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Introduction 

 

This document is a simple tutorial for using FULLPROF as a tool for determining magnetic 

structures using neutron powder diffraction (NPD). The user of this document should know 

the basic facts of magnetism and magnetic structures. It is supposed a good knowledge of 

crystallography and some practice and basic knowledge of the structure of a PCR file (the 

input control file needed for running FULLPROF). Magnetic symmetry considerations will not 

be treated in detail here (it is assumed that the user has some knowledge on that subject); 

however, the available document: Symmetry and Magnetic Structures, by J. Rodríguez-

Carvajal and F. Bourée, that will be published in the Editions de Physique, treats largely the 

subject from the point of view of the representation theory. This document will be referenced 

hereafter as SMS. Some parts of the SMS text and the examples treated there have been taken 

for the present tutorial. A summary of the most important parts of SMS for this tutorial is 

given in the appendix of this document. In FullProf there are many ways of writing PCR files 

for treating magnetic structures; in this document we describe only the simplest ones. 

 

Determination of magnetic structures using the programs of the FULLPROF SUITE 

 

The procedure for determining a magnetic structure using powder diffraction is relatively 

simple.  It can be summarised as follows: 

 

1: Collect a NPD of the sample in the paramagnetic state (T > TN orTC). Refine the crystal 

structure using the collected data and get all the relevant structural and profile parameters. 

Use FULLPROF and WINPLOTR for doing this task. 

 

2: Collect a NPD below the ordering temperature. Normally additional magnetic peaks appear 

in the diffraction pattern. It is important to make a refinement by fixing all the structural 

parameters, without putting a magnetic model in the PCR file, in order to see clearly the 

magnetic contributions to the diffraction pattern. Get the peak positions of the additional 

peaks using WINPLOTR-2006 and save them in a format adequate to the program K-SEARCH. 

 

3: Determine the propagation vector(s) of the magnetic structure (See appendix for a 

summary of the formalism of propagation vectors) by using the program K-SEARCH or by trial 

and error with an additional phase in the PCR file treated in Le Bail Fit (LBF) mode (no 

magnetic model). If there are no additional peaks and only an additional contribution to the 

nuclear peaks is observed, the magnetic structure has as propagation vector k = (0, 0, 0). 

 

4: Once the propagation vector is determined, use the program BASIREPS in order to get the 

basis vectors of the irreducible representations (irreps) of the propagation vector group (Gk, 
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see SMS or the appendix for more details). With the help of this program one can determine 

the Shubnikov group and the appropriate magnetic symmetry operators, or, alternatively, use 

directly the basis vectors of the irreps.  

 

5: Solve the magnetic structure by using the symmetry information obtained in step 4 using 

trial and error methods (5-1) or the simulated annealing (SAnn) procedure (5-2) implemented 

in FULLPROF. 

 

5-1: In the first case one has to modify the PCR file used in step 2 by adding an 

additional magnetic phase by putting Jbt=1 (magnetic phase with Fourier 

coefficients/magnetic moments referred to the unitary basis along the unit cell axes),  Irf=-1 

(only satellites will be generated). The best way to create such additional magnetic phase is to 

copy it from an already existing PCR file similar to that of the current case and modify it 

using the symmetry information obtained in step 4. Run FULLPROF fixing nearly all 

parameters, except the magnetic moments or the coefficients of the basis functions, and check 

in the plots if the calculated magnetic peaks have intensities close to the observed ones. If not, 

change the magnetic model (use another representation or other magnetic symmetry 

operators) and try again. In some cases this is enough to solve the magnetic structure. In case 

this does not work use the method described in 5-2. 

 

5-2: In the second case one has to modify the PCR file used in step 2 by adding an 

additional phase in LBF mode (as for one of the options in step 3). This additional phase has 

no atoms and we have to put Jbt=2, Irf= -1 and Jview=11. The nuclear phase has to be 

treated with fixed scale factor and structural parameters. This allows getting the purely 

magnetic reflections in a separate file that can be used by FULLPROF in SAnn mode. This 

method will be explained lately in detail. 

 

6: Refine the magnetic using the Rietveld method implemented in FULLPROF. Once the 

magnetic model gives a calculated powder diffraction pattern close enough to the observed 

one, we start the refinement phase. If we use the trial and error method (5-1) the refinement 

step is just the continuation of the previous step. If the simulated annealing method (5-2) was 

used we have to translate the final solution stored in an automatically generated PCR file to 

the file for treating directly the powder diffraction profile.  

 

The different steps described above and their order may be changed slightly depending on the 

previous knowledge the user has on the sample. We will illustrate these steps with a very 

simple case that may be useful for beginners in magnetic structure determination. We provide 

together with this document the data files of this example as well as other data files and PCR 

files corresponding to the examples treated in the SMS document. 

 
 

Determination of the magnetic structure of LaMnO3. 

 

Step 1: 

We provide two powder diffraction patterns of LaMnO3 (F. Moussa, M. Hennion, J. 

Rodríguez-Carvajal, L. Pinsard and A. Revcolevschi,  Physical Review B 54 (21), 15149 

(1996)) taken at the LLB diffractometer G4.2 with =2.59 Å. The space group is G=Pbnm, 

the cell parameters are a 5.53 Å, b 5.75 Å and c 7.68 Å 150K (paramagnetic phase, 

TN 140K). The format of the data corresponds to Ins=6 in FULLPROF. The pattern 
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corresponding to the magnetically ordered phase has been taken at 50K in the same conditions 

as that of the paramagnetic phase.  

 

In addition to the data, we provide also a complete PCR file well adapted for refining the 

crystal structure of LaMnO3 at 150K. The user can open the two diffraction patterns using 

WINPLOTR-2006 for a comparison. In the figure below we show the plot with the two 

patterns: 

               
The pattern in blue corresponds to the magnetically ordered phase and one can see the 

appearance of strong peaks in the low angle part (15-70 degrees in 2 ). The strong peak at 

very low angle corresponds to the tail of the primary beam and the beam-stop. Using the 

menu: Calculations→ Difference taking as profile A that of  50K and profile B that of 150 K 

we can represent the difference pattern alone by selecting the menu: Profile→ Show  and then 

selecting only the difference pattern. We obtain something like the pattern shown below:  

                    
One can see the prominent magnetic peaks and oscillating features due to thermal expansion 

and the consequent difference in cell parameters. It is also important to remark that the 

background of the 50K-150K difference pattern is negative. This is due to the diminution of 

the paramagnetic scattering. Notice also that the red curve in the first figure is above the blue 

one and the effect is more prominent at low angles. 
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For completing the step 1 of the procedure the refinement of the crystal structure of LaMnO3 

can be done with the provided PCR file called LaMn150k.pcr. This is done 

straightforwardly by running FULLPROF from the TOOLBAR or directly from WINPLOTR-

2006. The observed and calculated patterns are represented below: 

                  
Notice that we have excluded one region in which appears a broad peak from the sample 

environment. 

 

Step 2: 

Now we copy the PCR file corresponding to 150K into another PCR file that we shall call 

test-a.pcr. Before 

running FULLPROF, edit this 

file and fix all parameters, 

taking the precaution of 

incrementing arbitrarily the 

Chi-square value in order to 

oblige the program to save 

the PCR file event if the 

refinement (in fact a 

comparing calculation) goes 

worse. Another important 

point is that the background 

has changed; we can use 

WinPLOTR-2006 to select 

manually or automatically a 

background for the pattern at 50K as shown in the figure. If one uses the automatic mode 

(Auto detection) as shown in the 

figure, a series of background points 

are automatically generated. An 

inspection is needed in order to 

eliminate some of the points by 

selecting the appropriate option in the 

Calculations→ Background→ Delete 
point menu. In the following figure we 

show the aspect of the background after 
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eliminating the points marked with arrows. 

We save the background points in a file by selecting Calculations→ Background→ Save 

background menu. A file is created and from it the background can be pasted in the PCR file 

replacing the background refined at 150K. Below we show the aspect of the PCR file in which 

important points of the header part are emphasised. 
 

COMM  LaMnO3 (Pbnm) G42-50K (Crystal structure at 150K) 

! Current global Chi2 (Bragg contrib.) =  999999.844 

! Files => DAT-file: LaMn50k.dat,  PCR-file: test-a 

!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 

   1   7   1  30   3   0   1   0   0   0   0   0   0   0   0   0   0   0   0 

! 

!Ipr Ppl Ioc Mat Pcr Ls1 Ls2 Ls3 NLI Prf Ins Rpa Sym Hkl Fou Sho Ana 

   0   0   1   0   1   0   4   0   0   1   6   0   0   0   0   0   0 

! Lambda1  Lambda2   Ratio  Bkpos  Wdt  Cthm   muR  AsyLim Rpolarz 2nd-muR->Patt# 1 

 2.597000 2.597000  0.00000 90.00  8.0  0.00  0.65  180.00    0.00  0.00 

! 

!NCY  Eps  R_at  R_an  R_pr  R_gl     Thmin       Step       Thmax    PSD    Sent0 

 15  0.10  1.00  1.00  1.00  1.00      1.0000   0.100000   152.9000   0.000   0.000 

! 

!2Theta/TOF/E(Kev)   Background  for Pattern#  1 

        8.30000       47.0000 

       11.90000       40.0000 

       17.10000       34.0000 

....... 

! 

! Excluded regions (LowT  HighT) for Pattern#  1 

      -10.00        8.20 

      130.30      132.00 

      160.00      180.00 

! 

! 

       0    !Number of refined parameters 

! 

!  Zero    Code    SyCos    Code   SySin    Code  Lambda     Code MORE ->Patt# 1 

  0.10323   51.0  0.00000    0.0  0.00000    0.0 0.000000    0.00   0 

. . . . . .  

Notice that we use the profile function Npr=7, we have changed the number of background 

points (Nba=30), we use the March-Dollase model for preferred orientation (Nor=1), option 

to re-write the PCR file on output (Pcr=1), the data format adequate for G4.2 (Ins=6), an 

effective absorption coefficient (muR=0.65), the asymmetry correction is applied 

everywhere (AsyLim=180.0), fifteen cycles (NCY=15) and we have put Aut=0 in order to 

fix all parameter by putting the number of refined parameters equal to zero. 
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Doing all the above things and running FULLPROF we obtain a plot similar to that shown in 

the figure. If we refine only the cell parameters we obtain a much better agreement. 

We can see better the magnetic peaks as shown below after refining only the cell parameters. 

 

  Using this last plot we can select the magnetic peak positions at low angles. It is better to use 

a refined plot because the selection of magnetic peaks gives automatically corrected positions 

(zero shifts not needed). Few magnetic peaks are necessary to search the propagation vector 

for commensurate structures. In the following figure we show that we have selected the four 

most prominent peaks at low angles and we want to save them in a file with the format needed 

by the program K-SEARCH. 

 

After selection the menu option Calculations→ Peak detection→ Save peaks → K_Search 
Format the program opens a dialog in which the user can select the appropriate options. We 
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must start considering only the special k-vectors option and go for incommensurate structures 

if the case we are unable to find a solution. 

 

Step 3: 

Having a look into the previous figure, we see that some magnetic peaks seem to appear on 

top of nuclear peaks. This is an indication that the propagation vector may be k=0. If we run 

the program K-SEARCH just after saving the file k-search.sat, in which the selected (or 

automatically detected satellite) peaks are saved, a window opens showing the solutions found 

by the program. Do not forget to select the console window and press the enter key ( ) to 

close it if we want to re-run the program.  

 

In our case is clear that the k = (0, 0, 0) solution is the best. This can be verified by repeating 

the final part of the step 2 in which we select more peaks at higher angles. Sometimes a better 

R-factor is found for a wrong solution when the number of peaks is small. For instance, a 

small shift in positioning one of the four peaks would give the solution k=(0, ¼, 0), with a 

better R-factor. This has always to be checked by using more peaks or by doing a LBF 

generating the satellites.  

 

Let us describe how to introduce an additional phase using the LBF method. We can make a 

copy of the file test-a.pcr into the file test-b.pcr, edit this last file and add a new 

phase. For doing that we change the number of phase to two (Nph=2) and we duplicate the 

complete description of the phase block (including the profile parameters). After that, in the 

phase 2 we change eventually the name, we remove the atoms and we put Jbt=2, Irf=-1 

and Nvk=1, we have to add the propagation vector in the appropriate place. The aspect of the 

important parts of the PCR file is shown below: 
 

COMM  LaMnO3 (Pbnm) G42-50K (Crystal structure at 150K + Lebail Fit) 

! Current global Chi2 (Bragg contrib.) =      23.81 

! Files => DAT-file: LaMn50K.dat,  PCR-file: test-b 

!Job Npr Nph Nba Nex Nsc Nor Dum Iwg Ilo Ias Res Ste Nre Cry Uni Cor Opt Aut 

   1   7   2  30   3   0   1   0   0   0   0   0   0   0   0   0   0   0   0 

........... 

       0    !Number of refined parameters 

 



 8 

Notice that we have put Aut=0 because we will fix all parameters before starting the LBF 

run. 

......... 
!     a          b         c        alpha      beta       gamma      #Cell Info 

   5.536947   5.749676   7.668954  90.000000  90.000000  90.000000 

   21.00000   31.00000   11.00000    0.00000    0.00000    0.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 

  1.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.03500  0.02200 

     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00 

!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:    16.76 

!------------------------------------------------------------------------------- 

LaMnO3 (Magnetic contribution, without model) 

! 

!Nat Dis Ang Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   0  0   0 0.0 0.0 1.0   2   -1   0   0   0        967.367   1   7   1 

! 

!Jvi Jdi Hel Sol Mom Ter  Brind   RMua    RMub    RMuc   Jtyp  Nsp_Ref Ph_Shift N_Domains 

  11   0   0   0   0   0  1.0000  0.0000  0.0000  0.0000    1      0      0      0 

! 

P -1                  <--Space group symbol for hkl generation 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

  2.9309       0.00000   0.00000   0.00000   0.00000   0.00000       0 

     0.00000     0.000     0.000     0.000     0.000     0.000 

!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 

   0.076688  -0.277607   0.397605   0.048728   0.000000   0.000000   0.000000    0 

      0.000      0.000      0.000      0.000      0.000      0.000      0.000 

!     a          b         c        alpha      beta       gamma      #Cell Info 

   5.536947   5.749676   7.668954  90.000000  90.000000  90.000000 

   21.00000   31.00000   11.00000    0.00000    0.00000    0.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 

  1.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.03500  0.02200 

     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00 

! Propagation vectors: 

   0.0000000   0.0000000   0.0000000          Propagation Vector  1 

    0.000000    0.000000    0.000000 

!  2Th1/TOF1    2Th2/TOF2  Pattern # 1 

       8.200     152.900       1 

 

We have removed the atoms and selected the LBF (Jbt=2) with generation of satellites 

(Irf=-1). Nvk=1 tells the program that we have a single propagation vector that is given 

after the line in which we have the preferred orientation parameters. Notice that we have put 

also More=1 in order to introduce the new line starting with !Jvi. The value Jvi=11 tells 

the program that it has to 

generate a list of integrated 

intensities grouped into 

clusters that can be treated 

again by FULLPROF when 

using the SAnn mode. The 

rest of the values in the 

line are not important 

except Jtyp that should 

be equal to 1 (neutrons). 

The program handles 

directly the values if we 

provide only the first item 

Jvi=11. Notice that the 

space group used is “P -1”, this is because the symbol is used for generating the 

fundamental reflections and then the satellites (that in this case coincide) and no symmetry is 

assumed because we do not know yet the magnetic structure. Running FULLPROF with the 

above file one obtains after refining the cell parameters and the FWHM parameters, a plot of 
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the observed and calculated patterns similar to that shown if the figure above. The program 

has produced several file containing intensities, in particular the file called test-

b2_cltr.int, containing exclusively the magnetic contribution with reflections re-grouped 

when forming part of a cluster. The header of the file is written below: 

 
!Phase No:2 LaMnO3 (Magnetic contribution)  Overlapped reflections re-grouped-> Obs = j LP F^2 

(4i4,2f16.5,i4,3f14.4) 

  2.59700   0   2    0.6500 

   1 

  1   0.00000   0.00000   0.00000 

   0   0   1   1       572.19104         7.06131   2        0.0000        0.0000       19.4976 

   0   1   0   1         2.70224         1.51152   2        0.0000        0.0000       26.1057 

   1   0   0   1         1.81073         1.31823   2        0.0000        0.0000       27.1281 

   0  -1   1   1        -1.00000         0.78080   2        0.0000        0.0000       32.7923 

   0   1   1   1        11.07332         1.10422   2        0.0000        0.0000       32.7923 

  -1   0   1   1        -1.00000         0.52146   2        0.0000        0.0000       33.6286 

   1   0   1   1         8.85244         0.73746   2        0.0000        0.0000       33.6286 

   1  -1   0   1        -1.00000         0.16060   2        0.0000        0.0000       38.0035 

   1   1   0   1        21.08212         0.22712   2        0.0000        0.0000       38.0035 

. . . . . . . 

The first line contains a title, the second the format in which the data have to be read, the third 

line contains the wavelength. The 0 indicates that we have squared structure factors (in fact 

intensities for powders), the 2 indicates that we have powder data and then the observations 

contain the product of the multiplicity, Lorentz factor and the square of the structure factor.  

The fourth line contain the number of propagation vectors (one in this case), the fifth line 

contain the ordinal number of the propagation vector and their components.  

The rest of the lines are the hkl indices of the parent reflection and the number in the list of 

the propagation vector, the integrated intensity, a pseudo-sigma, the multiplicity, non-used 

values and the 2theta angle of the reflection. The file may be used for doing a SAnn job for 

determining the magnetic structure.  

 

Step 4: 

As the propagation vector is k= (0, 0, 0), the magnetic unit cell is identical to the nuclear cell. 

The Mn atoms are in the Wyckoff position 4b: 1(1/2,0,0), 2(1/2,0,1/2), 3(0,1/2,1/2) and 

4(0,1/2,0), with four sublattices. The whole symmetry analysis may be performed by hand or 

by using one of the available computing programs doing the work automatically. We use 

hereafter the program BASIREPS [11]. 

The formulas described in the 

appendix corresponding to the section 

“Representation analysis for Magnetic 

Structures” are programmed in 

BASIREPS and the user can simply use 

it with a minimal knowledge of group 

theory.  

 

The input for BASIREPS is very simple 

and normally only the first 

representative of the Wyckoff site is 

needed. In this particular case we want 

a well defined order of the atoms of 

the different sublattices of the 4b site. 

The input is shown in the dialog of the 

GUI for BASIREPS. Notice that the 

name of the atoms when the Explicit 
Sublattices check box is marked are 
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given with an underscore and a number. This is a constraint of the program. If we do not use 

this option we have to provide only the first representative atom of the full site. The program 

generates the sublattices by applying the symmetry operators of the space group but the order 

may be different from that of interest to the user. If the check box Atoms in unit cell is 

marked, the program applies the appropriate lattice translations for obtaining positive 

fractional coordinates of the atoms of all generated sublattices. 

 

The propagation vector is invariant, so Gk=G=Pbnm. The list of the irreducible 

representations (all of them of dimension 1) is given in Table 1, in which p=1/2. This table 

has been prepared from the output of BASIREPS. 

 

Table 1: Irreducible representations of Gk=G=Pbnm. 
---------------------------------------------------------------------------------------------- 

Irreps  {1}   {2z|00p}   {2x|pp0}    {2y|ppp}   {-1}  m={mz|00p}  b={mx|pp0} n={my|ppp}   SG 

----------------------------------------------------------------------------------------------     

 1:     1       1          1           1        1        1          1          1       Pbnm 

 2:     1       1          1           1       -1       -1         -1         -1       Pb’n’m’ 

 3:     1       1         -1          -1        1        1         -1         -1      Pb’n’m 

 4:     1       1         -1          -1       -1       -1          1          1      Pbnm’ 

 5:     1      -1          1          -1        1       -1          1         -1      Pbn’m’ 

 6:     1      -1          1          -1       -1        1         -1          1      Pb’nm 

 7:     1      -1         -1           1        1       -1         -1          1      Pb’nm’ 

 8:     1      -1         -1           1       -1        1          1         -1      Pbn’m 

 

We have provided the symbol of the Shubnikov group (SG) corresponding to each irreducible 

representation in the last column of the table. All irreps are real, so we have a perfect 

correspondence between irreps and Shubnikov groups. 

 

We do not give here the matrices of the magnetic representation m, of dimension 3 pj=3 4 = 

12, because it can be easily deduced by hand or from the information given in the output file 

of BASIREPS (we give the details in the Appendix B). m has the characters: ( m-4b) = (12, 

0, 0, 0, 12, 0, 0, 0) and decomposes (see equations 14 in the Appendix A) in terms of the 

irreps of the previous table as follows: 

1 3 5 7(4 ) 3 3 3 3m b  

This means that if a single irrep defines the magnetic structure we have only three free 

parameters: nf= n dim( )=3 1=3, which is well below the 12 components of magnetic 

moments in the primitive cell. The calculation of the basis vectors applying the formula (17) 

in the appendix A is done by BASIREPS.  Here we reproduce the (simplified) output of the 

calculation for the irrep 3 corresponding to the experimental magnetic structure: 

 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

  Basis functions of Representation IRrep( 3) of dimension  1 contained 3 times in GAMMA 

 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

              SYMM  x,y,z   -x+1,-y,z+1/2   -x+1/2,y+1/2,-z+1/2   x-1/2,-y+1/2,-z 

              Atoms:      Mn_1              Mn_2              Mn_3              Mn_4 

 BsV( 1, 1: 4):Re (    1    0    0) (   -1    0    0) (    1    0    0) (   -1    0    0) 

 BsV( 2, 1: 4):Re (    0    1    0) (    0   -1    0) (    0   -1    0) (    0    1    0) 

 BsV( 3, 1: 4):Re (    0    0    1) (    0    0    1) (    0    0    1) (    0    0    1) 

 

  SYMM x,y,z                           Atom: Mn_1      0.5000  0.0000  0.0000 

  Sk(1): (u,v,w) 

  SYMM -x+1,-y,z+1/2                   Atom: Mn_2      0.5000  0.0000  0.5000 

  Sk(2): (-u,-v,w) 

  SYMM -x+1/2,y+1/2,-z+1/2             Atom: Mn_3      0.0000  0.5000  0.5000 

  Sk(3): (u,-v,w) 

  SYMM x-1/2,-y+1/2,-z                 Atom: Mn_4      0.0000  0.5000  0.0000 

  Sk(4): (-u,v,w) 
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The fact that only four irreps contribute to the magnetic representation is due to the fact that 

the Wyckoff position (4b) contains a centre of symmetry and the irreps with χ(1)=-1 are not 

allowed. In other terms, time inversion cannot be mixed with the centre of symmetry in this 

case because the atoms in that position would have a zero magnetic moment. The point group

1’ is not admissible.  

 

The interpretation of the above table in terms of the mathematical expressions given in the 

appendix is as follows (the indices n  are combined in a single integer index): 

Example 1: the atomic component of the basis vector (BsV) 1 for atom Mn_2 of 

representation 3 for propagation vector (000) is: 
(000) 3

1 2( ) ( 1,0,0)k
S Sn js Mn

 Example 2: The atomic component of the basis vector 2 for atom Mn_3 of 

representation 3 for propagation vector (000) is: 
(000) 3

2 3( ) (0, 1,0)k
S Sn js Mn

 Example 3: the full basis vector 2 for representation 3 and propagation vector (000) 

for the whole set of atoms is: 
31 2 4

(000) 3

2(2,1: 4) (0, 1, 0, 0, -1, 0, 0, 1, 0, 0, 1, 0)k
ψ ψ      -     nBsV  

 

If we call u, v, w the three free mixing coefficients (in our case they are real numbers because 

k=0), the magnetic structure can be globally described by the global Fourier coefficient (it 

coincides with the whole set of magnetic moments):  

[1,2,3,4] [ ] 1 2 3

k k k k k

k
m =S ψ ψ ψ ψn n

n

C u v w  

 

The individual magnetic moments of the four atoms are:  

1 1(1) (1) ( , , )k k

k
m = S Sn n

n

Sk C u v w ;     
2 2(2) (2) ( , , )k k

k
m = S Sn n

n

Sk C u v w  

3 3(3) (3) ( , , )k k

k
m = S Sn n

n

Sk C u v w ;  
4 4(4) (4) ( , , )k k

k
m = S Sn n

n

Sk C u v w  

        
Magnetic structure of LaMnO3. Four unit cells and the numbering of the 

Mn atoms are shown. From the fitting of the powder diffraction pattern, 

we obtain u≈0, v≈3.8 B, w≈0. See text for details. 
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A very common notation in the literature is that of sequence of signs G(+,–,+,–), A(+,–,–,+), 

F(+,+,+,+) and C(+,+,–,–), called modes by Bertaut [6,7,8,9]. For the current irrep 3 

(Shubnikov group Pb’n’m) the label for the magnetic structure in terms of these modes is: 

(Gx, Ay, Fz).  

The structure is antiferromagnetic with a very weak ferromagnetic component (only seen by 

macroscopic magnetisation measurements) along c and formed by ferromagnetic planes 

stacked antiferromagnetically along c. This is the so called A-type AF structure in literature 

about perovskites. The structure is shown in the above Figure. 

 

If we list the four magnetic moments (identical to Fourier coefficients in this case) as: 
 1(u,v,w);  2(-u,-v,w);  3(u,-v,w);  4(-u,v,w)  

 

together with the symmetry operators that pass from atom 1 to 1, 2, 3, 4, respectively: 
    1(x,y,z):1; 2(-x+1,-y,z+1/2): 21z;  3(-x+1/2, y+1/2,-z+1/2): 21y;  4(x-1/2,-y+1/2,-z): 21x  

 

we can see that the rotational parts of the symmetry operators correspond to the action of the 

elements: 1, 2z, 2y and 2x respectively. We can interpret the symbols (u, v, w) as matrices 

corresponding to the transformation of the magnetic moment of the atom 1 to the magnetic 

moments of the atoms 1,2,3,4. As binary axes are proper rotations, we can see that the 

matrices correspond to the symmetry operators: 1, 2z, 2’y and 2’x respectively. Time inversion 

is then associated with the symmetry operators 21y and 21x as required by the Shubnikov 

group Pb’n’m (see the characters of the irrep 3 for operators {2x|½½0} and {2y|½½½} in 

Table 1). 

 

Step 5:  
In the case of LaMnO3, a simple trial and error method, using the symmetry information of 

the step 4, provides the correct magnetic model. As we have anticipated, the correct solution 

corresponds to the irrep 3 for representation, to arrive to this conclusion we have to test, at 

this stage, the different representations using reasonable values of the magnetic moments. Let 

us summarise the list of basis vectors and Fourier coefficients for the four possible irreps in 

the case of LaMnO3 adapted from the output of BASIREPS. 
   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 => Basis functions of Representation IRrep( 1) of dimension  1 contained 3 times in GAMMA 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

              SYMM  x,y,z   -x+1,-y,z+1/2   -x+1/2,y+1/2,-z+1/2   x-1/2,-y+1/2,-z    

              Atoms:      Mn_1              Mn_2              Mn_3              Mn_4             

 BsV( 1, 1: 4):Re (    1    0    0) (   -1    0    0) (   -1    0    0) (    1    0    0)  

 BsV( 2, 1: 4):Re (    0    1    0) (    0   -1    0) (    0    1    0) (    0   -1    0)  

 BsV( 3, 1: 4):Re (    0    0    1) (    0    0    1) (    0    0   -1) (    0    0   -1)  

 

       SYMM x,y,z     Sk(1): (u, v, w) 

       SYMM -x+1,-y,z+1/2        Sk(2): (-u,-v, w) 

       SYMM -x+1/2,y+1/2,-z+1/2   Sk(3): (-u, v,-w) 

       SYMM x-1/2,-y+1/2,-z       Sk(4): (u,-v,-w) 

 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 => Basis functions of Representation IRrep( 3) of dimension  1 contained 3 times in GAMMA 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

              SYMM  x,y,z   -x+1,-y,z+1/2   -x+1/2,y+1/2,-z+1/2   x-1/2,-y+1/2,-z    

              Atoms:      Mn_1              Mn_2              Mn_3              Mn_4             

 BsV( 1, 1: 4):Re (    1    0    0) (   -1    0    0) (    1    0    0) (   -1    0    0)  

 BsV( 2, 1: 4):Re (    0    1    0) (    0   -1    0) (    0   -1    0) (    0    1    0)  

 BsV( 3, 1: 4):Re (    0    0    1) (    0    0    1) (    0    0    1) (    0    0    1)  

 

       SYMM x,y,z        Sk(1): (u, v, w) 

       SYMM -x+1,-y,z+1/2      Sk(2): (-u,-v, w) 

       SYMM -x+1/2,y+1/2,-z+1/2    Sk(3): (u,-v, w) 

       SYMM x-1/2,-y+1/2,-z       Sk(4): (-u, v, w) 
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   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 => Basis functions of Representation IRrep( 5) of dimension  1 contained 3 times in GAMMA 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

              SYMM  x,y,z   -x+1,-y,z+1/2   -x+1/2,y+1/2,-z+1/2   x-1/2,-y+1/2,-z    

              Atoms:      Mn_1              Mn_2              Mn_3              Mn_4             

 BsV( 1, 1: 4):Re (    1    0    0) (    1    0    0) (    1    0    0) (    1    0    0)  

 BsV( 2, 1: 4):Re (    0    1    0) (    0    1    0) (    0   -1    0) (    0   -1    0)  

 BsV( 3, 1: 4):Re (    0    0    1) (    0    0   -1) (    0    0    1) (    0    0   -1)  

  

       SYMM x,y,z        Sk(1): (u, v, w) 

       SYMM -x+1,-y,z+1/2      Sk(2): (u, v,-w) 

       SYMM -x+1/2,y+1/2,-z+1/2     Sk(3): (u,-v, w) 

       SYMM x-1/2,-y+1/2,-z    Sk(4): (u,-v,-w) 

 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 => Basis functions of Representation IRrep( 7) of dimension  1 contained 3 times in GAMMA 

   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

              SYMM  x,y,z   -x+1,-y,z+1/2   -x+1/2,y+1/2,-z+1/2   x-1/2,-y+1/2,-z    

              Atoms:      Mn_1              Mn_2              Mn_3              Mn_4             

 BsV( 1, 1: 4):Re (    1    0    0) (    1    0    0) (   -1    0    0) (   -1    0    0)  

 BsV( 2, 1: 4):Re (    0    1    0) (    0    1    0) (    0    1    0) (    0    1    0)  

 BsV( 3, 1: 4):Re (    0    0    1) (    0    0   -1) (    0    0   -1) (    0    0    1)  

 

       SYMM x,y,z        Sk(1): (u, v, w) 

       SYMM -x+1,-y,z+1/2      Sk(2): (u, v,-w) 

       SYMM -x+1/2,y+1/2,-z+1/2   Sk(3): (-u, v,-w) 

       SYMM x-1/2,-y+1/2,-z      Sk(4): (-u, v, w) 

 

For treating magnetic structures in FULLPROF there are several ways. Let us start by 

describing the most important points for constructing a PCR file in which we want to 

introduce the calculation of the magnetic contribution to a powder diffraction pattern. 

 

A magnetic structure phase requires describing only the magnetic atoms in the unit cell. So 

we can start making a copy of the crystallographic structural phase and removing the non-

magnetic atoms. We have to put Jbt=1 or Jbt=-1 to tell the program that what we are 

describing is a magnetic structure and to make calculations of magnetic structure factors and 

magnetic intensities. The negative value indicates that we will use spherical description of the 

Fourier components of magnetic moments.  As stated above Irf=-1 is necessary to instruct 

the program to generate only the magnetic satellites for the magnetic contribution. If the 

propagation vector is k=(0, 0, 0) this is not necessary and we can put Irf=0 and Nvk=0. We 

have to put also Isy=-1 or Isy=-2 for telling the program that we will read symmetry 

instructions (Isy=-1) or directly the component of the basis vectors of the irreps (Isy=-2). 

The symbol of the space group that we need to provide in the magnetic phase is not used for 

generating atoms. It is only used for generating magnetic reflections, so, in the absence of the 

knowledge of the magnetic symmetry it is safe to use the symbol “L -1” where L is the lattice 

symbol: P, A, B, C, I, F or R. The program generates at the end a shorter list of magnetic 

reflections with the proper multiplicity that can be re-used for reading the indices (using 

Irf=1) instead of re-generating the reflections for each run if we do not change the magnetic 

model. After the symbol of the space group for generating reflections if we have to provide 

the number (Nsym) of symmetry operators (SYMM), if the magnetic structure is 

centrosymmetric (Cen=2) of not (Cen=1) , the Laue class number (Laue) and the number 

(MagMat) of different sets of magnetic operators (MSYM).  

After providing this information we have to introduce the magnetic atoms lines in which the 

magnetic form factor symbol, following immediately after the label of the atom, has to be 

given. For transition metals the name identifying the magnetic form factor is given as symbol: 

MCSV, CS is the chemical symbol and V is a number corresponding to the valence of the 

magnetic ion. For rare earths the symbol is JCSV to instruct the program to use the dipolar 
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approximation for the form factor. The real part of the Fourier coefficients of magnetic 

moments (here equivalent to magnetic moments, see equation (6) in appendix A) are provided 

after the coordinates, isotropic temperature factor and occupation factor. The line of 

refinement codes is given just below. The imaginary components as well as an eventual 

magnetic phase related to the site (none of them necessary when k=1/2H) are provided in an 

additional line followed by another line with the refinement codes. 

We reproduce below the magnetic part of the PCR file corresponding to the first irrep 

calculated by BASIREPS, using magnetic symmetry operators. 
 

!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:    99.17 

!------------------------------------------------------------------------------- 

LaMnO3    (Magnetic contribution) irrep1 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   1   0   0 0.0 0.0 1.0   1  -1  -1   0   0        967.367   1   7   0 

! 

P -1                     <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   4   2   3   1 

! 

SYMM x,y,z 

MSYM  u,v,w, 0.0 

SYMM -x+1,-y,z+1/2 

MSYM -u,-v,w, 0.0 

SYMM -x+1/2,y+1/2,-z+1/2 

MSYM -u,v,-w, 0.0 

SYMM x-1/2,-y+1/2,-z 

MSYM  u,-v,-w, 0.0 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rx      Ry      Rz 

!     Ix     Iy     Iz    beta11  beta22  beta33    MagPh 

Mn     MMN3  1  0  0.50000 0.00000 0.00000 0.46901  0.50000   0.143   2.000   1.012 

                      0.00    0.00    0.00    0.00     0.00    0.00    0.00    0.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

!-------> Profile Parameters for Pattern #  1 

!  Scale        Shape1      Bov      Str1      Str2      Str3   Strain-Model 

  2.9309       0.00000   0.00000   0.00000   0.00000   0.00000       0 

     0.00000     0.000     0.000     0.000     0.000     0.000 

!       U         V          W           X          Y        GauSiz   LorSiz Size-Model 

   0.089148  -0.323950   0.426334   0.054033   0.000000   0.000000   0.000000    0 

      0.000      0.000      0.000      0.000      0.000      0.000      0.000 

!     a          b         c        alpha      beta       gamma      #Cell Info 

   5.536546   5.749394   7.668513  90.000000  90.000000  90.000000 

    0.00000    0.00000    0.00000    0.00000    0.00000    0.00000 

!  Pref1    Pref2      Asy1     Asy2     Asy3     Asy4      S_L      D_L 

  1.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.03500  0.02200 

     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00 

! Propagation vectors: 

   0.0000000   0.0000000   0.0000000          Propagation Vector  1 

    0.000000    0.000000    0.000000 

!  2Th1/TOF1    2Th2/TOF2  Pattern # 1 

       8.200     152.900       1 

If we run FULLPROF fixing all 

parameters and putting arbitrary 

magnetic symmetry operators as in the 

present example, we see that the 

agreement is very poor, and the most 

important is that the strongest 

reflection (001) is calculated with zero 

intensity. This is because the first irrep 

corresponds to the Shubnikov group 

Pbnm that has (001) as a forbidden 

reflection. 

If we try to refine the magnetic  
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moment a divergence condition will appear at some cycle.  

We give again the relevant part of the PCR file, now corresponding to the irrep 7. The other 

parts are identical to the previous PCR file 
 

. . . . . . 
! 

SYMM x,y,z 

MSYM  u,v,w, 0.0 

SYMM -x+1,-y,z+1/2 

MSYM  u, v,-w, 0.0 

SYMM -x+1/2,y+1/2,-z+1/2 

MSYM -u, v,-w, 0.0 

SYMM x-1/2,-y+1/2,-z 

MSYM  -u, v, w, 0.0 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rx      Ry      Rz 

!     Ix     Iy     Iz    beta11  beta22  beta33    MagPh 

Mn     MMN3  1  0  0.50000 0.00000 0.00000 0.46901  0.50000   0.143   2.000   1.012 

                      0.00    0.00    0.00    0.00     0.00    0.00    0.00    0.00 

. . . . . . 
If we test the representation 7 corresponding to the Shubnikov group Pb’nm’ we obtain also a 

very bad result without calculated intensity for the most prominent magnetic reflection (001). 

A similar result is observed for irrep 5. Only when we use the irrep 3, corresponding to the 

Shubnikov group Pb’n’m, the result indicates that we can start to refine. 
. . . . . . 

! 

SYMM x,y,z 

MSYM   u,  v, w, 0.0 

SYMM -x+1,-y,z+1/2 

MSYM  -u, -v, w, 0.0 

SYMM -x+1/2,y+1/2,-z+1/2 

MSYM   u, -v, w, 0.0 

SYMM x-1/2,-y+1/2,-z 

MSYM  -u,  v, w, 0.0 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rx      Ry      Rz 

!     Ix     Iy     Iz    beta11  beta22  beta33    MagPh 

Mn     MMN3  1  0  0.50000 0.00000 0.00000 0.46901  0.50000   2.442   1.424   1.947 

                      0.00    0.00    0.00    0.00     0.00    0.00    0.00    0.00 

. . . . . . 

If we run FULLPROF fixing all parameters and putting arbitrary magnetic symmetry operators 

as in the example above, we see that there is now a non null intensity calculated below the 

(001) magnetic reflection. 
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Starting from these values and refining only the magnetic moments (putting 1.0 1.0 1.0 as 

refinement codes as we assume that Aut=1), we can see that the program is able to refine 

correctly the magnetic structure. 

The run of the program in the conditions defined above converges at the cycle number 12 and 

gives the following result: 

 

At this stage we can refine all structural parameters, the background, the unit cell and the rest 

of profile parameters. We obtain the results shown in the next panel: 
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Instead of using Jbt=1 (components along the unitary vectors along the crystallographic 

basis a, b, c) we can use spherical components by putting Jbt=-1. The relevant part of the 

PCR file has the following aspect for the case of the irrep 3 corresponding to the correct 

solution. In read we have emphasised the variables that have changed with respect to the 

option Jbt=1. 
!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:     3.19 

!------------------------------------------------------------------------------- 

LaMnO3    (Magnetic contribution) irrep 3 Pb'n'm 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   1   0   0 0.0 0.0 1.0  -1  -1  -1   0   0        967.367   1   7   0 

! 

P -1                     <--Space group symbol for hkl generation 

!Nsym Cen Laue MagMat 

   4   2   1   1 

! 

SYMM x,y,z 

MSYM   u,  v, w, 0.0 

SYMM -x+1,-y,z+1/2 

MSYM  -u, -v, w, 0.0 

SYMM -x+1/2,y+1/2,-z+1/2 

MSYM   u, -v, w, 0.0 

SYMM x-1/2,-y+1/2,-z 

MSYM  -u,  v, w, 0.0 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      Rm      Rphi  Rtheta 

!     Im   Iphi   Itheta  beta11  beta22  beta33    MagPh 

Mn     MMN3  1  0  0.50000 0.00000 0.00000 0.56838  0.50000   3.874  85.965 101.814 

                      0.00    0.00    0.00  101.00     0.00  141.00  151.00  161.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

!-------> Profile Parameters for Pattern #  1 

. . . . . .  

The other possibility to describe the magnetic structure in FULLPROF is to use directly the file 

produced by BASIREPS with extension *.fp, in our case LMO-sym.fp (see the input of 

BASIREPS given previously). The header and the irrep 3 part of this file are shown below. 
   ------------------------------- 

   Output of BasIREPS for FullProf 

   ------------------------------- 

   The group of lines starting with the symbol of space groups and 

   finishing with the last keyword BASI, may be pasted into the PCR file 

 

                 X       Y       Z           for site:  1 

 -> Mn_1    :   0.5000  0.0000  0.0000  : (x,y,z) + ( 0  , 0  , 0  ) 

 -> Mn_2    :   0.5000  0.0000  0.5000  : (-x,-y,z+1/2) + ( 1  , 0  , 0  ) 

 -> Mn_3    :   0.0000  0.5000  0.5000  : (-x+1/2,y+1/2,-z+1/2) + ( 0  , 0  , 0  ) 

 -> Mn_4    :   0.0000  0.5000  0.0000  : (x+1/2,-y+1/2,-z) + (-1  , 0  , 0  ) 

. . . . . . . . . . . . 

=> Basis functions of Representation IRrep( 3) of dimension  1 contained 3 times in GAMMA 

    Representation number    :  3 for Site:  1 

    Number of basis functions:  3 

----- Block-of-lines for PCR start just below this line 

P -1                           <--Space group symbol for hkl generation 

! Nsym   Cen  Laue Ireps N_Bas 

     4     1     1    -1     3 

! Real(0)-Imaginary(1) indicator for Ci 

  0  0  0 

SYMM x,y,z 

BASR   1  0  0   0  1  0   0  0  1 

BASI   0  0  0   0  0  0   0  0  0 

SYMM -x+1,-y,z+1/2 

BASR  -1  0  0   0 -1  0   0  0  1 

BASI   0  0  0   0  0  0   0  0  0 

SYMM -x+1/2,y+1/2,-z+1/2 

BASR   1  0  0   0 -1  0   0  0  1 

BASI   0  0  0   0  0  0   0  0  0 

SYMM x-1/2,-y+1/2,-z 

BASR  -1  0  0   0  1  0   0  0  1 

BASI   0  0  0   0  0  0   0  0  0 

 ----- End-of-block of lines for PCR 
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In red we have emphasised the part we have to paste in the PCR file to work with FULLPROF 

using directly the basis vectors. The final PCR file using this option (Isy=-2) is written 

below:  
!------------------------------------------------------------------------------- 

!  Data for PHASE number:   2  ==> Current R_Bragg for Pattern#  1:     3.18 

!------------------------------------------------------------------------------- 

LaMnO3    (Magnetic contribution) irrep 3 Pb'n'm 

! 

!Nat Dis Mom Pr1 Pr2 Pr3 Jbt Irf Isy Str Furth       ATZ    Nvk Npr More 

   1   0   0 0.0 0.0 1.0   1  -1  -2   0   0        967.367   1   7   0 

! 

P -1                     <--Space group symbol for hkl generation 

! Nsym   Cen  Laue Ireps N_Bas 

     4     1     1    -1     3 

! Real(0)-Imaginary(1) indicator for Ci 

  0  0  0 

! 

SYMM x,y,z 

BASR   1  0  0   0  1  0   0  0  1 

BASI   0  0  0   0  0  0   0  0  0 

SYMM -x+1,-y,z+1/2 

BASR  -1  0  0   0 -1  0   0  0  1 

BASI   0  0  0   0  0  0   0  0  0 

SYMM -x+1/2,y+1/2,-z+1/2 

BASR   1  0  0   0 -1  0   0  0  1 

BASI   0  0  0   0  0  0   0  0  0 

SYMM x-1/2,-y+1/2,-z 

BASR  -1  0  0   0  1  0   0  0  1 

BASI   0  0  0   0  0  0   0  0  0 

! 

!Atom   Typ  Mag Vek    X      Y      Z       Biso    Occ      C1      C2      C3 

!     C4     C5     C6      C7      C8      C9      MagPh 

Mn     MMN3  1  0  0.50000 0.00000 0.00000 0.56878  1.00000   0.269   3.783   0.794 

                      0.00    0.00    0.00  101.00     0.00  141.00  151.00  161.00 

     0.000   0.000   0.000   0.000   0.000   0.000  0.00000 

      0.00    0.00    0.00    0.00    0.00    0.00     0.00 

 

Notice that in this case, as Cen=1 was given in the LMO-sym.fp file; we have put the 

occupation equal to 1.0 because we are using just four symmetry operators. This is needed if 

we want to use the same scale factor for the nuclear and magnetic part.  

In the conventional crystallographic description the general multiplicity of the space group 

Pbnm is 8 and the multiplicity of the special Mn position (4b) is four, so the occupation was 

n/M= 4/8=0.5 in the nuclear part. In the magnetic part we are using just four symmetry 

operators so the occupation is 1.0.  

If we put Cen=2 this implies that we use not only the four symmetry operators given 

explicitly in the file but we add four other symmetry operators obtained from those given 

multiplied by an inversion operator and in that case we have also to put n/M=0.5 as we did in 

the other examples of the PCR file for refining the magnetic structure. 

 

Once we have refined the data we can use FULLPROF STUDIO for visualising the crystal and 

magnetic structure. A plot of the magnetic structure together with the crystal structure can be 

obtained by putting the keyword “magph2” (or in general “magphn” without quotes, being n 

the number of the magnetic phase) in the same line in which appears the name of the 

crystallographic phase. This tells the program that the phase number 2 corresponds to the 

magnetic structure related to the nuclear one. 

 

Another point that is important to consider is the reliability of the obtained magnetic 

parameters with neutron powder diffraction. The irrep 3 implies a ferromagnetic component 

along the c-axis, this means that the intensity contribution is on top of non-forbidden nuclear 

reflections. The refinement of that component has a tendency to give a higher value than that 

really occurring in the sample. The reason is that small errors in the nuclear structure or in 
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absorption correction are compensated by changing the value of the ferromagnetic 

component. In the following picture we can see the magnetic structure with fixed to zero x 

and z components (a), corresponding to the mode (0, Ay, 0) and with all parameters free (b), 

corresponding to the mode (Gx, Ay, Fz). 

 

The agreement factors are practically the same, so we cannot determine precisely the value of 

the ferromagnetic component. The following panel compares the results obtained with the two 

refinements.  

 
  Name     Mx   sMx    My    sMy    Mz    sMz       M    sM       Chi2        R-Mag   

Mn       0.000(  0)   3.755( 22)   0.000(  0)    3.7555( 221)     1.73         3.04 

Mn       0.268( 94)   3.783( 22)   0.794( 69)    3.8743( 298)        1.69         3.19   
  

We can see that the improvement of the Chi-square by introducing the two additional 

magnetic parameters is really marginal and the magnetic R-Bragg factor is slightly better for 

the case in which we have put the constraints of zero components along x and z.  

The ferromagnetic component obtained using macroscopic measurements can be much better 

determined than with NPD. To get reliable weak ferromagnetic components with NPD we 

have to obtain very good statistics in the paramagnetic phase as well as in the ordered state 

and work on the difference diagram. 

 

The example we have treated here is very simple but it is useful for beginners. In more 

complicated cases it may be necessary to use the SAnn option in FULLPROF in order to 

determine the magnetic structure ab initio. The problem of creating a PCR file adapted for 

SAnn has been treated in two other documents: the tutorial on Y2O3 and the tutorial on 

symmetry modes). The method is completely equivalent, the only thing that changes in the 

PCR file is just the description of the magnetic structure using Jbt=1 or Jbt=-1. Another 

important point is that the scale factor should be kept constant and equal to the scale factor 

obtained for the nuclear structure; otherwise the magnetic moment amplitudes cannot be 

properly determined. 

 

Together with this document we give the data files and PCR files containing the nuclear 

structure of the Ho2BaNiO5 and that of DyMn6Ge6 that are treated from the point of view of 

the symmetry in the SMS document. With the experience gained in doing this exercise the 

reader should be able to solve and refine the magnetic structures of these two last compounds. 
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Appendix A: Magnetic structures 
 

Basic descriptions of magnetic structures 

 

The magnetic structures are commonly represented as a set of arrows, associated to the 

magnetic atoms, with magnitudes and orientations characteristics of the particular magnetic 

structure. For considering symmetry properties we have to suppose that each arrow is in fact a 

current loop, the direction of which determines the orientation of the arrow by the right-hand 

rule of electromagnetism. 

There are essentially two ways of describing magnetic structures. The most close to 

conventional crystallography is the use of magnetic space groups (Shubnikov groups) and the 

other way is the formalism of propagation vectors used together with the representation 

analysis. A third way that combines the two others is the approach of Superspace Magnetic 

Groups that will not be treated here. 

 

Shubnikov groups: To study the invariance of magnetic configurations we have to introduce 

a new operator that is usually called “spin reversal” or “time reversal”. This operator is acting 

on magnetic moments that are “classical axial vectors”. The action consists of changing the 

sense of the current loop (proportional to the product of a charge by a velocity vector), so that 

the orientation of the magnetic moment is reversed. We note this operator as 1′ and it acts 

only on the magnetic moments/spins not on the atom positions: 1′∙m= m.  

 

The spin reversal operator cannot be contained in the set of symmetry operators that leave 

invariant a magnetically ordered system, however it is contained in the paramagnetic state of a 

magnetic system. This gives immediately the so called “paramagnetic space groups” that are 

obtained by adding 1′ to the set of symmetry elements of the space group. The notation of the 

paramagnetic space groups is identical to that of crystallographic groups with the 1′ symbol 

added (e.g. Pbnm1′). In magnetically ordered systems the spin reversal operator can be 

combined with a conventional symmetry operator. The operator is called “primed” to indicate 

that we have to invert the spin after applying the “non-primed” operator to the spin.  

The symmetry operators we have to consider for exploring the invariance of spin 

configurations are then formed by the usual operators considered in crystallography together 

with these same operators followed by the spin reversal.  

 

Mathematically the action of whatever kind of symmetry operator, which can be represented 

by an orthogonal matrix in the appropriate reference frame, on an axial vector is identical to 

that on a polar vector except that we have to multiply by the determinant of the matrix. 

Moreover if we consider a “primed” element we have to multiply again by -1 all the 

components of the resulting vector. In summary a general operator g = {h | th + n} acting on 

an atom rj in the cell at the origin (zero-cell) having a magnetic moment mj is transformed as 

follows: 

Position: 

' { | }r r t n r r t n=r aj j h j j h i gjg h h    (1) 

Magnetic moment: 

' det( )m m mj j jg h h      (2) 
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The transformed atom position rj′ is translationally equivalent to the atom labelled “i” in the 

zero-cell. The vector agj is a lattice vector depending on the initial atom j and the operator g. It 

is called “returning vector” because its opposite is the vector we need to apply on the 

transformed atom to put it back in the zero-cell. 

The corresponding magnetic moment is transformed using only the rotational part of the 

operator and the resulting vector is multiplied by the determinant and the “signature” ( ) of 

the operator. The signature is =1 for unprimed elements and  = -1 for primed elements. 

In a magnetically ordered system the operator g is a symmetry operator if it is a symmetry 

operator of the space group and if mj′=mi. 

 

Whatever crystallographic magnetic group, M, can be obtained as a subgroup of the exterior 

direct product of R = {1, 1′} by the crystallographic group G: M  G R. The group G is 

always a magnetic group (called “colourless”). The paramagnetic (“grey”) groups of the form 

P=G+G1′ are also magnetic groups. The fact that the product of two primed elements must be 

an unprimed element gives the fundamental lemma for constructing the rest of magnetic 

groups (“black-white” groups): the magnetic groups derived from the crystallographic group 

G can be constructed considering the index 2 subgroups H of G as constituting the unprimed 

elements and the rest of operators, G  H, those that are multiplied by the time reversal 

operator.  

One obtains a total of 1651 types of Shubnikov groups. Among the 1651 magnetic space 

groups, considering G as a space group type, 230 are of the form M0=G (called also 

“monochrome”), 230 of the form P=G+G1′ (paramagnetic or “grey” groups) and 1191 of the 

form M= H + (G  H)1′ (“black-white” groups). Among the black-white groups there are 674 

in which the subgroup H  G is an equi-translation group: H has the same translation group 

as G (first kind, BW1). The rest of black-white groups, 517, are equi-class group (second 

kind, BW2). In this last family the translation subgroup contains “anti-translations” (pure 

translations associated with the spin reversal operator). The two notations for describing 

magnetic space groups existing in the literature are due to Belov-Neronova-Smirnova (BNS) 

[1] and to Opechowski-Guccione (OG) [2]. Both notations are identical for the major part of 

magnetic space groups except for the second kind black-white magnetic space groups. 

Recently a list of all magnetic space groups, in a similar form as that of the ITA for 

crystallographic groups, has been published [4] using the OG notation. A re-interpretation of 

[4] in terms of the BNS notation has also been published [5].  

 

The formalism of propagation vectors: If we disregard, for the moment, the symmetry 

properties, except the translation subgroup of the space group, of the magnetic moment 

configuration whatever class of magnetic structure can be represented by the Fourier series: 

 

                       ( 2 )
k

k

m S kRlj j lexp i     (3) 

This defines the magnetic moment of the atom numbered j in the unit cell having as origin the 

lattice vector Rl (the atom at Rlj = Rl + rj). The k vectors are defined in reciprocal space and 

are called propagation vectors of the magnetic structure. For the description of magnetic 

structures they can be restricted to the first Brillouin zone (BZ). Notice that a Fourier series in 

nothing else that a development of a function in terms of Bloch functions. 

The Fourier coefficients Skj are, in general, complex vectors and must verify the equality

-j jk kS S to make the sum result a real vector. In practice, most of the magnetic structures can 

be describe by a small number (1 to 3) of propagation vectors. 
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Let us describe general types of magnetic structures of increasing degree of complexity, using 

the formalism of propagation vectors through the expression (3).  

 

a) The simplest types of magnetic structures existing in complex crystals have a single null 

propagation vector at the centre of the BZ: k = (0, 0, 0) = 0. The Fourier coefficients should 

be real and can be identified to the magnetic moments directly: 

   ( 2 )lj j l j jexp i0 0 0m S 0R S m        (4) 

This expression tells us that the orientation and magnitudes of the magnetic moments in 

whatever cell of the crystal are identical to those of the zero-cell. The translational symmetry 

of the magnetic structure is identical to that of the crystal structure: the magnetic unit cell is 

the same as the chemical cell. This class of magnetic structures may be ferromagnetic, 

ferrimagnetic or antiferromagnetic, collinear or non-collinear. The propagation vector at the 

centre of the BZ does not mean that the magnetic structure is ferromagnetic. This is only true 

for Bravais lattices (a single magnetic atom per primitive cell). This kind of magnetic 

structure can be described by one of the 230 monochrome or the 674 black-white first kind 

(BW1) magnetic space groups. 

 

b) The next class of magnetic structures corresponds also to a single propagation vector, in 

this case of the form: k=1/2H, where H is a reciprocal lattice vector. The propagation vectors 

of this kind correspond to high symmetry points of the surface of the BZ (Liftchitz points). In 

this case we have: 

0( 2 ) ( ) ( 1) ( 1) ( 1)l l ln n

lj j l j l j j jexp i exp i
HR

k k k km S k R S H R S S m   (5) 

This expression tells us that the orientation and magnitudes of the magnetic moments in 

whatever cell of the crystal are either identical or opposite to those of the zero-cell. The 

translational symmetry is lower than that of the chemical cell. The magnetic cell can easily be 

deduced from the particular values of the propagation vector (see [15] for a classification of 

magnetic lattices in terms of propagation vectors). The magnetic structures of this kind are 

necessarily antiferromagnetic and can be described by one of the 517 black-white second kind 

(BW2) magnetic space groups. 

 

c) This is the general case, where the k-vector is not a special vector as in the two previous 

types. For these cases there is no Shubnikov group, in three dimensions, that can describe the 

symmetry properties of such spin configuration. The general expression of the Fourier 

coefficient for the atom j is explicitly given by: 

1 2 3 1 2 3

1 1
{ }exp( 2 ) { ( )}exp( 2 )

2 2
k k k k k k k k k k kS e e e e e e

x y z x y z

j j j j j j j j j j jR i I i R R R i I I I i
 (6)

 

Only six real parameters define the Skj vectors, so the phase factor 
kj

is not generally needed, 

but it is convenient to use it when particular relations or constraints between real and 

imaginary vectors, ( , )
k kj jR I , are given. The calculation of the magnetic moment of the atom j 

in the unit cell of index l, should be performed by using the formula (3) that may be also 

written in this case as: 
 

                      

{ cos2 [ ] sin 2 [ ]}k k k k

k

m k R k Rlj j l j j l jR I  (3’) 

where the sum is now extended to half the number of propagation vectors, i.e. over the total 

number of pairs (k,-k). 

 

If the magnetic structure represents a helical order the Fourier coefficients are of the form: 
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1 2

1
{ }exp( 2 ), | | | | 1, 0

2
k kS u v u v u vj j j j j j j j j jm i m i with          (7) 

where u j
 and v j

 are orthogonal unit vectors.  

 

Representation analysis for magnetic structures 

 

In the most general case the expression (3) can be written with an additional index as: 

   

{ }

{ 2 }
k

k

m S kRljs js lexp i      (8) 

l: index of a direct lattice point (origin of an arbitrary unit cell) 

j: index for a Wyckoff site (orbit) 

s: index of a sublattice of the j site 

The Fourier coefficients verify: Skjs= S*-kjs       (9) 

 

The group Gk is formed by the set of symmetry operators that leave invariant the propagation 

vector: Gk={g G | gk=k+H, H L*}, where L* is the crystallographic reciprocal lattice. 

 

One can generate a reducible representation of Gk by considering the complex working space 

spanned by all the components of Skjs.  

 

As the atoms belonging to different sites do not mix under the symmetry operators, we can 

treat separately the different sites. For us the index j is then fixed and the index s varies from 1 

to pj. For  

 

The working complex space for site j has dimension nj=3  pj is then spanned by unit vectors  

{ k
ε

j

s
} (  = 1, 2, 3 or x, y, z and s = 1… pj) represented as column vectors (with a single 

index n) with zeroes except for n= +3(s-1). The vectors { k
ε

j

s
} are formed by direct sums 

(juxtaposition) of 3D unit vectors k
u

j

s
.  

 

 

11 12

1,

,10 1 0

,10 0 1

, 10

,0

,1

,0

,0 0 0

,0 0 0

k k k k
ε u ε ε

j

j j j j

s s

s p

j

j

x

y

z s

x s

y s

z s

y p

z p

23 , 3( 1)

0

0

0

0

0

1
..... ( )

0

0

k k
ε ε

j j

s n n s

    (10) 

 

The vectors { k
ε

j

s
} may be considered as the columns of the unit matrix of dimension 

nj nj=9pj
2
: 
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11 12 13 2 3

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

{ }

0 0 0 1 0

0 0 0 0 1

k k k k k
ε ε ε ε ε

j j

j j j j j

p p

 

  

0

1

2

, 3( 1) 3

0

0

0

0
exp( 2 ) ( )

exp( 2 )

kRk k k

R

R

ε kR

kR R

l

j

ij j j

s s l s n n s lp

l

l l

i e

i

 (11) 

 

If one applies the symmetry operators of Gk to the vectors { k
ε

j

s
} taking into account that they 

are axial vectors we obtain another vector (after correcting for the Bloch phase factor if the 

operator moves the atom outside the reference zero-cell) of the same basis. 
 

The matrices , ( )kj

q s g  of dimension nj  nj corresponding to the different operators constitute 

what is called the “Magnetic Representation” for the site j and propagation vector k.  

 

The action of the operator O(g), corresponding to the symmetry operator g,  on the vector       

{ k
ε

j

s } can be described as follows: applying a symmetry operator to the vector position and 

the unit spin associated to the atom js along the -axis, changes the index js to jq and reorient 

the spin according to the nature of the operator g={h|th} for axial vectors. 

, , 3( 1)

2

, 3( 1) 3

3 ( ) ; 3 ( )

exp( 2 ) 3 ( )

k k k k

kRk k k

ε u u ε

ε kR φ l

j

j j j j

s s s n n j s n n s

s

ij j j

s s l j s n n s lp

l

D p D

i Np D e
  (12) 

The operator g acting on atom positions permute the numbering of the atoms belonging to a 

same site and provide a returning vector a
j
gs, that must appear in a phase factor when working 

with Bloch functions, when the transformed atom is outside the zero-cell. 

2

, ,( ) ( ) det( )
k ak k k k

ε ε ε
j
gsij j j j j

s q s q s gq q

q q

O g g e h h  

The explicit components of the magnetic representation are: 



 25 

2

, ,

2

, ,

( )

( ) det( )

( ) det( )

k ak

k ak

j
gs

j
gs

ij

Perm q s q gs

Axial

ij

Mag Perm Axial q s q gs

P g e

V g h h

g e h h

             (13)

   

The  symbol has value equal to 1 when the operator g transforms the atom s into the atom q, 

and zero otherwise.  

 

The decomposition of the magnetic representation in terms of irreducible representations of 

the group of the propagation vector can be obtained using the following formulae: 
1 2 3

1 2 3 ... m

Mag mn n n n n     (14) 

*1
( ) ( )

( )
0kG0kG

Mag

g

n g g
n

 

 

Projection operators and basis vectors of irreducible representations of Gk 

 

The basis functions of the irreps of Gk can be calculated using the projection operator formula 

particularised for the explicit expression of O(g) acting on the vectors {
kj

s}. The explicit 

formula giving the nj-dimensional basis vectors of the representation   for site j is the 

following: 

              

*

[ ]

*

[ ] ,

1
( ) ( ) ( ) ( 1,... )

( )

1
( ) ( ) exp(2 )det( )

( )

0k

0k

k k

G0k

k k

G0k

ε
G

k a ε
G

j

s

g

j j j

gs s gq q

g q

j g O g l
n

j g i h h
n

  (15) 

It is convenient to use, instead of the basis vectors for the whole set of magnetic atoms in the 

primitive cell, the so called atomic components of the basis vectors, which are normal 3D 

constant vectors attached to individual atoms: 

 

, 1,...

( ) ( )k k
S

js p

j js     (16) 

The explicit expression for the atomic components of the basis functions is: 

1

2*

[ ] , [ ] 2

3

( ) ( ) e det( )
0k

k ak

G

S
j
gsi j

s g q

g

h

js g h h

h

  (17) 

 

A general magnetic structure can be described by a Fourier series as (3) where the index j was 

for a generic magnetic atom irrespective of symmetry. The Fourier series can be rewritten 

using the notation used in the present section, simply by changing the index j for the double 

index js. The fundamental hypothesis of the symmetry analysis, when working with magnetic 

structures, is that the Fourier coefficients Skjs that describe magnetic structures with 

propagation vector k must be a linear combination of the basis functions (atomic components) 

of the Gk irreducible representations.  
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( )k k

k
S Sjs n n

n

C js            (18) 

where labels the active irreducible representation, , of the propagation vector group Gk,  

labels the component corresponding to the dimension of the representation , n is an 

additional index (with respect to expression (18)) running between one and the number of 

times (n=1...n ) the representation  is contained in the global magnetic representation Mag. 

The quantities ( )k
Sn js  are constant vectors, in general complex, obtained by the application 

of the projection operator formula to axial unit vectors along the directions of the unit cell 

axes attached to the positions js. In the case the representation analysis is fully used, the 

mixing coefficients k

nC  are the free parameters of the magnetic structure and usually the total 

number is lower than the number of Fourier components of each magnetic atom in the unit 

cell. If we add a sum over representations, the expression (18) gives the most general case; in 

practice one has to assume additional constraints because the number of mixing coefficients 

may be too high.  

The number of free coefficients to describe a magnetic structure corresponding to a single 

representation of Gk is related to the number of independent basis vectors nf  n   dim( ). 

In the general case the basis functions can be complex vectors as well as the coefficients k

nC , 

the condition -k kS Sjs js assures the reality of the magnetic moments. The effective number of 

free parameters depends on some additional assumptions related to the consideration of the 

star of the wave vector. Let us consider only a single wave vector and the representations of 

Gk. In such a case, the analysis is successful when the number of free parameters is lower 

than 6pj in the case of k not equivalent to -k or 3pj in case of real Fourier coefficients. In 

summary, the group theory, considering only Gk, is useful when:  

 

nf  = 2 n   dim( ) < 6 pj  (for k non equivalent to -k)   (19)  

nf  =   n   dim( ) < 3 pj  (for k equivalent to -k)    (19’) 

  

The factor 2 comes from the fact that, in general, the coefficients may be complex (modulus 

and phase). When the constraints introduced by symmetry analysis are not enough to simplify 

the problem and tackle successfully the experimental data, one has to consider other kind of 

restrictions imposed by the previous knowledge of the physics of the system. The most 

common constraint, based on physical grounds, is that the magnetic moment of the different 

atoms belonging to a same crystallographic site should have the same modulus, at least for 

commensurate magnetic structures. 

    

Instead of using directly the mixing coefficients for describing a magnetic structure, one can 

use a more traditional crystallographic approach in some cases. The Fourier component k of 

the magnetic moment of atom j1, which transforms to the atom js when the symmetry 

operator gs={h|t}s of Gk is applied (r
j
s=gsr

j
1=hsr

j
1+ts), is transformed as: 

 

1 { 2 }k k kS Sjs js j jsM exp i            (20) 

 

The matrices Mjs and phases kjs can be deduced from the relations between the Fourier 

coefficients and atomic basis functions (18). The matrices Mjs correspond, in the case of 

commensurate magnetic structures, to the rotational parts of the magnetic Shubnikov group 

acting on magnetic moments.  

 

 



 27 

How we get information about magnetic structures: magnetic neutron scattering 
 

The intensity of magnetic Bragg peaks due to neutron scattering by magnetically ordered 

systems can be calculated in a similar way as for X-rays or nuclear neutron scattering. The 

most important difference is that the scattering amplitude is not a scalar variable.  

The scattering amplitude vector, for a single atom with atomic moment m, is given by: 

 

     
2 2

1 ( ) 1
( ) ( ) ( ) ( )( )

2 2

Q m Q
a Q m m Q m Qe epf Q r f Q r f Q

Q Q
  (21) 

 

The constant p = re /2 = 0.2695 allows the conversion of the magnetic moments, given in 

Bohr magnetons to scattering lengths units of 10
-12

 cm. The other constants appearing in 

formula (21) are: the classical radius of the electron
 

2 2 13/ 2.81776 10 cmer e mc and the 

magnetic moment of the neutron in nuclear magnetons  ( 1.9132). The function ( )f Q  is the 

atomic magnetic form-factor (Fourier transform of the unpaired electron density, normalized 

as f(0) =1, assumed to be spherical hereafter), and m  is the perpendicular component of the 

atomic moment to the scattering vector Q=2 s. Only the perpendicular component of m 

contributes to the magnetic scattering of neutrons by matter. The vectorial character of the 

interaction allows determining the magnetic moment direction with respect to the crystal 

lattice. 

 

For a single crystal with a magnetic structure described by the formula (3), the magnetic 

intensity is practically zero in the whole reciprocal space except at positions given by: 

 

s h H k           (22)

     

Magnetic diffraction appears like a filter. Each satellite is decoupled of the rest of satellites, so 

if there are different propagation vectors k there is no interference between them, so there is 

always a phase factor between the Fourier coefficients Sk corresponding to different 

propagation vectors that is not accessible by diffraction methods unless a crystal structure 

distortion is coupled with the magnetic ordering. Only when k=0 there is a magnetic 

contribution in top of the nuclear reflections. 

For a particular magnetic reflection the magnetic structure factor of the unit cell is: 

 
2 2 ( )

( ) ( ) ( )
h r H k r

k khM h M S SH kj ji i

j j j j

j j

p f h e p f e  (23) 

 

The intensity of a magnetic Bragg reflection is proportional to the square of the magnetic 

interaction vector: 

 2

1
( )h h h h hM h M h e M e M e M e

h
 (24) 

where e is the unit vector along the scattering vector h=H+k. In the case of a propagation 

vector k=0 the intensity of a Bragg reflection for non polarised neutrons is given by: 

 
*

hhhhh MM
*NNI   (25)
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where ( )h hN F is the nuclear structure factor, otherwise only the second term (pure 

magnetic scattering) of the sum contributes to the intensity of reflection h.  

 

Appendix B: Explicit calculations of the decomposition of the magnetic 

representation in the case of LaMnO3 and the basis vectors of irrep 
 

The matrices of the magnetic representation of dimension 3x4=12 can be obtained by the 

direct product of the permutation (dimension 4) and the axial (dimension 3) representations. 

The axial representation is formed by the rotational part of the coset representatives of Gk 

multiplied by the determinant. The axial representation is then:  

 

1 1 1

1 0 0 1 0 0 1 0 0 1 0 0

1 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 1 0 0 1 0 0

1 0 1 0 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1 0 0 1

z x y

m b n

 

 

The characters of these matrices are: v(1)=3, v(21z) = -1, v(21x) = -1, v(21y) = -1, v(-1)=3, 

v(m) = -1, v(b) = -1, v(n) = -1 

 

The permutation representation does not contain phase factors because the propagation vector 

is zero. The matrices can be obtained just looking at the transformations of the following 

numbers representing the atoms of the Wyckoff site 4b (the character of the permutation 

matrices are also given). 

 

Op. Atom: 1 2 3 4       Character 

_______________________________               ________ 

1  1 2 3 4  4 

21z  2 1 4 3  0 

21x  4 3 2 1  0 

21y  3 4 1 2  0 

-1  1 2 3 4  4 

m  2 1 4 3  0 

b  4 3 2 1  0 

n  3 4 1 2  0 

 

One can see that the four last operators produce the same permutations of the atoms as that of 

the first four operators. This is a characteristic of this special position. As an example the 

matrices of the permutation representation corresponding to the operators 21x and m are: 
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1 1

0 0 0 1 0 1 0 0

0 0 1 0 1 0 0 0
2 (2 ) ( )

0 1 0 0 0 0 0 1

1 0 0 0 0 0 1 0

x xP m P m  

 

 

The magnetic representation can be obtained just by direct product of the axial and 

permutation representations. In general we do not need the explicit writing of these matrices 

because we are mostly interested in the decomposition of the magnetic representation in terms 

of the irreps of Gk and for that we need only the characters of this representation, that can be 

easily obtained as the product of the characters of the axial representation and those of the 

permutation representation. These characters are: 

 

 

Characters   1 21z 21x 21y -1 m b n  

(Axial) 3 -1 -1 -1 3 -1 -1 -1 

(Perm) 4 0 0 0 4 0 0 0 

(Mag) 12 0 0 0 12 0 0 0 

 

As an example the complete magnetic matrix of the above two operators are: 

 

  

1

1 0 0

0 0 0 0 1 0

0 0 1

1 0 0

0 0 0 1 0 0

0 0 1
(2 )

1 0 0

0 0 1 0 0 0

0 0 1

1 0 0

0 1 0 0 0 0

0 0 1

Mag x
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1 0 0

0 0 1 0 0 0

0 0 1

1 0 0

0 1 0 0 0 0

0 0 1
( )

1 0 0

0 0 0 0 1 0

0 0 1

1 0 0

0 0 0 1 0 0

0 0 1

Mag m

 

 

 

 

The next step is the decomposition of the magnetic representation in terms of the irreducible 

representations of Gk. This can be easily done by applying the formulae (14). The calculations 

give the following result 

 

 

*1

1

1

1

1

11 1 24
( ) ( ) 12 0 0 0 12 0 0 0 3

1( ) 8 8

1

1

1

0kG0kG
Mag

g

n g g
n

 

*1

2

1

1

1

11 1 0
( ) ( ) 12 0 0 0 12 0 0 0 0

1( ) 8 8

1

1

1

0kG0kG
Mag

g

n g g
n

 

. . . . . . 

 



 31 

 
1 3 5 73 3 3 3Mag n    

 

It is easy to see that the only irreducible representations that are contained in the magnetic 

representation are those having the character equal to 1 for the inversion centre. These are 

called gerade or even representations (in some notations a subscript g is added to the symbol 

of the representation). The decomposition shows that we have to get three basis vectors for 

each representation. This coincides also with the number of free parameters of the different 

magnetic structures. 

 

The final step is the calculation of the basis vectors of each irreducible representation 

contained in Mag. This can be done applying the projection operator formulae (15-17).  

For representations of dimension 1 the projection operator formula can be simplified 

replacing the matrix elements by the characters: 

   
*1

( ) ( )
( )

0k

k k

G0k

ε
G

j

g

g O g
n

 

 

1 *1

1 1 1 2 4 3 1 2 4 3

1 1
( ) ( ) (1. 1. 1. 1. 1. 1. 1. 1. )

( ) 8
0k

k

G0k

Ψ ε ε ε ε ε ε ε ε ε
G

x x x x x x x x x

g

g O g
n

 

  

1

1 1 2 3 4

1

2 1 2 3 4

1

3 1 2 3 4

1 1
( ) (1,0,0; 1,0,0; 1,0,0; 1,0,0)

4 4

1 1
( ) (0,1,0; 0, 1,0; 0,1,0; 0, 1,0)

4 4

1 1
( ) (0,0,1; 0,0,1; 0,0, 1; 0,0, 1)

4 4

k

k

k

Ψ ε ε ε ε

Ψ ε ε ε ε

Ψ ε ε ε ε

x x x x

y y y y

z z z z

 

 

In our case the atomic component of the basis vectors can be written in a more simplified 

form: we can drop the indices k, j,  and , moreover no phase factor with returning vectors 

appear because k = (0, 0, 0)   so that the expression (13) reduces to 

 

   

1

*

, [ ] 2

3

( ) det( )
0kG

S s g q

g

h

s g h h

h

 

 

If we calculate the atomic components applying directly the above formula for each sublattice 

(s=1, 2, 3, 4) and for each component ( =x, y, z) we obtain the 3D-vectors separated by “;” in 

the complete basis functions. As an example let us calculate some of them taking into account 

that the -symbol selects only the operators that leave the starting atom s invariant. For the 

first atom only the identity and the inversion centre have to be taken into account if we take 

q=1 as starting atom:  
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We see that the atomic components calculated, using the direct formula, correspond well to 

the 3D vectors embedded as part of the row used for the complete basis functions. The 

calculation by hand using the explicit formula is probably not as intuitive as the use of the 

projection operator directly but it is quite convenient for automatic calculations using 

computer programs. 

 

References 
 
[1] N. V. Belov, N. N. Neronova and T. S. Smirnova, Kristallografiya 2, 315 (1957) (English 

translation: Sov. Phys. Crystallogr. 2, 311). 

[2]  W. Opechowski and R. Guccione, Magnetic Symmetry, in Magnetism (G.T. Rado and H. Shull, 

eds.), Vol II A, Ch. 3, 105 Academic Press, New York. (1965). 

[3] W. Opechowski, Crystallographic and Metacrystallographic Groups, Elsevier Science 

Publishers B.V., Amsterdam 1986. 

[4] D. B. Litvin, Acta Cryst. A64, 419 (2008). 

[5] H. Grimmer, Acta Cryst. A65, 145 (2009). 

[6] E. F. Bertaut, Acta Cryst. A24, 217 (1968). 

[7]  E. F. Bertaut, Spin Configurations in Ionic Structures: Theory and Practice, in  Magnetism, vol 3, 

Ed. G.T. Rado and H. Suhl, Academic Press, 1963. 

[8] E. F. Bertaut, J. de Physique, Coll. C1, sup. n-3,32, C1-462 (1971). 

[9] E. F. Bertaut, J. Magn. Magn. Mat. 24, 267 (1981).  

[10] J. Rodríguez-Carvajal (unpublished). BASIREPS: a program for calculating irreducible 

representations of space groups and basis functions for axial and polar vector properties (see 

FullProf site: http://www.ill.eu/sites/fullprof). 

 

 

http://www.ill.eu/sites/fullprof

