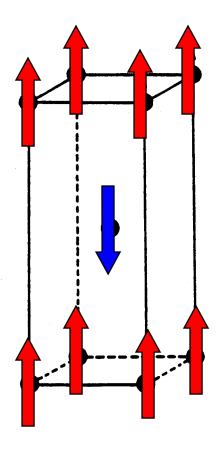
usually falls off monotonically with κ as $\pi/(1\,A) \sim 3\,A^{-1}$

Three types of scattering experiments are typically performed:

- Elastic scattering
- Energy-integrated scattering
 - Inelastic scattering

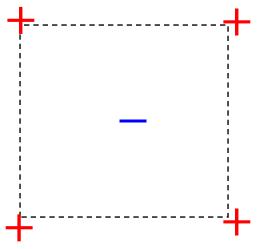
Elastic Scattering


 $\hbar\omega = (\hbar k)^2/2m - (\hbar k')^2/2m = 0$ measures time-independent magnetic structure


$$d\sigma/d\Omega = (\gamma r_0)^2 \{ 1/2 \text{ g } F(\kappa) \}^2 \text{ exp(-2W)}$$

$$\times \sum_{\alpha \beta} (\delta_{\alpha \beta} - \kappa_{\alpha} \kappa_{\beta}) \sum_{l} \exp(i\kappa \cdot l) \langle S_0^{\alpha} \rangle \langle S_l^{\beta} \rangle$$

S $\perp \kappa$ only Add up spins with exp(ik·l) phase factor


URu₂Si₂

Try $\kappa = 1,0,0$:

 $\mu \perp \kappa$ good!

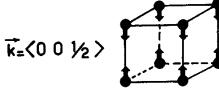
$$\kappa = 0,0,1$$

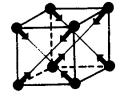
a*=b*=0: everything within a basal plane (a-b) adds up in phase

c*=1:

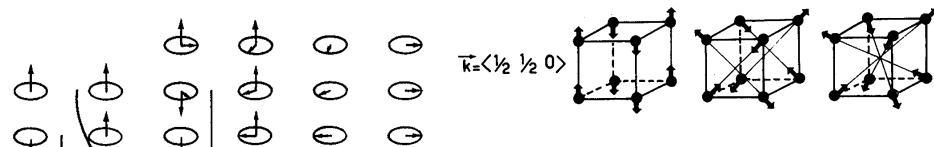
 2π phase shift from top to bottom of unit cell

 π phase shift from corners to body-centre –good but μ // κ kills off intensity!

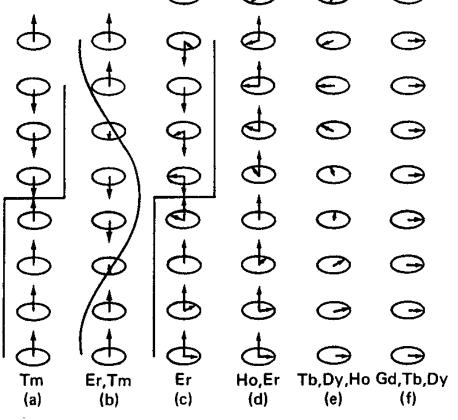

Magnetic Structures can be complicated


 $Single-\vec{k}$

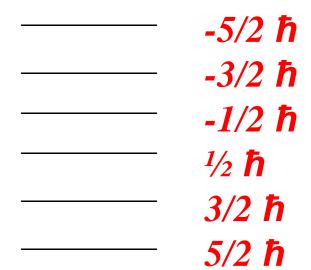

Double -k


Triple-k

Incommensurate structures in rare earth metals

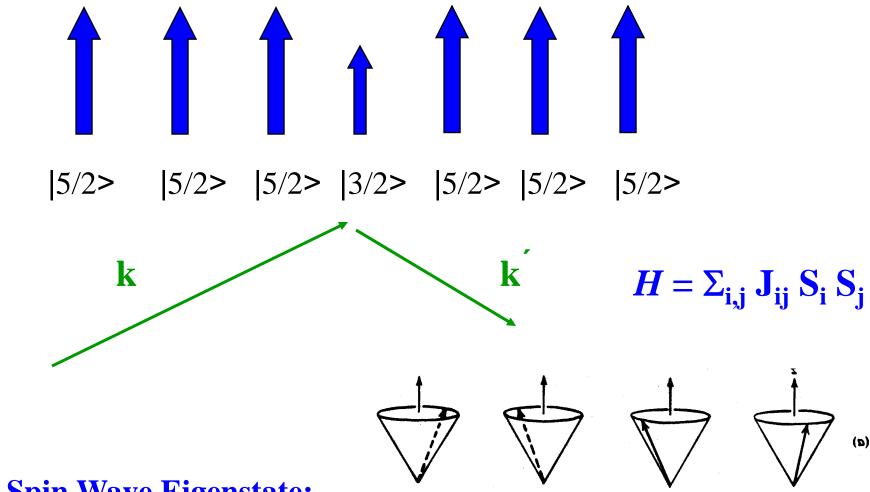


Muliple-k structures in high-symmetry antiferromagnets

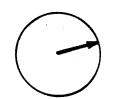

Mn^{2+} as an example: $\frac{1}{2}$ filled 3d shell S=5/2

$$(2S+1) = 6$$
 states : $|S(S+1), m_z| >$

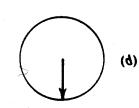
$$m_z = +5/2 \, h, +3/2 \, h, +1/2 \, h, -1/2 \, h, -3/2 \, h, -5/2 \, h$$



H=0; 6 degenerate states


 $H \neq 0$; 6 non-degenerate states

Magnetic sites are coupled by exchange interactions:


Spin Wave Eigenstate:

"Defect" is distributed over all possible sites

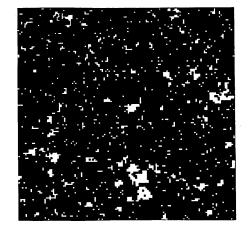
Inelastic Magnetic Scattering : $|\mathbf{k}| \neq |\mathbf{k}^0|$

Figure 9 A spin wave on a line of spins. (a) The spins viewed in perspective. (b) Spins viewed from above, showing one wavelength. The wave is drawn through the ends of the spin vectors.

Study magnetic excitations (eg. spin waves)

Dynamic magnetic moments on time scale 10⁻⁹ to 10⁻¹² sec

$$S(\kappa, \omega) = n(\omega) \chi''(\kappa, \omega)$$


Sum Rules:

One can understand very general features of the magnetic neutron Scattering experiment on the basis of "sum rules".

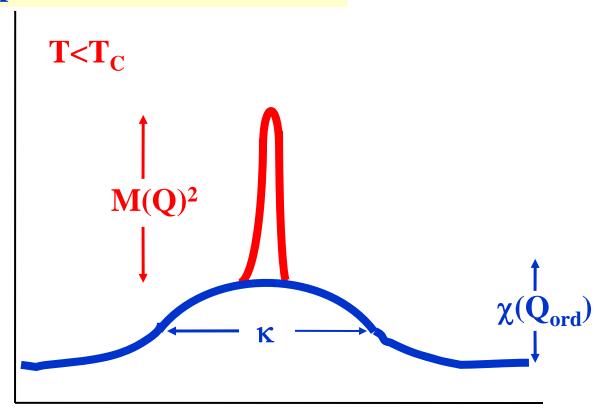
1.
$$\chi_{DC} = \int (\chi''(\kappa=0, \omega)/\omega) d\omega$$
;

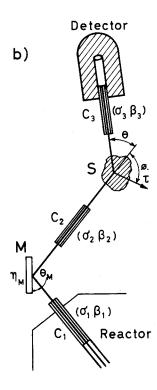
where χ_{DC} is the χ measured with a SQUID

2.
$$\int d\omega \int_{BZ} d\kappa S(\kappa, \omega) = S(S+1)$$

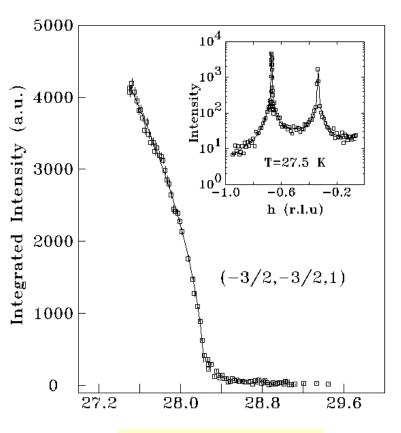
$$T = 0.9 T_{\rm C}$$

Symmetry broken


$$T = T_C$$

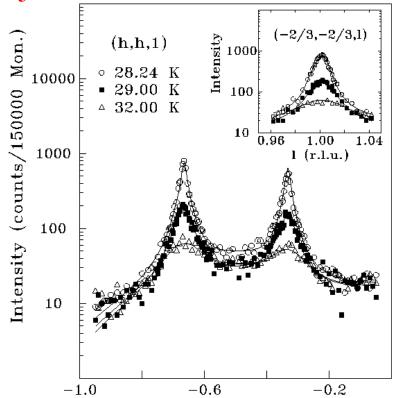

ξ~ very large
Origin of universality

$$T = 1.1 T_C$$


• Diffuse scattering gives fluctuations in the order parameter

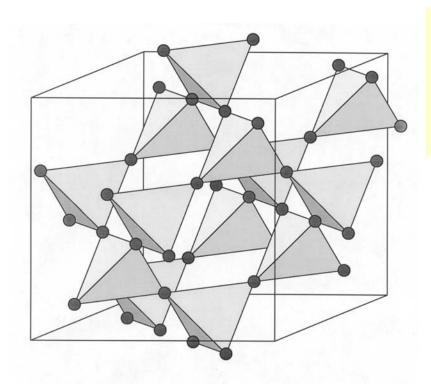
Intensity

 $Q=2\pi/c$

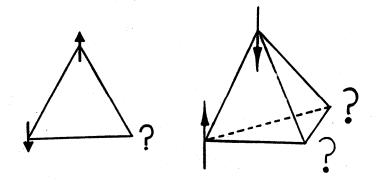


Bragg scattering

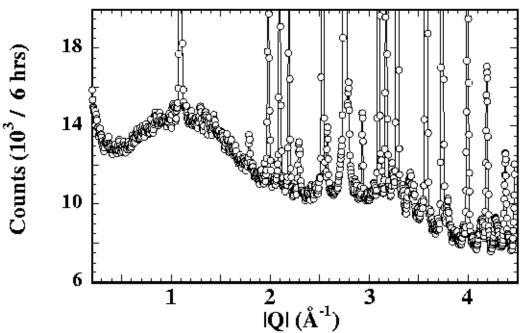
Q=(2/3, 2/3, 1)


$$I=M^2=M_0^2(1-T/T_C)^{2\beta}$$

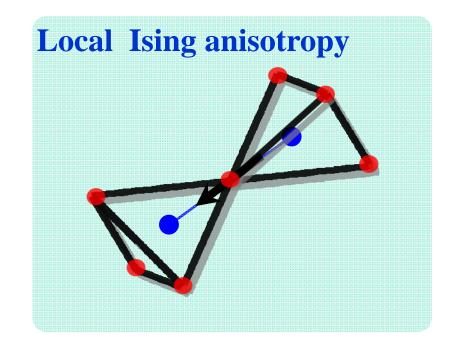
CsCoBr₃

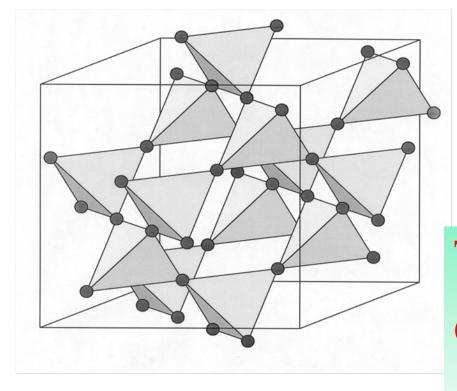

Energy-integrated critical scattering

$$\frac{d\sigma(\vec{Q})}{d\Omega} = \frac{\chi(\vec{Q}_{ord})}{1 + \frac{q_a^2 + q_b^2}{\kappa_{ab}^2} + \frac{q_c^2}{\kappa_c^2}},$$



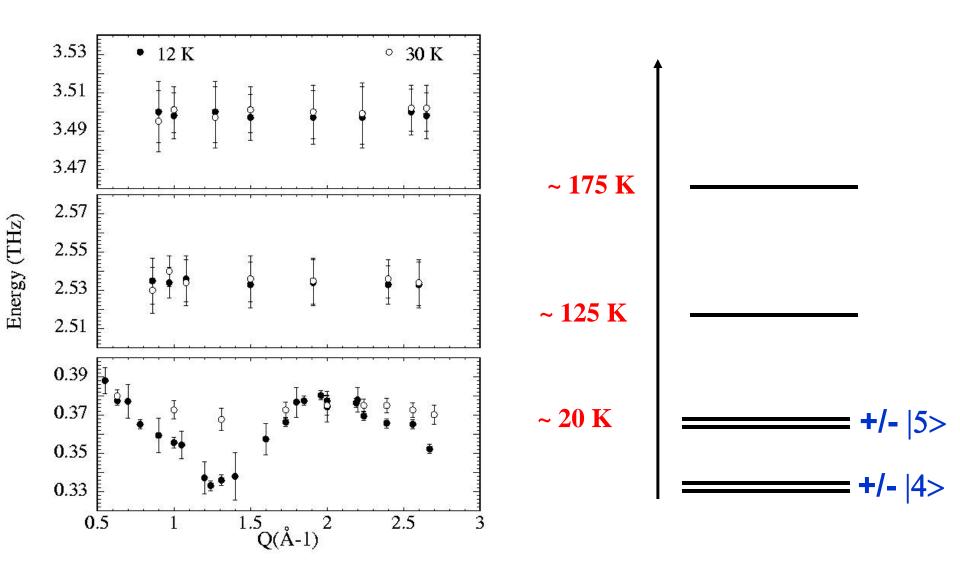
Geometrical Frustration:

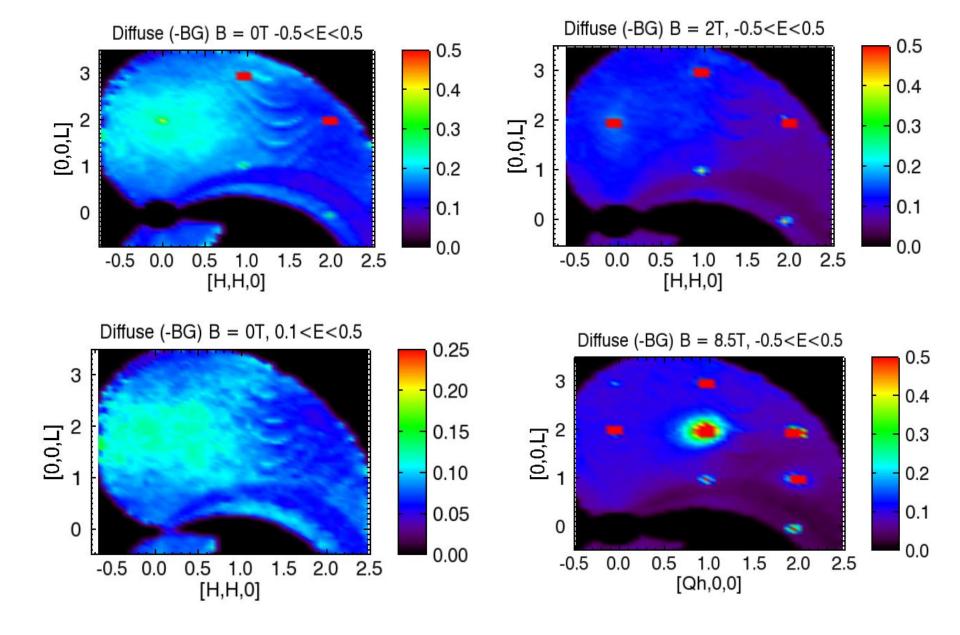

The cubic pyrochlore structure; A network of corner-sharing tetrahedra



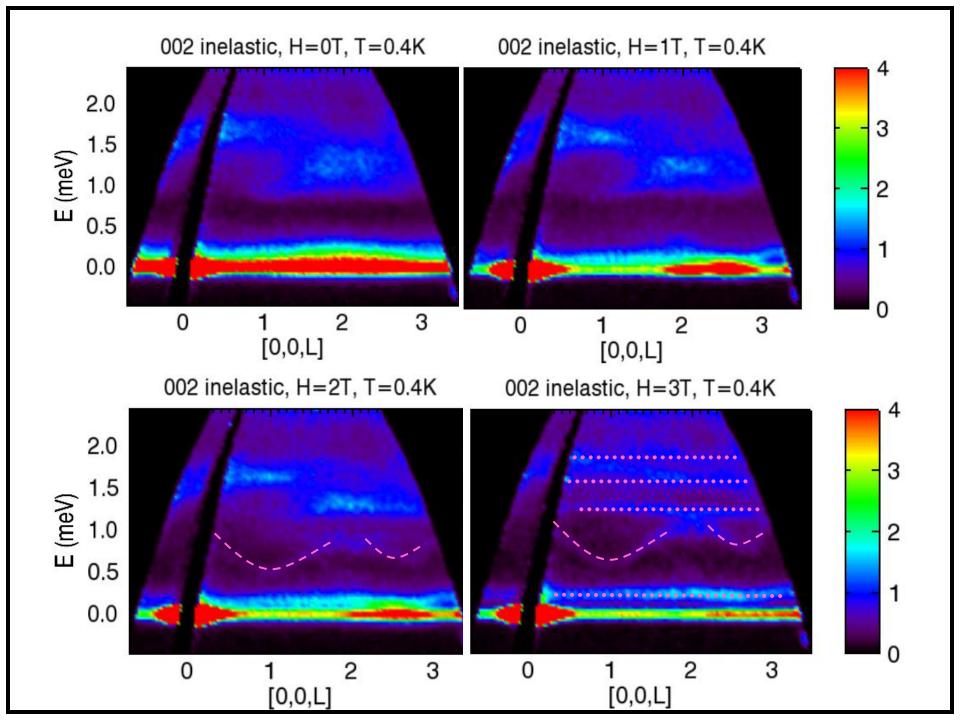
 $\begin{array}{c} Low\ temperature\ powder\\ neutron\ diffraction\ from\\ Tb_2Ti_2O_7 \end{array}$

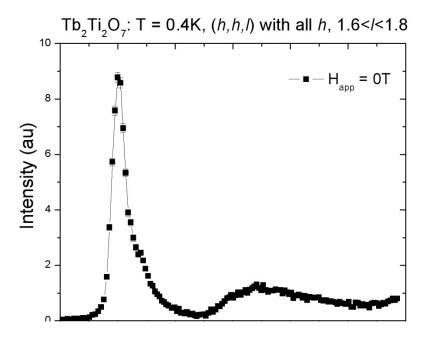
 A^{3+} site within a distorted cube of 8 O^{2-} ions — unique direction pointing into or out of tetrahedra



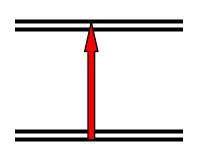

 Tb^{3+} : S=3, L=3, J=6

(2J+1) = 13 states split by the crystalline electric field

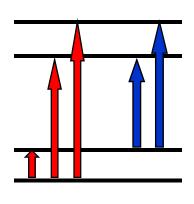

Inelastic neutron scattering on polycrystalline Tb₂Ti₂O₇

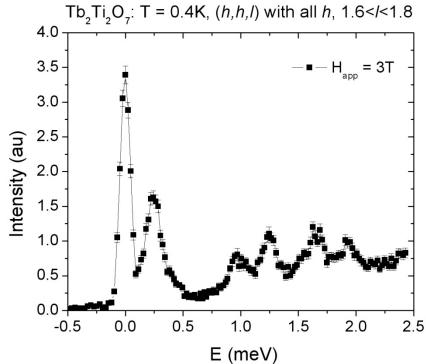


 $(\Delta : Ho_2Ti_2O_7 \sim 240 \text{ K}; Dy_2Ti_2O_7 \sim 380 \text{ K})$



Time-of-flight neutron scattering from DCS on Tb₂Ti₂O₇





One Transition in Zero Field

Five Transitions in Non-Zero Field

Conclusions:

- Neutrons probe magnetism on length scales from $1-100\,A$, and on time scales from 10^{-9} to 10^{-12} seconds
- Magnetic neutron scattering goes like the form factor squared (small κ), follows dipole selection rules $<\lambda^{'} \mid S^{+,-,z} \mid \lambda>$, and is sensitive only to components of moments \bot to κ .
- Neutron scattering is the most powerful probe of magnetism in materials; magnetism is a killer application of neutron scattering (1 of 3).